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and experiments. The proposed method is suitable for use in real-time embedded battery
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 

Abstract—The maximum capacity, the amount of maximal 

electric charge that a battery can store, not only indicates the state 

of health, but also is assumed in numerous methods for state of 

charge estimation. This paper proposes an alternative approach 

to perform the online estimation of the maximum capacity by 

solving the recursive total least square (RTLS) problem. Different 

from prior art, the proposed approach poses and solves the RTLS 

problem as a Rayleigh quotient optimization problem. The 

Rayleigh quotient-based approach can be readily generalized to 

other parameter estimation problems including impedance 

estimation. Compared to other capacity estimation methods, the 

proposed algorithm enjoys the advantages of other existing 

RTLS-based algorithms for instance, low computational cost, 

simple implementation, and high accuracy. The proposed method 

is compared with existing methods via simulations and 

experiments. The proposed method is suitable for use in real-time 

embedded battery management systems.  

 
Index Terms—Lithium-ion battery, online capacity estimation, 

Rayleigh quotient, recursive total least square (RTLS), state of 

charge, state of health  

 

I. INTRODUCTION 

ITHIUM-ION batteries have gained increasingly pervasive 

use in numerous applications due to the high energy and 

power densities, and longer cycle life [1]. While viewed as a 

promising rechargeable battery technology, lithium-ion 

batteries carry limited thermal stability and performance 

degradation caused by the aging process. A battery 

management system (BMS), which monitors and controls the 

operation of a battery system, is generally required to ensure the 

safety and efficiency [2]. A key function of the BMS is to 

monitor the state of charge (SOC), state of health (SOH), 
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instantaneous available power (i.e., the state of power SOP), 

internal impedance, maximum capacity, etc. [3]. For example, 

the SOC is required by optimal control of EVs and PHEVs. 

Meanwhile, control strategies may take the SOH into 

consideration for long-term targets [4].  

The maximum capacity (i.e., capacity fade) and the internal 

impedance (i.e., power fade) have been commonly used to 

quantify the SOH, which is used to prevent catastrophic failures 

of the batteries [5]. The maximum capacity is generally 

difficult to measure, and needs to be estimated from 

measurements.  

The maximum capacity can be estimated by using a full 

discharge test, where a fully charged battery is discharged with 

a small current until the battery terminal voltage reaches a 

cutoff threshold [6]. The delivered charge is measured to obtain 

the maximum capacity. The full discharge test is a simple but 

time-consuming approach, and thus is not an online solution. 

Online maximum capacity estimation methods fall into three 

categories: analytical, computational intelligence-based, and 

model-based. The analytical methods perform the maximum 

capacity estimation based on the two-point SOC (TP SOC). For 

example, Texas Instrument developed a battery management 

integrated circuit chip, which estimates the maximum capacity 

using the SOC values obtained from the measured open-circuit 

voltage (OCV) at two operating points and the delivered charge 

between the two operating points [7]. Similar TP SOC methods 

have been presented in [4], [8], and [9]. The TP SOC methods 

are simple and easy to implement in real-time systems, but is 

prone to the SOC estimation and current measurement errors 

[10]. Recently, a total least square (TLS)-based capacity 

estimation method [10], [11] has been introduced to reduce the 

capacity estimation error caused by the SOC estimation and 

current measurement errors. 

The computational intelligence-based methods produce the 

capacity estimation based on learning the nonlinear relationship 

between the capacity and measurable battery parameters, such 

as voltage, current, and temperature [12], [13]. The learning is 

usually carried out on the basis of neural network models, e.g. 

artificial neural networks [12], adaptive recurrent neural 

networks [13] and structured neural networks [14]. The 

capacity estimation accuracy is significantly affected by 

training data and training methods, which are usually chosen 

heuristically.  Along with the learning process is the prohibitive 

computational complexity. 
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The model-based methods estimate both the SOC and the 

maximum capacity based on battery models. Kalman filter 

(KF)-based approaches, such as dual extended Kalman filter 

(DEKF) [15], [16], [18], and dual sigma point Kalman filter 

(SPKF) [17], constitute a large portion of this category. 

