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Abstract

We present in this chapter some recent results on learning-based adaptive control for
nonlinear systems. We first study the problem of adaptive trajectory tracking for non-
linear systems. We focus on the class of nonlinear systems with parametric uncer-
tainties, which can be rendered integral Input-to-State Stable (iISS) w.r.t. the param-
eter estimation error. We argue, for this particular class of systems, that it is possi-
ble to merge together the integral Input-to-State stabilizing feedback controller and
a model-free extremum seeking (ES) algorithm, to realize a learning-based adaptive
controller. We investigate the performance of this approach in term of tracking error
upper-bounds, for two different ES algorithms. Next, we consider the class of nonlin-
ear systems affine in the control, and propose a learning-based approach to iteratively
auto-tune the feedback gains for nonlinear stabilizing controllers.

Keywords: adaptive control, learning-based control, extremum-seeking, nonlinear sys-
tems, iterative feedback gains tuning
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1. Introduction

Extremum seeking (ES) is a well known approach which one can use to search for the
extremum of a cost function, associated with a given process performance, without the need
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for a precise model of the process, e.g., [1–3]. Several ES algorithms have been proposed,
e.g., [1–8], and many applications of ES algorithms have been reported, e.g., [9–13].

On the other hand, classical adaptive control deals with controlling partially un-
known processes based on their uncertain models, i.e., controlling plants with parameter
uncertainties. One can classify classical adaptive methods into two main approaches;
‘direct approaches’, where the controller is updated to adapt to the process, and ‘indirect
approaches’, where the model is updated to better reflect the actual process. Many adaptive
methods have been proposed over the years for linear and nonlinear systems. We could not
possibly cite here all the design and analysis results that have been reported; instead, we
refer the reader to e.g., [14, 15] and the references therein for more details. What we want
to underline here, is that these results in ‘classical’ adaptive control are mainly based on the
structure of the model of the system, e.g., linear vs. nonlinear model, linear uncertainties
parametrization vs. nonlinear parameterizations, etc.

Another adaptive control paradigm is the one which uses ‘learning schemes’ to esti-
mate the uncertain part of the process. Indeed, in this paradigm the learning-based
controller, based either on machine learning theory, neural networks, fuzzy systems, etc.,
is trying either to estimate the parameters of an uncertain model, or the structure of a
deterministic or a stochastic function representing part or all of the model. Several results
have been proposed in this area as well; we refer the reader to e.g., [16] and the references
therein for more details.

We want to concentrate in this chapter on the use of ES theory in the ‘learning-
based’ adaptive control paradigm. Indeed, several results were recently developed in this
direction, e.g., [9, 10, 12, 13, 17–20]. For instance, in [19, 20] an extremum seeking-based
controller was proposed for nonlinear affine systems with linear parameters uncertainties.
The controller drives the states of the system to unknown optimal states that optimize a
desired objective function. The ES controller used in [19, 20] is not model-free, in the
sense that it is based on the known part of the model, i.e., it is designed based on the
objective function and the nonlinear model structure. A similar approach is used in [9, 10]
when dealing with more specific examples. In [17, 18], the authors used a model-free ES,
i.e., based on a desired cost function, to estimate parameters of a linear state feedback to
compensate for unknown parameters for linear systems. In [12], the authors used, for the
case of electromagnetic actuators, a model-free ES, i.e., only based on the cost function
without the use of the system model. The model-free ES was used to learn the ‘best’
feedback gains of a passive robust state feedback. Similarly, in [13, 21] a backstepping
controller was merged with a model-free ES to estimate the uncertain parameters of a
nonlinear model for electromagnetic actuators.

In this context, we present here an ES-based indirect adaptive controller for a class
of nonlinear systems. The results reported here are based on the work of the author
introduced in [22, 23]. The idea is based on a modular design, where we first design
a feedback controller which makes the closed-loop tracking error dynamic ISS (or
iISS) w.r.t. the estimation errors. This ISS controller is then complemented with a
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mode-free ES algorithm that can minimize a desired cost function. The cost function
is minimized by tuning, i.e., estimating, the unknown parameters of the model. This
modular design simplifies the analysis of the total controller, i.e., ISS controller plus ES
estimation algorithm. We propose this formulation in the general case of nonlinear systems.

We underline here that the main advantage w.r.t. classical ES results, which do not
use any model to control a given system, is the fact that pure ES-based controllers are
mainly meant for regulation control, not output trajectory tracking. Another point is that the
pure ES controllers are slower to converge to the optimal control, compared to a modular
approach which uses the known part of the model to design a model-based controller, and
then complement it with a model-free ES algorithm to learn the unknown part of the model
and improve the overall control performance. In other words, with the pure ES-based
controller one assumes no knowledge at all of the controlled system, ignoring the physics
of the system, and even if under some conditions, convergence of such algorithms has been
proven, it is intuitive to expect the modular control design, which takes advantage of the
physics of the system, to be able to converge to the optimal performance faster than the
complete model-free ES control.

