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Abstract
With the advancement of technology, both assisted listening devices and speech communica-
tion devices are becoming more portable and also more frequently used. As a consequence,
the users of devices such as hearing aids, cochlear implants, and mobile telephones, expect
their devices to work robustly anywhere and at any time. This holds in particular for chal-
lenging noisy environments like a cafeteria, a restaurant, a subway, a factory, or in traffic.
One way to making assisted listening devices robust to noise is to apply speech enhancement
algorithms. To improve the corrupted speech, spatial diversity can be exploited by a con-
structive combination of microphone signals (so called beamforming), and by exploiting the
different spectro-temporal properties of speech and noise. Here, we focus on single channel
speech enhancement algorithms which rely on spectro-temporal properties. On the one hand,
these algorithms can be employed when the miniaturization of devices only allows for using
a single microphone. On the other hand, when multiple microphones are available, single
channel algorithms can be employed as a postprocessor at the output of a beamformer. To
exploit the short-term stationary properties of natural sounds, many of these approaches
process the signal in a time-frequency representation, most frequently the short time discrete
Fourier transform (STFT) domain. In this domain, the coefficients of the signal are complex-
valued, and can therefore be represented by their absolute value (referred to in the literature
both as STFT magnitude and STFT amplitude) and their phase. While the modeling and
processing of the STFT magnitude has been the center of interest in the past three decades,
phase has been largely ignored. In this survey, we review the role of phase processing for
speech enhancement in the context of assisted listening and speech communication devices.
We explain why most of the research conducted in this field used to focus on estimating
spectral magnitudes in the STFT domain, and why recently phase processing is attracting
increasing interest in the speech enhancement community. Furthermore, we review both early
and recent methods for phase processing in speech enhancement. We aim at showing that
phase processing is an exciting This work was supported by grant GE2538/2-1 of the German
Research Foundation (DFG) field of research with the potential to make assisted listening
and speech communication devices more robust in acoustically challenging environments.
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With the advancement of technology, both assisted listen-
ing devices and speech communication devices are becoming
more portable and also more frequently used. As a conse-
quence, the users of devices such as hearing aids, cochlear
implants, and mobile telephones, expect their devices to work
robustly anywhere and at any time. This holds in particular
for challenging noisy environments like a cafeteria, a restau-
rant, a subway, a factory, or in traffic. One way to making
assisted listening devices robust to noise is to apply speech
enhancement algorithms. To improve the corrupted speech,
spatial diversity can be exploited by a constructive combina-
tion of microphone signals (so called beamforming), and by
exploiting the different spectro-temporal properties of speech
and noise. Here, we focus on single channel speech enhance-
ment algorithms which rely on spectro-temporal properties.
On the one hand, these algorithms can be employed when
the miniaturization of devices only allows for using a single
microphone. On the other hand, when multiple microphones
are available, single channel algorithms can be employed as
a postprocessor at the output of a beamformer. To exploit the
short-term stationary properties of natural sounds, many of
these approaches process the signal in a time-frequency rep-
resentation, most frequently the short time discrete Fourier
transform (STFT) domain. In this domain, the coefficients
of the signal are complex-valued, and can therefore be repre-
sented by their absolute value (referred to in the literature both
as STFT magnitude and STFT amplitude) and their phase.
While the modeling and processing of the STFT magnitude
has been the center of interest in the past three decades, phase
has been largely ignored.

In this survey, we review the role of phase processing for
speech enhancement in the context of assisted listening and
speech communication devices. We explain why most of the
research conducted in this field used to focus on estimating
spectral magnitudes in the STFT domain, and why recently
phase processing is attracting increasing interest in the speech
enhancement community. Furthermore, we review both early
and recent methods for phase processing in speech enhance-
ment. We aim at showing that phase processing is an exciting
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field of research with the potential to make assisted listening
and speech communication devices more robust in acousti-
cally challenging environments.