KF-based approaches have common disadvantages: prone to 

linearization errors; assuming Gaussian noises; requiring 

accurate models uncertainties; and lack of the stability. Particle 

filter-based identification methods [20] take into consideration 

the nonlinearity and non-Gaussian noise, and the filter 

performance depends on the number of particles. Normally, 

particle filter-based methods involve higher computational cost 

than KF-based methods [19]. Apart from aforementioned filters, 

work [21], [22] consider a dual sliding-mode observer (SMO), 

which is computationally efficient as well as robust with 

respect to measurement noises and modeling errors. Recent 

contribution [24] follows the linear adaptive method and 

introduces two linear observers to perform joint estimation of 

the SOC and capacity.  

 The goal of this paper is to develop an alternative capacity 

estimation algorithm which is computationally effective, 

accurate, as well as suitable for real-time embedded BMS 

applications. This paper proposes a Rayleigh quotient-based 

online capacity estimation algorithm which solves the recursive 

TLS (RTLS) problem in [11]. Simulations and experiments are 

performed to verify that the proposed method improves the 

robustness of the TP SOC method, outperforms TP-based 

analytical methods, and requires less computational costs than 

model-based DEKF methods.  

II. RELATED WORK 

The maximum battery capacity represents the maximum 

amount of energy that can be drawn from a fully charged 

battery until its terminal voltage reaches a cutoff value without 

any nonlinear capacity effect [6]. The maximum capacity is 

only temperature-dependent. On the other hand, the available 

battery capacity is the amount of electric charge stored in the 

battery. The available capacity is dependent on temperature and 

the current rate due to the nonlinear capacity effects, such as the 

rate capacity effect and recovery effect [6]. We need to estimate 

the maximum capacity not only because it changes due to aging 

and temperature fluctuation but also because of the 

inconsistency during the battery manufacturing process [25].  

A. Least Square Problem 

Denote Cmax the maximum capacity of the battery cell. A 

number of maximum capacity estimation methods rely on the 

following Coulomb counting formula  
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where iB denote the current of the battery cell (iB is positive if 

the battery is operated in the discharge mode and negative if 

operated in the charge mode); 
Zjt j ,  are the time instants 

when the SOC is sampled; and η is Coulomb efficiency. It 

usually assumes that η = 1. As noted in [4], [7], and [8], the 

maximum capacity can be simply calculated from 
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Assume that the SOC is uniformly sampled at time instants 
Zjt j , with t1 = 0, and the cell current is uniformly sampled 

with a sample period Ts. Discretize (2) over [tj,tj+1] and 

rearrange it as follows 
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where kj,kj+1 are the time indices corresponding to tj,tj+1 

respectively.  Define 
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Then (3) can be written as                 

                                          xCjy max)(                                         (4) 

A least square (LS) problem formulation, assuming a noisy y 

but accurate x, allows us to estimate the maximum capacity 

Cmax by minimizing the following cost function [26]: 

                         



N

j

jxCjyCJ
1

2

maxmax )]()([)(                   (5) 

The matrix form of the LS solution has been widely used and 

is written as follows: 

                               YXXXkC TT 1

max )()(                              (6) 

where X = [x(1), ∙∙∙, x(N)]
T
 and Y = [y(1), ∙∙∙, y(N)]

T
. Fig. 1(a) 

illustrates the concept of the LS method, where the dots 

represent the data points, the solid line represents the fitting line, 

and the dashed lines represent the vertical distances from the 

data points to the fitting line. The standard LS method provides 

unbiased capacity estimation only if the estimated SOC (i.e., X) 

are correct [10].  