Another well known control problem, concerns iterative feedback gains tuning (IFT)
for linear and nonlinear controllers. Indeed, the use of learning algorithm to tune feedback
gains of nominal linear controllers to achieve some desired performances has been studied
in several papers, e.g., [24–27]. We present here some results related to IFT for nonlinear
systems. The results presented here were introduced by the author in [12, 28]. We consider
a particular class of nonlinear systems, namely, nonlinear models affine in the control input,
which are linearizable via static state feedback. We consider bounded additive model un-
certainties with known upper bound function. We propose a simple modular iterative gains
tuning controller, in the sense that we first design a passive robust controller, based on the
classical Input-Output linearization method merged with a Lyapunov reconstruction-based
control, e.g., [29, 30]. This passive robust controller ensures uniform boundedness of the
tracking errors and their convergence to a given invariant set. Next, in a second phase
we add a multi-variable extremum seeking algorithm to iteratively auto-tune the feedback
gains of the passive robust controller to optimize a desired system performance, which is
formulated in terms of a desired cost function minimization.

One point worth mentioning at this stage, is that compared to model-free pure ES-
based controllers, the ES-based IFT control has a different goal. Indeed, the available
pure ES-based controllers are meant for output or state regulation, i.e., solving a static
optimization problem. On the contrary, here we propose to use ES to complement a model-
based nonlinear control to auto-tune its feedback gains, which means that the control goal,
i.e., state or output trajectory tracking, is handled by the model-based controller. The ES
algorithm are used to improve the tracking performance of the model-based controller, and
once the ES algorithm has converged, one can carry on using the nonlinear model-based
feedback controller alone, i.e., without the need of the ES algorithm. In other words, the
ES algorithm is used here to replace the manual feedback gains tuning of the model-based
controller, which is often done in real-life by some type of trial and error tests.
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This chapter is organized as follows: In Section 2 we recall some notations and def-
initions that will be used in the sequel. In Section 3 we present the first indirect adaptive
control approach, namely the ES-based learning adaptive controller for constant structured
model uncertainties. In Section 4 we study the case of time-varying structured model
uncertainties, using time-varying ES-based techniques. Section 5 is dedicated to the
problem of passive robust nonlinear control with learning-based iterative feedback gains
tuning. Finally, some summarizing remarks and open problems are given in Section 6.

2. Preliminaries

Throughout the chapter we will use ‖.‖ to denote the Euclidean norm; i.e., for x ∈ R
n we

have ‖x‖ =
√

xT x. We will use ˙(.) for the short notation of time derivative. We denote by
Ck functions that are k times differentiable. A function is said analytic in a given set, if it
admits a convergent Taylor series approximation in some neighborhood of every point of
the set. A continuous function α : [0,a) → [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0. A continuous function β : [0,a)× [0,∞)→ [0,∞) is said to belong
to class K L if, for each fixed s, the mapping β(r,s) belongs to class K with respect to r
and, for each fixed r, the mapping β(r,s) is decreasing with respect to s and β(r,s) → 0
as s → ∞. Let us now introduce few definitions that will be used in the remainder of this
chapter.

Definition 2.1 (Local Integral Input-to-State Stability [31]). Consider the system

ẋ = f (t,x,u) (1)

where x∈D ⊆R
n such that 0∈D , and f : [0,∞)×D×Du →R

n is piecewise continuous in
t and locally Lipschitz in x and u, uniformly in t. The inputs are assumed to be measurable
and locally bounded functions u : R≥0 → Du ⊆ R

m. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D , there is a unique maximal solution of the initial value problem ẋ = f (t,x,u),
x(t0) = ξ. Without loss of generality, assume t0 = 0. The unique solution is defined on
some maximal open interval, and it is denoted by x(·,ξ,u). System (1) is locally integral
input-to-state stable (LiISS) if there exist functions α, γ ∈ K and β ∈ K L such that, for all
ξ ∈ D0 and all u ∈ Du, the solution x(t,ξ,u) is defined for all t ≥ 0 and

α(‖x(t,ξ,u)‖) ≤ β(‖ξ‖, t)+
∫ t

0
γ(‖u(s)‖)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only if there exist functions β ∈ K L
and γ1, γ2 ∈ K such that

‖x(t,ξ,u)‖ ≤ β(‖ξ‖, t)+ γ1

(

∫ t

0
γ2(‖u(s)‖)ds

)

(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du.

Remark 2.1. The use of the iISS definition is not a limitation of the ideas presented here.
Indeed, we are presenting here a modular design, i.e., a model-based controller ensuring
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iISS stability and a model-free part to improve the performance of the model-based con-
troller. However, instead of iISS one could easily use ISS definition or semi-global practical
spISS etc. The main idea is to ensure some sort of safety (boundedness of the closed-loop
signals) of the feedback system during the learning phase. The reason why we choose to
use iISS here is that in real applications with complicated time-varying nonlinear models
, e.g., [32], we found that proving iISS using dissipativity-based equivalence theorems,
e.g., [33], is easier than proving ISS. The fact is iISS, ISS, or spISS will not change the
general results presented here, it will solely change the details of the upper-bounds of the
closed-loop signals.