INTRODUCTION

Let us first consider the common speech enhancement setup
consisting of STFT analysis, spectral modification, and subse-
quent inverse STFT (iSTFT) resynthesis. The analyzed dig-
ital signal x(n), with time index n, is chopped into L seg-
ments with a length of N samples, overlapping by N − R
samples, where R denotes the segment shift. Each segment l
is multiplied with the appropriately shifted analysis window
wa(n − lR) and transformed into the frequency domain by
applying the discrete Fourier transform (DFT), yielding the
complex-valued STFT coefficients Xk,` ∈ C for every seg-
ment ` and frequency band k. To compactly describe this
procedure, we define the STFT operator: X = STFT(x).
Here, x is a vector containing the complete time domain sig-
nal x(n) and X is a N×L matrix of all Xk,`, which we will
refer to as the spectrogram. Since we are interested in real-
valued acoustic signals, we consider only complex symmetric
spectrograms X ∈ S ⊂ CN×L, where S denotes the sub-
set of spectrograms for which XN−k,` = X̄k,` for all ` and k,
with X̄ being the complex conjugate of X .

After some processing, such as magnitude improvement,
is applied on the STFT coefficients, a modified spectro-
gram X̃ is obtained. From X̃ a time domain signal can
be resynthesized through an iSTFT operation, denoted by
x̃ = iSTFT

(
X̃
)
. For this, the inverse DFT of the STFT

coefficients is computed, and each segment is multiplied by
a synthesis window ws(n − lR); the windowed segments
are then overlapped and added to obtain the modified time
domain signal. A final renormalization step is performed to
ensure that, if no processing is applied to the spectral coeffi-
cients, there is perfect reconstruction of the input signal, i.e.
iSTFT(STFT(x)) = x. The renormalization term, equal to∑+∞
q=−∞ wa(n+ qR) ws(n+ qR), is R-periodic, and can be

included in the synthesis window. A common choice for both
wa(n) and ws(n) is the square-root Hann window, which for
overlaps such that N/R ∈ N (e.g., 50 %, 75 %, etc) only
requires normalization by a scalar. If the spectrogram is mod-
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ified, using the same window for synthesis as for analysis can
be shown to lead to a resynthesized signal whose spectrogram
is closest to X̃ in the least-squares sense [1]. This fact will
turn out to be important for the iterative phase estimation
approaches discussed later.

Until recently, in STFT-based speech enhancement, the
focus was on modifying only the magnitude of the STFT com-
ponents, because it was generally considered that most of the
insight about the structure of the signal could be obtained
from the magnitude, while little information could be ob-
tained from the phase component. This would seem to be
substantiated by Fig. 1 when considering only the upper row,
where the STFT magnitude (upper left) and STFT phase (up-
per right) of a clean speech excerpt are depicted. In contrast to
the magnitude spectrogram, the phase spectrogram appears to
show only little temporal and spectral regularities. There are
nonetheless distinct structures inherent in the spectral phase,
but they are hidden to a great extent because the phase is
wrapped to its principle value, i.e. −π ≤ φX

k,` = ∠Xk,` ≤ π.
In order to reveal these structures, alternative representations
have been proposed, which consider phase relations between
neighboring time-frequency points instead of absolute phases.
Two examples of such representations are depicted in the bot-
tom row of Fig. 1. At the bottom left, the negative derivative
of the phase along frequency, known as the group delay, is
presented. It has been shown to be a useful tool for speech
enhancement, e.g. by Yegnanarayana and Murthy [2]. Be-
sides the group delay, the derivative of the phase along time,
i.e. the instantaneous frequency (IF), also unveils structures in
the spectral phase. For an improved visualization, at the bot-
tom right, we do not show the IF, but rather its deviation from
the respective center frequency in Hz, which reduces wrap-
ping along frequency [3, 4]. It is interesting to remark that
the temporal as well as the spectral derivatives of the phase
both reveal structures similar to those in the magnitude spec-
trogram in the upper left of Fig. 1. Please note that both phase
transformations are invertible and thus carry the same infor-
mation as the phase itself. No additional prior knowledge has
been injected.

The observed structures in the spectral phase can well be
explained by employing models of the underlying signal, e.g.
by sinusoidal models for voiced speech [5]. Besides the struc-
tures in the phase that are caused by signal characteristics,
neighboring time-frequency points also show dependencies
due to the STFT analysis: first, because of the finite length of
the segments, neighboring frequency bands are not indepen-
dent; second, successive segments overlap and hence share
partly the same signal information. This introduces particular
spectro-temporal relations between STFT coefficients within
and across frames of the spectrogram, regardless of the signal.
If the spectrogram is modified, these relations are not guaran-
teed to be maintained and the modified spectrogram X̃ may
not correspond to the STFT of any time domain signal any-
more. As a consequence, the resynthesized signal may have a

Fig. 2. Illustration of the notion of consistency.

spectrogram G
(
X̃
)
, where

G
(
X̃
)

:= STFT
(
iSTFT

(
X̃
))
, (1)

which is different from the desired spectrogram X̃ , as illus-
trated in Fig. 2. Such spectrograms are called inconsistent,
while consistent spectrograms verify G (X) = X and can be
obtained from a time domain signal.