B. Total Least Square Problem 

Total least squares problem is not new and is also known as 

orthogonal regression, errors-in-variables, and measurement 

errors in statistics.  Formulating the capacity estimation as a 

TLS problem introduces extra freedom by allowing inaccuracy 

in the observation matrix X and the measurement matrix Y. That 

is the TLS problem assumes the following Coulomb counting 

model 
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)(~

max

)(~

))(()(

kxky

xkxCyky                      (7) 

where x(k) and y(k) are error free input and output, respectively; 

Δy is the output measurement error ; Δx is the SOC estimation 

error. Both Δy and Δx are assumed to be zero mean, normally 

distributed random variables with covariance matrices that are 

a multiple of the identity,   

As illustrated in Fig. 1(b), where the dashed lines represent 

the orthogonal distances from the data points to the fitting line, 

the TLS performs the orthogonal regression which minimizes 

the sum of the squared orthogonal distances from the data 

points to the fitting line [27]. In another words, the TLS method 

is to solve the following optimization problem                      
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where ||·||F denotes the Frobenius norm. Typical approaches to 

solve the TLS include the singular value decomposition (SVD) 

algorithm [27], recursive Rayleigh quotient algorithms in 

adaptive signal filtering [28], [28], and recursive approximate 

weighted TLS (RAWTLS) in the battery capacity estimation 

[10]. The SVD-based batch TLS algorithm however suffers 

high computational complexity and requires a large memory. 

Recursive TLS algorithms, which generally have lower 

computational complexity, are preferable in embedded systems. 

Although the TLS problem has been studied for decades by the 

signal processing community, its application to solve the 

battery capacity estimation was fairly new [10], [10]. 

Specifically, the RAWTLS in [10]  performs the maximum 

capacity estimation, but is only validated by using simulation 

results. 

III. THE RAYLEIGH QUOTIENT-BASED ALGORITHM 

This paper proposes a constrained Rayleigh quotient-based 

RTLS algorithm for the maximum capacity estimation for 

lithium-ion batteries. The proposed algorithm can be viewed as 

an alternative to algorithms in [10], [10]. While with a 

significantly reduced computational complexity than 

RAWTLS [10], the proposed algorithm can achieve good 

accuracy that is comparable with the batch TLS algorithm.  

A. The Proposed RTLS Algorithm 

 Assume that Δy and Δx are zero-mean Gaussian random 

processes with known variances σy
2
 and σx

2
, respectively. 

Denote the autocorrelation matrix of the noisy input )(~ kx  as 

follows 

                                  )(~)(~)(
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Introduce the augmented data  Tkykxkx )(~),(~)(  and express 

its autocorrelation matrix as follows 
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where  )(~)(~)( kykxEkb T ,  )(~)(~)( kykyEkc T . If 

considering a forgetting factor  (0.95≤<1), the 

autocorrelation matrix is updated as follows 

)()()1()( kxkxkRkR T   

Similar to [28], the stochastic quantities R(k), b(k), and c(k) can 

be expressed as follows  
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It has been shown in [29] that the optimization problem (8) is 

equivalent to minimizing the Rayleigh quotient F(q):  
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where q is the eigenvector associated with the smallest 

eigenvalue of the symmetric positive-definite matrix A
T
A in the 

TLS solution. Interested readers are referred to [30] and 

references therein for details.  

 For the maximum capacity estimation, a constrained 

Rayleigh quotient is used as a cost function where q
T
 and A

T
A in 

(12) are replaced with [Cmax, -1] and 𝑅̅ , respectively. The 

maximum capacity estimation problem therefore has the 

following constrained Rayleigh quotient cost function: 
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where ),1( diagD   is a diagonal weighting matrix with β = 

y
2
/x

2
. Denote two eigenvectors of 𝑅̅ as q1 = [C

1
max, -1]

T
, q2 = 

[C
2

max, -1]
T
, and the corresponding two eigenvalues λ1, λ2, 

respectively. We cite the following conclusion about the 

existence and uniqueness of the global minimizer of (13). 

 Theorem 3.1 [Thm. 3.1, 28] If λ1 > λ2, then C
2

max is the global 

minimizer of (13). 

 Proof of Theorem 3.1 is omitted, and interested readers are 

referred to [28] for details. 