Definition 2.2 (ε- Semi-global practical uniform ultimate boundedness with ultimate bound δ
((ε−δ)-SPUUB) [4]). Consider the system

ẋ = f (t,x) (4)

with φε(t, t0,x0) being the solution of (4) starting from the initial condition x(t0) = x0. Then,
the origin of (4) is said to be (ε,δ)-SPUUB if it satisfies the following three conditions:
1-(ε,δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists c1 ∈]0,∞[ and ε̂ ∈]0,∞[ such
that for all t0 ∈ R and for all x0 ∈ R

n with ||x0|| < c1 and for all ε ∈]0, ε̂[,

||φε(t, t0,x0)|| < c2, ∀t ∈ [t0,∞[

2-(ε,δ)-Uniform ultimate boundedness: For every c1 ∈]0,∞[ there exists c2 ∈]δ,∞[ and
ε̂ ∈]0,∞[ such that for all t0 ∈ R and for all x0 ∈ R

n with ||x0|| < c1 and for all ε ∈]0, ε̂[,

||φε(t, t0,x0)|| < c2, ∀t ∈ [t0,∞[

3-(ε,δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞) there exists T ∈]0,∞[ and ε̂ ∈
]0,∞[ such that for all t0 ∈ R and for all x0 ∈ R

n with ||x0|| < c1 and for all ε ∈]0, ε̂[,

||φε(t, t0,x0)|| < c2, ∀t ∈ [t0 +T,∞[

An impulsive dynamical system is said to be well-posed if it has well defined distinct
resetting times, admits a unique solution over a finite forward time interval and does not
exhibits any Zeno solutions, i.e., an infinitely many resetting of the system in finite time
interval [34]. Finally, in the sequel when we talk about error trajectories boundedness,
we mean uniform boundedness as defined in [29] (p.167, Definition 4.6 ) for nonlinear
continuous systems, and in [34] (p. 67, Definition 2.12) for time-dependent impulsive
dynamical systems.

In the next section, we first consider the case of nonlinear models with constant
parametric uncertainties.

3. Extremum Seeking-based Indirect Adaptive Controller for
the Case of Constant Model Uncertainties

Consider the system (1), with an additional argument ∆ ∈ R
p, representing constant para-

metric uncertainties
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ẋ = f (t,x,∆,u) (5)

We associate with (5), the output vector

y = h(x) (6)

where h : R
n → R

h.
The control objective here is for y to asymptotically track a desired smooth vector time-
dependent trajectory yre f : [0,∞) → R

h.
Let us now define the output tracking error vector as

ey(t) = y(t)− yre f (t) (7)

We then assume the following

Assumption 3.1. There exists a robust control feedback uiss(t,x, ∆̂) : R
×

R
n ×R

p → R
m,

with ∆̂ being the dynamic estimate of the uncertain vector ∆, such that, the closed-loop error
dynamics

ėy = fey(t,ey,e∆) (8)

is iISS from the input vector e∆ = ∆− ∆̂ to the state vector ey.

Remark 3.1. Assumption 1 might seem too general, however, several control approaches
can be used to design a controller uiss rendering an uncertain system iISS (or ISS, spISS),
for instance backstepping control approach has been shown to achieve such a property for
parametric strict-feedback systems, e.g., [15]. We have also proposed in [35] a constructive
control design which ensures ISS for the class of nonlinear systems affine in the control
variable.

Let us define now the following cost function

Q(∆̂) = F(ey(∆̂)) (9)

where F : R
h → R, F(0) = 0, F(ey) > 0 for ey 6= 0.

We need the following assumptions on Q.

Assumption 3.2. The cost function Q has a local minimum at ∆̂∗ = ∆.

Assumption 3.3. The initial error e∆(t0) is sufficiently small, i.e., The original parameters’
estimates vector ∆̂ is close enough to the actual parameters vector ∆.

Assumption 3.4. The cost function is analytic and its variation with respect to the uncertain
variables is bounded in the neighborhood of ∆∗, i.e., ‖ ∂Q

∂∆ (∆̃)‖ ≤ ξ2, ξ2 > 0, ∆̃ ∈ V (∆∗),
where V (∆∗) denotes a compact neighborhood of ∆∗.

Remark 3.2. Assumption 3.2 simply means that we can consider that Q has at least a local
minimum at the true values of the uncertain parameters.

Remark 3.3. Assumption 3.3 indicates that our result will be of local nature, meaning that
our analysis holds in a small neighborhood of the actual values of the parameters.
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We can now present the following Theorem.