Since the majority of speech enhancement approaches
only modify the magnitude, the mismatch between the en-
hanced magnitude and the degraded phase will most likely
lead to an inconsistent spectrogram. This implies that even
if the estimated magnitudes |X̃| are optimal with respect to
some objective function, the magnitude spectrogram of the
synthesized time domain signal is not, as |G

(
X̃
)
| 6= |X̃|

(where | · | denotes the element-wise absolute value). To
maintain consistency, and thus also optimality, the STFT
phase has to be taken into account as well.

As a final illustration emphasizing the power of phase,
it is interesting to remark that, from a particular magnitude
spectrogram, it is possible to reconstruct virtually any time
domain signal with a carefully crafted phase. For instance,
one can derive a magnitude spectrogram from that of a speech
signal such that it yields either a speech signal similar to the
original or a piece of rock music, depending on the choice
of the phase. The point here is to exploit the inconsistency
between magnitude and phase to make contributions of neigh-
boring frames cancel each other just enough to reconstruct
the energy profile of the target sound. Reconstruction is thus
done up to a scaling factor, and quality is good albeit limited
by dynamic range issues. An audio demonstration is avail-
able at http://www.jonathanleroux.org/research/

LeRoux2011ASJ03_sound_transfer.html.

SPEECH ENHANCEMENT IN THE STFT DOMAIN
Speech enhancement is a field of research with a long stand-
ing history. In this section we will wrap-up the different fields
of research that have lead to remarkable progress over the
years. Please see e.g. [6] for a more detailed treatment and
references to the original publications.

In the STFT domain, noisy spectral coefficients can for
instance be improved using spectral subtraction or using min-
imum mean squared error (MMSE) estimators of the clean
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Fig. 1. Magnitude spectrogram, phase spectrogram, group delay and instantaneous frequency deviation of the utterance ”glowed
jewel-bright”, using a segment length of 32 ms and a shift of 4 ms.

speech spectral coefficients [6, Ch. 4]. Examples of the latter
are the Wiener filter as an estimator of the complex speech co-
efficients, or the short-time spectral amplitude estimators [7].
These MMSE estimators are driven by estimates of the speech
and noise power spectral densities (PSDs). The noise PSD
can for instance be estimated in speech pauses as signaled
by a voice activity detector, by searching for spectral min-
ima in each subband, or based on the speech presence prob-
ability [6, Ch. 6]. With the noise PSD at hand, the speech
PSD can be estimated by subtracting the noise PSD from the
periodogram of the noisy signal. This has been shown to
be the maximum likelihood (ML) optimal estimator of the
clean speech PSD when considering isolated and indepen-
dent time-frequency points and complex Gaussian distributed
speech and noise coefficients [6, Sec. 4.2]. To reduce outliers,
the ML speech PSD estimate is often smoothed, for instance
using the decision-directed approach [7] or more advanced
smoothing techniques [6, Ch. 7].

Over the years many improvements have been proposed
resulting in a considerable progress in better statistical mod-
els of speech and noise [6, Ch. 3], improved estimation of
speech and noise PSDs [6, Ch. 6 and Ch. 7], combina-
tion with speech presence probability estimators [6, Ch. 5],
and integration of perceptual models [6, Sec. 2.3.3]. Recent
years have seen an explosion of interest in data-driven meth-
ods, with model-based approaches such as non-negative ma-
trix factorization, Hidden Markov Models, and discriminative
approaches such as deep neural networks. However, main-
stream approaches have tended to ignore the phase, mainly
due to the difficulty of modeling it and the lack of clarity
about its importance, as we shall now discuss.