Instead of solving a TLS problem at each new data arrival, 

which is time-consuming, one would like to develop a 

closed-form update law of the minimizer. The Cmax is updated 

by successive approximation as: 

                         )(~)()1()( maxmax kxkkCkC                    (14) 

where α(k) is an adaptive gain chosen to minimize 

))(~)()1(( max kxkkCJ  in the direction of )(~ kx . Let the 

gradient of ))(~)()1(( max kxkkCJ   be equal to zero, i.e., 
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Fig. 1. Comparison of linear regression methods: (a) LS method and (b) TLS 

method.  
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(16)           

Then, α(k) can be obtained by solving the following quadratic 

equation formed by the numerator term of (15).                     
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The quadratic equation (17) has two roots, from which the 

solution of α(k) can be obtained as follows: 
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In the proposed RTLS method, the three running 

time-averaged estimations c1, c2, and c3 need to be calculated by 

(16) to obtain α(k). The maximum capacity estimate is updated 

with a time interval of Tl (Tl = k2 − k1). In the next algorithm 

update index, the SOC(k2) of the battery cell becomes SOC(k1). 

The overall flow diagram of the proposed algorithm is shown in 

Fig. 2. As a comparison, the RAWTLS method in [10] has six 

running time-averaged estimations and finds the optimal 

solution from four roots using the Ferrari method. 

B. Convergence, Stability, Robustness, and Tuning 

Like many other capacity estimation algorithms, the 

proposed RTLS algorithm takes two SOC estimates as inputs: 

one is constructed from the Coulomb counting, and the other is 

typically obtained from a model-based SOC estimator. The 

effectiveness of the proposed RTLS algorithm is similarly 

contingent on two fundamental assumptions: 

(1) The model (7) captures the battery’s charge/discharge 

behavior, i.e. the capacity estimation problem can be 

formulated as a TLS problem  

(2) Both inputs are perturbed by zero-mean Gaussian noises. 

It is worth pointing out that Assumption (2) is always not 

satisfied. Thus the resulted capacity estimate is necessarily 

biased. 

As shown in [Thm. 5.1, 28], the proposed RTLS algorithm 

converges to the optimal solution under certain conditions. We 

include the results as follows for completeness. 

Theorem 3.2 If 𝑅̅(𝑘) → 𝑅̅∗ as 𝑘 → ∞, then the sequence of 

{Cmax(k)} generated according to (14)-(18) converges to C
*
max 

which is the unique global minimizer of (13). 

Here we provide a sketch of the proof. Readers are referred 

to [28] for detailed proof.  

Proof: The steps to determine α(k) ensure that the resultant 

sequence {J(Cmax(k))} is monotonically decreasing, and the 

cost function J(Cmax(k)) is a Lyapunov function of the dynamics 

(14). Meanwhile, the sequence {J(Cmax(k))} clearly has a lower 

bound, and thus is bounded, which further implies the 

boundedness of the sequence {Cmax(k)} , i.e. all solutions of (14) 

lies in a compact set Ω. Let F  be the set of all points in Ω where 

J(Cmax(k)) − J(Cmax(k-1)) = 0, i.e.  

F = {w(k)|J(Cmax(k)) − J(Cmax(k-1)) = 0, for all k}.  

One can verify that the set F is a subset of all stationary points 

of J(Cmax(k)). From Theorem.3.1, the largest invariant set in F 

is the global minimizer of (13). Applying the LaSalle’s 

invariance principle, all solutions of (14) converge to the 

maximal invariant set. This completes the proof.  

 It is likely that the minimizer of (13) with 𝑅̅ replaced by 𝑅̅∗ 

might still give biased capacity estimation. 

 Remark 3.3 Although the proposed RTLS algorithm 

converges to the global optimum, no convergent rate result has 

been established. The convergent rate is however essential to 

establish stability results for the entire estimation error 

dynamics, including the SOC estimation and the capacity 

estimation errors.  

Remark 3.4 A convergent capacity estimation algorithm and 

exponentially convergent SOC estimation error dynamics do 

not guarantee the stability of the entire system. One needs to 

redesign the SOC estimator and the capacity estimation 

algorithm, for instance Lyapunov redesign, to ensure stability.  