Theorem 3.1. Consider the system (5), (6), with the cost function (9), then under Assump-
tions 1 to 4, the controller uiss, where ∆̂ is estimated with the multi-parameter extremum
seeking algorithm

ẋi = aisin(ωit + π
2 )Q(∆̂)

∆̂i = xi +aisin(ωit − π
2 ), i ∈ {1, ..., p} (10)

with ωi 6= ω j, ωi +ω j 6= ωk, i, j,k ∈ {1, ..., p}, and ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large
enough, ensures that the norm of the error vector ey admits the following bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t)+α(
∫ t

0
γ(β̃(‖e∆(0)‖, t)+‖e∆‖max))ds

where ‖e∆‖max = ξ1
ω0

+
√

∑i=p
i=1 a2

i , ξ1,ξ2 > 0, e(0) ∈ De, ω0 = maxi∈{1,...,p} ωi, α ∈ K ,

β ∈ K L , β̃ ∈ K L and γ ∈ K .

Proof. Consider the system (5), (6), then under Assumption 1, the controller uiss ensures
that the tracking error dynamic (8) is iISS between the input e∆ and the state vector ey,
which by Definition 1, implies that there exist functions α ∈ K , β ∈ K L and γ ∈ K , such
that, for all e(0) ∈ De and e∆ ∈ De∆ , the norm of the error vector e∆ admits the following
bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t)+α(
∫ t

0
γ(‖e∆‖))ds (11)

for all t ≥ 0.
Now, we need to evaluate the bound on the estimation vector ∆̃, to do so we use the results
presented in [7]. First, based on Assumption 4.1, the cost function is locally Lipschitz, i.e.,
∃η1 > 0, s.t. |Q(∆1)−Q(∆2)| ≤ η1‖∆1 −∆2‖, ∀∆1,∆2 ∈ V (∆∗). Furthermore, since Q is
analytic it can be approximated locally in V (∆∗) with a quadratic function, e.g., Taylor
series up to second order. Based on this and on Assumptions 3.2 and 3.3, we can write the
following bound ( [7], pages 436-437):

‖e∆(t)‖−‖d(t)‖ ≤ ‖e∆(t)−d(t)‖ ≤ β̃(‖e∆(0)‖, t)+ ξ1
ω0

⇒‖e∆(t)‖ ≤ β̃(‖e∆(0)‖, t)+ ξ1
ω0

+‖d(t)‖
⇒ ‖e∆(t)‖ ≤ β̃(‖e∆(0)‖, t)+ ξ1

ω0
+

√

∑i=p
i=1 a2

i

with β̃ ∈ K L , ξ1 > 0, t ≥ 0, ω0 = maxi∈{1,...p} ωi, d(t) = [a1sin(ω1t + π
2 ), ...,apsin(ωpt +

π
2 )]T , which together with the bound (11) completes the proof.

So far we have dealt with the case of nonlinear models with constant parametric uncer-
tainties. However, in real application it is often the case that the change in the parameters’
values happens slowly overtime, for instance due to aging of the system. To deal with this
scenario, we consider in the next section the case of nonlinear models with time-varying
parametric uncertainties.
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4. Extremum Seeking-based Indirect Adaptive Controller for
the Case of Time-varying Model Uncertainties

Consider the system (5), with the time-varying parametric uncertainties ∆(t) : R → R
p,

and the output vector (6). We consider the same control objective here, which is for y to
asymptotically track a desired smooth vector time-dependent trajectory yre f : [0,∞) → R

h.
Let us define now the following cost function

Q(∆̂, t) = F(ey(∆̂), t) (12)

where F : R
h ×R

+ → R
+, F(0, t) = 0, F(ey, t) > 0 for ey 6= 0.

In this case, we introduce the following additional assumptions on Q.

Assumption 4.1. | ∂Q(∆̂,t)
∂t | < ρQ, ∀t ∈ R

+, ∀∆̂ ∈ R
p.

We can now state the following result.

Theorem 4.1. Consider the system (5), (6), with the cost function (12), then under Assump-
tions 3.1, 3.2 and 4.1, the controller uiss, where ∆̂ is estimated with the multi-parameter
extremum seeking algorithm

˙̂∆i = a
√

(ωi)cos(ωit)− k
√

ωisin(ωit)Q(∆̂), i ∈ {1, ..., p} (13)

with a > 0, k > 0, ωi 6= ω j, i, j,k ∈ {1, ..., p}, and ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large
enough, ensures that the norm of the error vector ey admits the following bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t)+α(
∫ t

0
γ(‖e∆(s)‖)ds

where α ∈ K , β ∈ K L , γ ∈ K , and ‖e∆‖ satisfies:

1-( 1
ω ,d)-Uniform Stability: For every c2 ∈]d,∞[, there exists c1 ∈]0,∞[ and ω̂ > 0 such

that for all t0 ∈ R and for all x0 ∈ R
n with ||e∆(0)|| < c1 and for all ω > ω̂,

||e∆(t,e∆(0))|| < c2, ∀t ∈ [t0,∞[

2-( 1
ω ,d)-Uniform ultimate boundedness: For every c1 ∈]0,∞[ there exists c2 ∈]d,∞[ and