RISE, DECLINE AND RENAISSANCE OF PHASE PRO-
CESSING FOR SPEECH ENHANCEMENT

The first proposals for noise reduction in the STFT domain
arose in the late seventies. While the spectral subtraction
approaches only modified the spectral magnitudes, the role
of the STFT phase was also actively researched at the time.
In particular, several authors investigated conditions under
which a signal is uniquely specified by only its phase or only
its magnitude, and proposed iterative algorithms for signal re-
construction from either one or the other (e.g., [1, 8] and ref-
erences therein). For minimum or maximum phase systems,
log-magnitude and phase are related through the Hilbert trans-
form, meaning that only the spectral phase (or only the spec-
tral magnitude) is required to reconstruct the entire signal.
But the constraint of purely minimum or maximum phase is
too restrictive for real audio signals, and Quatieri [8] showed
that more constraints are needed for mixed-phase signals. For
instance, imposing a causality or a finite length constraint
on the signal and specifying a few samples of the phase or
the signal itself is in some cases sufficient to uniquely char-
acterize the entire phase function from only the magnitude.
Quatieri [8] also showed how to exploit such constraints to
estimate a signal from its spectral magnitude: assuming some
time domain samples are known, and starting with an ini-
tial phase estimate and the known spectral magnitude, the
signal is transformed to the time domain, where the given
set of known samples is used to replace the corresponding
time domain samples. Then the time domain signal is trans-
formed back to frequency domain, where the resulting mag-
nitude is replaced by the known magnitude. This procedure
is repeated for a certain number of iterations. In the case of
the STFT domain, the correlation between overlapping short-
time analysis segments can be exploited to derive similar it-
erative algorithms that do not require time domain samples to
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be known. A popular example of such methods is that of Grif-
fin and Lim [1] (hereafter denoted GL), which we describe in
more details later along with more recent approaches. While
algorithms such as GL can also be employed with magni-
tudes that are estimated rather than measured from an ac-
tual signal, the quality of the synthesized speech and the es-
timated phase strongly depends on the accuracy of the esti-
mated speech spectral magnitudes and artifacts such as echo,
smearing, and modulations may occur [9].

To explore the relevance of phase estimation for speech
enhancement, Wang and Lim [10] performed listening ex-
periments where the magnitude of a noisy speech signal at
a certain signal to noise ratio (SNR) was combined with the
phase of the same speech signal but distorted by noise at a
different SNR. Listeners were asked to compare this artificial
test stimulus to a noisy reference speech signal, and to set the
SNR of the reference such that the perceived quality was the
same for the reference and the test stimulus. The result of
this experiment was that the SNR gain obtained by mixing
noisy magnitudes with a less distorted phase resulted in typi-
cal SNR improvements of 1 dB or less. Hence, Wang and Lim
concluded that improving phase was not critical in speech en-
hancement [10]. Similarly, Vary [11] showed that only for lo-
cal SNRs below 6 dB a certain roughness could be perceived
if the noisy phase was kept unchanged. Finally, Ephraim
and Malah [7] investigated the role of phase improvement
from a statistical perspective: they showed that, under a zero-
mean circular Gaussian speech and noise model and assuming
that time-frequency points are mutually independent given the
speech and noise PSDs, the MMSE estimate of the complex
exponential of the speech phase has an argument equal to the
noisy phase. Also for more general models for the speech
magnitudes with the same circularity assumption, it has been
shown that the noisy phase is the ML optimal estimator of the
clean speech phase, e.g. [12]. Note, however, that the inde-
pendence assumption does not hold in general, and especially
not for overlapping STFT frames, where part of the relation-
ship is actually deterministic.

As a consequence of these observations, subsequent re-
search in speech enhancement focused mainly on improv-
ing magnitude estimation, while phase estimation received far
less attention for the next two decades. Even methods that
considered phase, either by use of complex domain models,
or by integrating out phase in log-magnitude-based models
in a sophisticated way [13], ultimately used the noisy phase
because of similar circularity assumptions.

However, as the performance of magnitude-only meth-
ods can only go so far without considering the phase, and
with the increase in computational power of assisted listening
and speech communication devices, all options for improve-
ments are back on the table. Therefore, researchers started
re-investigating the role of the STFT phase for speech intelli-
gibility and quality [14, 15]. For instance, Kazama et al. [14]
investigated the influence of the STFT segment length on the