Remark 3.5 If the capacity estimation algorithm yields 

exponentially convergent estimation error dynamics, then 

combined with the arbitrarily fast exponentially convergent 

 

 

Fig. 2. The overall flow diagram of the proposed Rayleigh quotient-based 

online RTLS maximum capacity estimation method. 
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SOC estimation error dynamics and the Lipschitz condition, 

one can establish the exponentially convergent stability for the 

entire system. 

Remark 3.6 The proposed algorithm is not related to 

well-known recursive least square or least mean square 

algorithms by any means. Although it takes a similar form of 

gradient-based algorithms, the proposed algorithm does not 

update the decision variable (capacity estimate) along the 

gradient of the cost function. Instead, defining the search 

direction 𝑥̃ is for computation simplicity. The key part of the 

algorithm is the analytical expression of the optimal step length 

along the search direction. In terms of the numerical stability, 

taking the β = 1 case, the proposed RTLS problem formulation 

is unlikely ill-conditioned. This is because the diagonal 

components of 𝑅̅(𝑘) is at the same scale and much larger than 

off-diagonal components, which implies the eigenvalue spread 

is not remarkable.  

From Theorem 3.2, the proposed RTLS algorithm converges 

to the global minimizer of (13) as long as 𝑅̅(𝑘) → 𝑅̅∗ as 𝑘 → ∞. 

It is equivalent to study the robustness of the minimizer of (13) 

with 𝑅̅  replaced by 𝑅̅∗ . Qualitative robustness analysis is 

possible by looking into two aspects: How good does 𝑅̅∗ 

characterize capacity-related factors such as model mismatch, 

temperature fluctuation, aging, etc.? Is the global minimizer 

sensitive to perturbations in 𝑅̅∗ ? For the first aspect, the 

proposed algorithm provides a design freedom: the forgetting 

factor  during the computation of 𝑅̅. The second aspect is 

essentially concerned about the robustness of the optimal 

solution, and can resort to numerous works in the perturbation 

analysis for SVD, e.g. [35], [36].  

It is well-known that the maximum capacity changes due to 

aging and temperature fluctuation. The proposed algorithm can 

be readily applied to estimate the capacity as a time-varying 

parameter, as long as the temperature variation and aging 

process do not invalidate the aforementioned two fundamental 

assumptions. One way to ensure the satisfaction of the 

fundamental assumptions is to design the SOC estimation 

algorithm which can compensate the aging and temperature 

effects and provide accurate estimation. After the capacity is 

properly estimated, one can perform post-analysis to 

differentiate the causes of capacity variations. A number of 

techniques can be candidates for this prognosis purpose: pattern 

recognition, frequency analysis, or even simple threshold 

mechanism.  

Estimating the capacity as a time-varying parameter requires 

appropriate tuning of the forgetting factor in (11). The 

forgetting factor  reflects the design tradeoff between 

robustness and tracking capability. Specifically, algorithms 

with smaller values of  weight more on tracking the 

time-varying capacity at the expense of more sensitivity to 

measurement noises and the SOC estimation error; on the 

contrary, large values of  improve robustness but compromise 

the tracking capability. The maximum capacity varies due to a 

number of reasons, for instance aging and the environmental 

temperature [32]. With the environmental temperature 

regulated to a constant set point, the maximum capacity 

variation is largely due to the slow aging process, and thus a 

large value of   (e.g., 0.98 ≤  < 1) can be chosen. To address 

the environmental temperature fluctuation which generally 

happens in a faster time scale than other factors (e.g., aging),  

can be taken a small value (e.g., 0.95 ≤  < 0.98). More 

advanced optimal or adaptive  should be further investigated, 

which, however, is out of scope of this paper. 