ω̂ > 0 such that for all t0 ∈ R and for all x0 ∈ R
n with ||e∆(0)|| < c1 and for all ω > ω̂,

||e∆(t,e∆(0))|| < c2, ∀t ∈ [t0,∞[

3-( 1
ω ,d)-Global uniform attractively: For all c1, c2 ∈ (d,∞) there exists T ∈]0,∞[ and ω̂ > 0

such that for all t0 ∈ R and for all x0 ∈ R
n with ||e∆(0)|| < c1 and for all ω > ω̂,

||e∆(t,e∆(0))|| < c2, ∀t ∈ [t0 +T,∞[

where d is given by: d = min{r ∈]0,∞[: ΓH ⊂ B(∆,r)}, with ΓH = {∆̂ ∈ R
n : ‖ ∂Q(∆̂,t)

∂∆̂ ‖ <
√

2ρQ
kaβ0

}, 0 < β0 ≤ 1, and B(∆,r) = {∆̂ ∈ R
n : ||∆̂−∆|| < r}.
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Remark 4.1. Theorem 4.1 shows that the estimation error is bounded by a constant c2
which can be tightened by making the constant d small. The d constant can be tuned by
tuning the cardinal of the set ΓH , which in turns can be made small by choosing large values
for the coefficients a and k of the ES algorithm (13).

Proof. Consider the system (5), (6), then under Assumption 1, the controller uiss ensures
that the tracking error dynamic (8) is iISS between the input e∆ and the state vector ey,
which by Definition 1, implies that there exist functions α ∈ K , β ∈ K L and γ ∈ K , such
that, for all e(0) ∈ De and e∆ ∈ De∆ , the norm of the error vector e∆ admits the following
bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t)+α(
∫ t

0
γ(‖e∆‖))ds (14)

for all t ≥ 0.
Now, we need to evaluate the bound on the estimation vector ∆̃, to do so we use the results
presented in [4]. Indeed, based on Theorem 3 of [4], we can conclude under Assumption
4.1, that the estimator (13), makes the local optimum of Q; ∆∗ = ∆ ( see Assumption 3.2),
( 1

ω ,d)-SPUUB, where d = min{r ∈]0,∞[: ΓH ⊂ B(∆,r)}, with ΓH = {∆̂ ∈ R
n : | ∂Q(∆̂,t)

∂∆̂ | <
√

2ρQ
kaβ0

}, 0 < β0 ≤ 1, and B(∆,r) = {∆̂ ∈ R
n : ||∆̂−∆||< r}, which by Definition 2 implies

that ‖e∆‖ satisfies the three conditions: ( 1
ω ,d)-Uniform Stability, ( 1

ω ,d)-Uniform ultimate
boundedness, and ( 1

ω ,d)-Global uniform attractively.

Remark 4.2. The upper-bounds of the estimated parameters used in Theorem 3.1, and
Theorem 4.1 are correlated to the choice of the extremum seeking algorithm (10) and (13).
However, these bounds can be easily changed by using other ES algorithms, e.g., [40],
which is due to the modular design of the controller, that uses the iISS robust part to ensure
boundedness of the error dynamics and the learning part to improve the tracking perfor-
mance.

Remark 4.3. We want to underline here that one of the main advantages of using a mode-
free algorithm to estimate the uncertain parameters of the model w.r.t. using classical model-
based adaptive control, is that classical adaptive control relies on the structure of the model
and the the structure of the model uncertainties, i.e., linear vs. nonlinear uncertainties and
linear vs. nonlinear model dynamics. For example it is shown in [36] that using gradient
descent-based filters to estimate the unknown parameters of electromagnetic actuators is
efficient but because the filters are based on the structure of the model dynamics, it is not
possible to use them to estimate multiple uncertainties at the same time. On the other hand,
we show in [32] that by using the approach presented here, it is possible to estimate multi-
ple uncertainties at the same time, and even estimate nonlinear parametric uncertainties as
shown in [37].

Let us move now to the second problem studied in this chapter, namely, the problem of
auto-tuning of feedback gains for nonlinear systems, also referred to in the control commu-
nity as iterative feedback tuning problem.
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5. Learning-based Feedback Gains Auto-tuning for Nonlinear
Robust Control

5.1. Class of Systems Under Study

We consider here affine uncertain nonlinear systems of the form

ẋ = f (x)+∆ f (x)+g(x)u, x(0) = x0
y = h(x)

(15)

where x ∈ R
n,u ∈ R

na ,y ∈ R
m (na ≥ m), represent respectively the state, the input and the

controlled output vectors, x0 is a known initial condition, ∆ f (x) is a vector field representing
additive model uncertainties. The vector fields f , ∆ f , columns of g and function h satisfy
the following assumptions.

Assumption 5.1. f : R
n → R

n and the columns of g : R
n → R

n×na are C
∞ vector fields on

a bounded set X of R
n and h(x) is a C

∞ function on X . The vector field ∆ f (x) is C
1 on X .

Assumption 5.2. System (15) has a well-defined (vector) relative degree {r1, . . . ,rm} at
each point x0 ∈ X , and the system is linearizable, i.e., ∑i=m

i=1 ri = n (see e.g., [38]).