IV. METHOD VALIDATION 

Simulation and experimental studies validate the proposed 

maximum capacity estimation algorithm by comparing with 

several existing methods. Specifically, in Section IV.A, the 

proposed RTLS algorithm is compared to the TP method  [8], a 

batch LS method, and a SVD-based batch TLS method [27], 

and simulation results verify the effectiveness of the RTLS 

problem formulation for both constant and time-varying 

capacity cases; Section IV.B makes comparison between the 

proposed RTLS algorithm and an existing DEKF, and shows 

that the proposed RTLS results in a lower computation cost but 

comparable capacity estimation accuracy. Section IV.C makes 

comparison between the proposed RTLS, the TP, and the 

DEKF methods using experimental data. 

 Across this section, the EKF-based SOC estimation is 

implemented on the basis of the electrical battery model [33], 

which is given in Appendix for completeness. All algorithms 

are implemented in MATLAB on a desktop computer.  It is 

worth pointing out that the accumulation error along with the 

Coulomb counting can be effectively mitigated by good 

calibration of the initial SOC, and use of accurate current 

sensors.  We therefore use the SOC from the Coulomb counting 

as the reference (true) SOC.  

A. Simulation Study #1 

In simulation, the nominal capacity, nominal voltage, and 

cutoff voltage of a single battery cell are 5 Ah, 3.7 V, and 2.5 V, 

respectively. All methods use the same current profiles and 

SOC as shown in Fig. 3(b) and Fig. 3(c), respectively. 

Particularly, both the SOC and the current are corrupted by 

zero-mean Gaussian random noises with variances σx
2
 = (0.01)

2
 

and σy
2
 = (0.001)

2
, respectively. Each capacity estimation 

algorithm runs for ten times to suppress the effects of random 

noises, and the average value of Cmax over ten times is used as 

the estimated Cmax. All capacity estimation algorithms are 

executed with an interval of 200 seconds (i.e., Tl = 200 

seconds). 

For the proposed RTLS, the initial maximum capacity for is 

6 Ah, the forgetting factor  = 0.999. For the TP method, k1 is 

fixed to be the initial time (i.e., k1 = 0). Fig. 3(a) compares the 

true and the estimated Cmax. Simulation shows that the proposed 

RTLS method provides the best estimation accuracy and 

converges to the true maximum capacity value; the TLS 

method is slightly worse than the proposed method; the LS 

method gives biased estimation; and the TP method takes 

longer time to converge. Note that the TP method is sensitive to 

the SOC error and thus the estimated Cmax oscillates. The 

simulation results show that given the two fundamental 
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assumptions satisfied, the proposed RTLS algorithm can provide unbiased capacity estimation, and the LS or the TP 

methods fail. 

Next, we verify that the proposed RTLS algorithm works 

effectively in the time-varying maximum capacity case. In this 

test, the true maximum capacity changes linearly over time 

with a slope of -2.5 mAh per algorithm execution time. The 

same current input, as shown in Fig. 3(b), is used and all 

algorithms are executed ten times as well. Both the true and 

initial maximum capacities are set to be 10 Ah for the proposed 

RTLS algorithm, and the forgetting factor  is 0.98. The true 

and the estimated average time-varying maximum capacities 

are shown in Fig. 4. The TP method does not converge to the 

true value and the estimation error of the TLS method increases 

over time. However, the proposed RTLS method can track the 

time-varying maximum capacity accurately, and thus 

outperforms TP-based analytical methods. 

B. Simulation Study #2 

We compare the following three setups: an EKF-based SOC 

estimator cascaded by the proposed RTLS algorithm; an 

EKF-based SOC estimator cascaded by the TP algorithm; a 

simple DEKF estimating both the SOC and the capacity 

simultaneously [15]. The simple DEKF includes two EKFs: 

one for SOC estimation and another for the maximum capacity 

estimation. All three setups use the same EKF-based SOC 

estimator, and the only difference lies in the capacity estimation 

algorithm. In the EKF design for SOC estimation, the system’s 

process noise covariance matrix and initial state error 

covariance matrix are diagonal matrices with each element 

equals to 0.16 and 1, respectively. For the capacity estimation 

in the simple DEKF, the system’s noise covariance matrix and 

initial state error covariance matrix are defined as 10000
2 

and 

100000, respectively. The measurement noise covariance 

matrix for all EKFs is 0.25. The covariance matrices of all 

EKFs are chosen by trial-and-error in an effort to reduce 

estimation errors. In the SOC and capacity estimation 

algorithms, the initial SOC and maximum capacity are set to 

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 3. Comparison of true and estimated average values of the maximum 

capacity using the TP, LS, TLS, and proposed RTLS algorithms: (a) the 
maximum capacity, (b) the noisy pulse current cycle, and (c) the corrupted 