Assumption 5.3. The uncertainty vector ∆ f is s.t., |∆ f (x)| ≤ d(x) ∀x∈X , where d : X →R

is a smooth nonnegative function.

Assumption 5.4. The desired output trajectories yid are smooth functions of time, relating
desired initial points yi0 at t = 0 to desired final points yi f at t = t f , and s.t., yid(t) = yi f , ∀t ≥
t f , t f > 0, i ∈ {1, ...,m}.

5.2. Control Objectives

Our objective is to design a feedback controller u(x,K), which ensures for the uncertain
model (15) uniform boundedness of a tracking error, and for which the stabilizing feedback
gains vector K is iteratively auto-tuned, to optimize a desired performance cost function.
We stress here that the goal of the gain auto-tuning is not stabilization but rather perfor-
mance optimization. To achieve this control objective, we proceed as follows: We design a
‘passive’ robust controller which ensures boundedness of the tracking error dynamics, and
we combine it with a model-free learning algorithm to iteratively (resting from the same ini-
tial condition at each iteration) auto-tune the feedback gains of the controller, and optimize
online a desired performance cost function.

5.3. Controller Design

5.3.1. Step One: Passive Robust Control Design

Under Assumption 5.2 and nominal conditions, i.e., ∆ f = 0, system (15) can be written
as [38]

y(r)(t) = b(ξ(t))+A(ξ(t))u(t) (16)
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where
y(r)(t) , (y(r1)

1 (t), . . . ,y(rm)
m (t))T

ξ(t) = (ξ1(t), . . . ,ξm(t))T

ξi(t) = (yi(t), . . . ,y
(ri−1)
i (t)), 1 ≤ i ≤ m

(17)

b,A write as functions of f ,g,h, and A is non-singular in X ( [38], pp. 234-288).
At this point we introduce one more assumption on the system.

Assumption 5.5. We assume that the additive uncertainties ∆ f in (15) appear as additive
uncertainties in the linearized model (16), (17), as follows

y(r) = b(ξ)+∆b(ξ)+A(ξ)u (18)

where ∆b is C
1 on X̃ , and s.t., |∆b(ξ)| ≤ d2(ξ) ∀ξ ∈ X̃ , where d2 : X̃ → R is a smooth

nonnegative function, and X̃ is the image of the set X by the diffeomorphism x → ξ between
the states of (15) and (16).

Remark 5.1. Assumption 5.5, can be ensured under the so-called ‘matching conditions’
( [39], p. 146).

If we consider the nominal model (16) first, we can define a virtual input vector v as

b(ξ(t))+A(ξ(t))u(t) = v(t) (19)

Combining (16) and (19), we obtain the linear (virtual) Input-Output mapping

y(r)(t) = v(t) (20)

Based on the linear system (20), we propose the stabilizing output feedback for the nominal
system (18) with ∆b(ξ) = 0, as

unom = A−1(ξ)(vs(t,ξ)−b(ξ)), vs = (vs1, ...,vsm)T

vsi = yi
(ri)
d −Ki

ri(yi
(ri−1)− yi

(ri−1)
d )− ...−Ki

1(yi − yid)
i ∈ {1, ...,m}

(21)

Denoting the tracking error vector as ei(t) = yi(t)− yid(t), we obtain the tracking error
dynamics

e(ri)
i (t)+Ki

ri
e(ri−1)

i (t)+ ...+Ki
1ei(t) = 0, i = 1, ...,m (22)

and by tuning the gains K i
j, i = 1, ...,m, j = 1, ...,ri such that all the polynomials in (22)

are Hurwitz, we obtain global asymptotic stability of the tracking errors ei(t), i = 1, ...m, to
zero. To formalize this condition let us state the following assumption.

Assumption 5.6. We assume that there exist a nonempty set K of gains K i
j, i = 1, ...,m, j =

1, ...,ri, such that the polynomials (22) are Hurwitz.

Remark 5.2. Assumption 5.6 is well know in the Input-Output linearization control litera-
ture. It simply states that we can find gains that stabilize the polynomials (22), which can
be done for example by pole placements.
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Next, if we consider that ∆b(ξ) 6= 0 in (18), the global asymptotic stability of the error
dynamics will not be guarantied anymore due to the additive error vector ∆b(ξ), we then
choose to use Lyapunov reconstruction technique (e.g., [30]) to obtain a controller ensur-
ing practical stability of the tracking error. This controller is presented in the following
Theorem.

Theorem 5.1. Consider the system (15) for any x0 ∈R
n, under Assumptions 5.1 to 5.6, with

the feedback controller

u = A−1(ξ)(vs(t,ξ)−b(ξ))−A−1(ξ)( ∂V
∂z ind

)
′
k d2(e)

k > 0, vs = (vs1, ...,vsm)T

vsi = yi
(ri)
d −Ki

ri(yi
(ri−1)− yi

(ri−1)
d )− ...−Ki

1(yi − yid)

(23)

Where, Ki
j ∈ K , j = 1, ...,ri, i = 1, ...,m, and ∂V

∂z ind
= ( ∂V

∂z(r1) , ...,
∂V

∂z(rm)), V = zT Pz, P > 0
such that PÃ+ ÃT P = −I, with Ã being an n×n matrix defined as

Ã =



































0,1,0, .................................,0
0,0,1,0, ..............................,0

. . .
−K1

1 , ...,−K1
r1,0, ..................,0
. . .

0, ...................,0,1,0, ..........,0
0, ...................,0,0,1, ..........,0

. . .
0, ...............,0,−Km

1 , .....,−Km
rm



































(24)

and z = (z1, ...,zm)T , zi = (ei, ...,e
ri−1
i ), i = 1, ...,m. Then, the vector z is uniformly bounded

and reached the positive invariant set S = {z ∈ R
n| 1− k | ∂V

∂z ind
| ≥ 0}.

Proof. [28].

5.3.2. Iterative Tuning of the Feedback Gains

In Theorem 5.1, we showed that the passive robust controller (23) leads to bounded tracking
errors attracted to the invariant set S for a given choice of the feedback gains K i

j, j =
1, ...,ri, i = 1, ...,m. Next, to iteratively tune the feedback gains of (23), we define a desired
cost function, and use a multi-variable extremum seeking to iteratively auto-tune the gains
and minimize the defined cost function. We first denote the cost function to be minimized
as Q(z(β)) where β represents the optimization variables vector, defined as

β = [δK1
1 , ...,δK1

r1, ...,δKm
1 , ...,δKm

rm,δk]T (25)

such that the updated feedback gains write as

Ki
j = Ki

j−nominal +δKi
j, j = 1, ...ri, i = 1, ...,m

k = knominal +δk, knominal > 0
(26)

where Ki
j−nominal , j = 1, ...ri, i = 1, ...,m are the nominal initial values of the feedback gains

chosen such that Assumption 5.6 is satisfied.
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Remark 5.3. The choice of the cost function Q is not unique. For instance, if the con-
troller tracking performance at the time specific instants It f , I = 1,2,3... is important for
the targeted application, one can choose Q as

Q(z(β)) = zT (It f )C1z(It f ), C1 > 0 (27)

If other performance needs to be optimized over a finite time interval, for instance a com-
bination of a tracking performance and a control power performance, then one can choose
for example the cost function

Q(z(β)) =
∫ It f

(I−1)t f
zT (t)C1z(t)dt +

∫ It f

(I−1)t f
uT (t)C2u(t)dt

I = 1,2,3..., C1, C2 > 0
(28)

The gains variation vector β is then used to minimize the cost function Q over the iterations
I ∈ {1,2,3, ...}.

Following multi-parametric extremum seeking theory [2], the variations of the gains are
defined as

ẋKi
j
= aKi

j
sin(ωKi

j
t − π

2 )Q(z(β))

δK̂i
j(t) = xKi

j
(t)+aKi

j
sin(ωKi

j
t + π

2 ), j = 1, ...ri, i = 1, ...,m
ẋk = aksin(ωkt − π

2 )Q(z(β))

δk̂(t) = xk(t)+aksin(ωkt + π
2 )

(29)

where aKi
j
, j = 1, ...ri, i = 1, ...,m, ak are positive tuning parameters, and

ω1 +ω2 6= ω3, for ω1 6= ω2 6= ω3,

∀ω1,ω2,ω3 ∈ {ωKi
j
,ωk, j = 1, ...ri, i = 1, ...,m} (30)

with ωi > ω∗, ∀ωi ∈ {ωKi
j
,ωk, j = 1, ...ri, i = 1, ...,m}, ω∗ large enough.

To study the stability of the learning-based controller, i.e., controller (23), with the varying
gains (26) and (29), we first need to introduce some additional Assumptions.

Assumption 5.7. We assume that the cost function Q has a local minimum at β∗.

Assumption 5.8. We consider that the initial gain vector β is sufficiently close to the opti-
mal gain vector β∗.

Assumption 5.9. The cost function is analytic and its variation with respect to the gains is
bounded in the neighborhood of β∗, i.e., | ∂Q

∂β (β̃)| ≤ Θ2, Θ2 > 0, β̃ ∈ V (β∗), where V (β∗)
denotes a compact neighborhood of β∗.

We can now state the following result.

Theorem 5.2. Consider the system (15) for any x0 ∈ R
n, under Assumptions 5.1 to 5.9 with

the feedback controller

u = A−1(ξ)(vs(t,ξ)−b(ξ))−A−1(ξ)( ∂V
∂z ind

)
′
k(t) d2(e)

k > 0, vs = (vs1, ...,vsm)T

vsi(t,ξ) = ŷi
(ri)
d −Ki

ri(t)(yi
(ri−1)− ŷi

(ri−1)
d )− ...