SOC applied to the algorithms and the actual SOC. 
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Fig. 4. Comparison of true the estimated average values of the time-varying 

maximum capacity using the TP, LS, TLS, and proposed RTLS algorithms. 
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TABLE I 

THE SOC AND THE CAPACITY ESTIMATION ALGORITHMS IN 

SIMULATION STUDY 

Method EKF Simple DEKF TP+EKF RTLS+EKF 

Estimation SOC SOC Capacity Capacity Capacity 

RMSE 0.011 0.011 0.2237 0.0006 0.2151 

Computational 
time (seconds) 

10.69 21.4711 10.6917 10.6977 

Convergence 

time  

N/A Very Fast Very 

Fast 

Very Fast 

 

0.8 and 6 Ah, respectively, while the true initial SOC and 

maximum capacity are 0.95 and 5Ah, respectively. The EKF is 

executed with a small time-scale (e.g., Ts = 1 second) to keep 

track of the SOC, while a large time-scale (e.g., Tl = 200 

seconds) is used in the cascaded RTLS and TP algorithms for 

the capacity estimation. The simple DEKF is executed with a 

small time-scale (e.g., Ts = 1 second) for both SOC and 

capacity estimation. The value of  is 0.98 in the proposed 

RTLS.  

Fig. 5(a) compares the true and the estimated Cmax using the 

TP, the simple DEKF, and the proposed RTLS for the dynamic 

noisy current cycle shown in Fig. 3(b). The estimated SOC 

from the EKF applied to the RTLS algorithm is shown in Fig. 

5(b). Table I summarizes the comparison results where the 

accuracy is measured by root mean square error (RMSE) 

calculated from algorithm update index 11 to 86, the 

computational cost is evaluated by the computation time taken 

on an Intel® Core™2 Duo CPU T6600@2.2GHz, 64-bit OS. 

The results indicate that the TP method has the best 

performance due to relatively smooth and accurate SOC 

estimate from the EKF; while the DEKF and RTLS methods 

have similar estimation accuracy and convergence. We remark 

that both the RTLS and DEKF performance might be 

compromised by non-Gaussian SOC estimation error, and the 

proposed RTLS however requires lower computational cost 

and easier implementation than the simple DEKF.   

C. Experimental Study 

In the experiment, the data of the cell voltage and current are 

collected from a battery tester under the ambient temperature at 

21.6°C. The SOC estimation algorithm consists of a fast 

upper-triangular and diagonal recursive LS (FUDRLS) block 

for impedance estimation and an EKF block for the SOC 

estimation [33]. The estimated SOC and the measured cell 

current are used as the inputs of the TP algorithm and the 

proposed RTLS algorithm. The simple DEKF also uses the 

electrical parameters estimated by the FUDRLS to estimate the 

SOC. In the EKF-based SOC estimation, the initial SOC and 

maximum capacity are set to 0.5 and 5 Ah, respectively; while 

the true initial SOC and maximum capacity are 0.31 and 4.732 

Ah, respectively. In order to set the test battery cell with the 

desired initial SOC, the battery was first fully charged and rests 

 

 
(a) 

 
(b) 

Fig. 5. Comparison of true and the estimated values of the maximum capacity 
of the battery cell by using the TP, DEKF, and proposed RTLS algorithms: (a) 

the maximum capacity, (b) the estimated SOC applied to the RTLS algorithm. 
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Fig. 6. Comparison of true and estimated values of the maximum capacity of the 

battery cell model by using the TP, simple DEKF, and proposed RTLS 

algorithms: (a) the pulse current cycle (iB =10C), (b) the estimated SOC applied 

to the TP and RTLS algorithms, and (c) the maximum capacity. 
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TABLE II 