−Ki
1(t)(yi − ŷid), i = 1, ...,m

(31)
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Where, the state vector is reset following the resetting law x(It f ) = x0, I ∈ {1,2, ...}, the
desired trajectory vector is rest following ŷid(t) = yid(t − (I−1)t f ), (I−1)t f ≤ t < It f , I ∈
{1,2, ...}, and K i

j(t) ∈ K , j = 1, ...,ri, i = 1, ...,m are piecewise continues gains switched
at each iteration I, I ∈ {1,2, ...}, following the update law

Ki
j(t) = Ki

j−nominal +δKi
j(t)

δKi
j(t) = δK̂i

j((I −1)t f ), (I −1)t f ≤ t < It f

k(t) = knominal +δk(t), knominal > 0
δk(t) = δk̂((I −1)t f ), (I −1)t f ≤ t < It f , I = 1,2,3...

(32)

where δK̂i
j,δk̂ are given by (29), (30) and whereas the rest of the coefficients are de-

fined similarly to Theorem 5.1. Then, the obtained closed-loop impulsive time-dependent
dynamic system (15), (29), (30), (31) and (32), is well posed, the tracking error z is
uniformly bounded, and is steered at each iteration I towards the positive invariant set
SI = {z ∈ R

n| 1− kI | ∂V
∂z ind

| ≥ 0}, kI = βI(n+1), where βI is the value of β at the Ith itera-

tion. Furthermore, |Q(β(It f ))−Q(β∗)| ≤ Θ2
(Θ1

ω0
+

√

∑
i=1,...,m j=1,...,ri

aKi
j
2 +ak

2
)

, Θ1, Θ2 >

0, for I → ∞, where ω0 = Max(ωK1
1
, ...,ωKm

rm
,ωk), and Q satisfies Assumptions 5.7, 5.8 and

5.9. Wherein, the vector β remains bounded over the iterations s.t., |β((I +1)t f )−β(It f )| ≤
0.5t f Max(aK1

1

2, ...,aKm
rm

2,a2
k)Θ2 + t f ω0

√

∑
i=1,...,m j=1,...,ri

aKi
j
2 +ak

2, I ∈ {1,2, ...}, and sat-

isfies asymptotically the bound |β(It f ) − β∗| ≤ Θ1
ω0

+
√

∑
i=1,...,m j=1,...,ri

aKi
j
2 +ak

2, Θ1 >

0, for I → ∞.

Proof. [28].

Remark 5.4. It is worth mentioning here that the proposed ES-based nonlinear IFT method
differs from the existing model-free iterative learning control (ILC) algorithm by two main
points: First, the proposed method aims at auto-tuning a given vector of feedback gains
associated with a nonlinear model-based robust controller. Thus, once the gains are tuned,
the optimal gains obtained by the ES tuning algorithm can be used in the sequel without the
need of the ES algorithm. Second, the available model-free ILC algorithms does not require
any knowledge about the controlled system. In other words, ILC in essence is a model-free
control which does not need any knowledge of the system’s physics. This can be appealing
when the model of the system is hard to obtain, however, it comes at the expense of a large
number of iterations, needed to learn all the dynamics of the system (although indirectly,
via the learning of a given optimal feedforward control signal). In this conditions, we
believe that our approach is faster in terms of the number of iterations needed to improve
the overall performance of the closed-loop system. Indeed, our approach is based on the
idea of using all the available information about the system’s model to design, in a first
phase, a model-based controller, and then in a second phase improve the performance of
this controller by tuning its gains to compensate for the unknown or the uncertain part of
the model. Since, unlike the complete model-free ILC, we do not start from scratch, and
do use some knowledge about the system’s model, we expect to converge to an optimal
performance faster than the model-free ILC algorithms.



Extremum Seeking-based Indirect Adaptive Control and Feedback Gains Auto-tuning for
Nonlinear Systems 15

6. Conclusion

Adaptive control and iterative feedback gains tuning, are well know challenging control
problems. Indeed, much work has been dedicated to these problems during the past decade.
However, many real challenges still remain unsolved. We summarized in this Chapter some
of the new results dealing with adaptive control and feedback gains auto-tuning for non-
linear systems. The proposed method for indirect adaptive nonlinear control, is based on a
modular approach. First, a model-based nonlinear robust controller is designed to ensure
(integral) input-to-state stability between a defined tracking error output and a defined un-
certain parameter estimation error. Next, the nonlinear robust controller is complemented
with a model-free extremum seeking algorithm to estimate the uncertainties of the system.
The combination leads to an indirect adaptive nonlinear controller. Similarly, for the feed-
back gains auto-tuning problem, we reported a new method based on the combination of a
robust nonlinear controller with an extremum seeking model-free optimization algorithm, to
auto-tune online the feedback gains of the nonlinear robust controller. Due to their modular
design, and due to the fact that the adaptive part of both approaches is based on model-free
algorithms, the proposed approaches seem to be well suited to handle a larger class of non-
linear systems compared to the available model-based adaptive controllers. To do so, the
results reported here could be further improved. For instance, the model-free model esti-
mation part can be improved, by using extremum seekers algorithms that have semi-global
or global convergence results, e.g., [40, 41]. Another model-free learning approach which
could be investigated in this context is the reinforcement learning method, e.g., [42].
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