THE SOC AND THE CAPACITY ESTIMATION ALGORITHMS IN 

EXPERIMENTAL STUDY 

Method EKF Simple DEKF TP+EKF RTLS+EKF 

Estimation SOC SOC Capacity Capacity Capacity 

RMSE 0.027 0.027 0.208 35.058 0.141 

Computational 

time (seconds) 

1.734 3.128 1.736 1.740 

Convergence 

time  

N/A Very Fast No Fast 

 

for one hour. Then the cell is discharged using a small current 

(e.g., 0.2 A) to the desired initial SOC value. The true 

maximum capacity was extracted offline using the full 

discharge test with a small current (e.g., 0.05C = 0.25 A) at the 

ambient temperature. The FUDRLS and EKF are executed with 

a small time-scale (e.g., Ts = 1 second) to keep track of the fast 

time varying electrical parameters and the SOC; while a large 

time-scale (e.g., Tl = 20 seconds) is used in the maximum 

capacity algorithms. The simple DEKF is executed with a small 

time-scale (e.g., Ts = 1 second). The value of   is taken 0.98 in 

the proposed RTLS. 

During experiment, the battery cell was operated by a 

dynamic high-pulse current cycle (iB = 10C) shown in Fig. 6(a). 

Fig. 6(b) compares the SOC values estimated by the Coulomb 

counting and the EKF algorithm. The error between the 

EKF-estimated SOC and the Coulomb counting-estimated 

SOC decreases from 10% at 100 seconds to 2% at 1000 seconds. 

Fig. 6(c) compares the true and estimated Cmax and shows that 

the proposed RTLS algorithm has the best tracking 

performance and converges to the true maximum capacity 

value quickly.  Due to the relatively large oscillation error, the 

simple DEKF performs worse than the proposed method. The 

TP method is sensitive to the accuracy of the SOC input and 

does not converge to the true value. 

Table II compares different algorithms in terms of the RMSE 

from algorithm update index 21 to 94, computational time, and 

convergence time. The results clearly show that the proposed 

method outperforms the simple DEKF in terms of higher 

accuracy and lower computational cost. Furthermore, the 

implementation of the proposed method is simple.  

V. CONCLUSION 

This paper has presented a Rayleigh quotient-based online 

RTLS maximum capacity estimation algorithm for lithium-ion 

batteries. The proposed RTLS method has been implemented in 

MATLAB and validated by simulation and experimental 

results for a lithium-ion battery cell. Owing low complexity and 

high accuracy, the proposed method is suitable for use in the 

real-time embedded BMSs in various applications. The 

estimated maximum capacity can be used for condition 

monitoring (e.g., SOC and SOH estimation), diagnosis, and 

prognosis of lithium-ion batteries.  Future work includes 

investigations of the temperature effect on the battery capacity 

and adaptive forgetting factor, developing a capacity estimation 

algorithm which is robust to the color noise inputs, and more 

realistic experimental validation. 

VI. APPENDIX 

The battery model [33] used in this paper is shown in Fig. 7, 

where VOC (i.e., the open-circuit voltage OCV) includes two 

parts. The first part, denoted by Voc(SOC), represents the 

equilibrium OCV, which is used to bridge the SOC to the cell 

open-circuit voltage. The second part Vh is the hysteresis 

voltage capturing the nonlinearity of OCV. The RC circuit 

models the I-V characteristics and the transient response of the 

battery cell. Particularly, the series resistance, Rs, characterizes 

the charge/discharge energy losses of the cell; the charge 

transfer resistance, Rc, and the double layer capacitance, Cd, are 

used to characterize the short-term diffusion voltage, Vd, of the 

cell; Vcell represents the terminal voltage of the cell. Defining 

H(iB) = exp(-ρ|iB(n)|Ts), a discrete-time state-space version of 

the real-time battery model is expressed as follows: 
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where Vhmax is the maximum hysteresis voltage, and ρ is the 

hysteresis parameter representing the convergence rate.  
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