role of the phase for speech intelligibility for a segment over-
lap of 50%. They found that, while for signal segments be-
tween 4 ms and 64 ms the STFT magnitude spectrum is more
important than the phase spectrum, for segments shorter than
2 ms and segments longer than 128 ms the phase spectrum is
more important. These results are consistent with Wang and
Lim’s earlier conclusions [10]. In order to focus on practical
applications, Paliwal et al. [15] investigated signal segments
of 32 ms length, but in contrast to Wang and Lim [10] and
Kazama et al. [14], they used a segment overlap of 7/8th in-
stead of 1/2 in the STFT analysis, and they also zero-padded
the time segments before computing the Fourier transform.
With this increased redundancy in the STFT, the performance
of existing magnitude-based speech enhancement can be sig-
nificantly improved [15] if combined with enhanced phases.
For instance, Paliwal et. al [15, case 4] report an improve-
ment of 0.2 points of perceptual evaluation of speech qual-
ity (PESQ) mean opinion score (MOS) for white Gaussian
noise at an SNR of 0 dB when combining an MMSE estimate
of the clean speech magnitude with the oracle clean speech
phase in a perfectly reconstructing STFT framework.

Paliwal et al.’s research confirmed the importance of de-
veloping and improving phase processing algorithms. This
has recently been the focus of research by multiple groups.
We shall now survey the main directions that have been inves-
tigated so far: better and faster phase estimation from magni-
tude, modeling of the signal phase, group delay and transient
processing, and joint estimation of phase and magnitude.

ITERATIVE ALGORITHMS FOR PHASE ESTIMATION
Among the first proposals for phase estimation are iterative
approaches which aim at estimating a time domain signal
whose STFT magnitude is as close as possible to a target
one [1, 8]. Indeed, if the STFT magnitude of two signals are
close, the signals will in general be perceptually close as well.
Thus, finding a signal whose STFT magnitude is close to a
target one is considered a valid goal when looking to obtain
a signal that “sounds” like that target magnitude. This moti-
vated intense research on algorithms to estimate signals (or
equivalently a corresponding phase) given target magnitudes,
with applications such as speech enhancement or time-scale
modification. In the case of speech enhancement, the magni-
tude is typically obtained through one of the many magnitude
estimation algorithms mentioned earlier, while some estimate
of the phase, such as that of the noisy mixture, may further be
exploited for initialization or as side information.

The most well-known and fundamental of these ap-
proaches is that of Griffin and Lim [1], which consists in
applying STFT synthesis and analysis iteratively while re-
taining information about the updated phases and replacing
the updated magnitudes by the given ones. This exploits
correlations between neighboring STFT frames to lead to an
estimate of the spectral phases and the time domain signal.

Given a target magnitude spectrogramA, Griffin and Lim
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formulated the problem as that of estimating a real-valued
time domain signal x such that the magnitude of its STFT
X is closest toA in the least-squares sense, i.e., estimating a
signal x which minimizes the squared distance

d(x,A) =
∑
k,`

∣∣|Xk,`| −Ak,`
∣∣2. (2)

They proposed an iterative procedure which can be proven
to minimize, at least locally, this distance. Starting from an
initial signal estimate x(0) such as random noise, iterate the
following computations: compute the STFT X(i) of the sig-
nal estimate x(i) at step i; compute the phase estimate φ(i)

as the phase of X(i), φ(i) = ∠X(i); compute the signal esti-
mate x(i+1) at step i + 1 as the iSTFT of Aejφ(i)

. Using the
operator G defined in (1), this can be reformulated as

φ(i+1) = ∠G(Aejφ(i)

). (3)

This procedure can be proven to be non-increasing as well for
a measure of inconsistency of the spectrogram Aejφ(i)

de-
fined directly in the time-frequency domain:

I(φ) =
∥∥G(Aejφ)−Aejφ

∥∥2

2
. (4)

Indeed, one can easily show that d(x(i+1),A) ≤ I(φ(i)) ≤
d(x(i),A). Interestingly, if only parts of the phase are up-
dated according to (3), the non-decreasing property still holds
for I(φ), but whether it still does for d(x,A) has not been
established.

Due to the extreme simplicity of its implementation and
to its perceptually relatively good results, GL was used as the
standard benchmark and a starting point for multiple exten-
sions in the three decades that have followed, even after bet-
ter and only marginally more involved algorithms had been
devised. Most of the algorithms that have been developed
since attempted to fix GL’s issues, of which there are several:
first, convergence typically requires many iterations; second,
GL does not provide a good initial estimate, starting from ran-
dom phases with no considerations for cross-frame dependen-
cies; third, the updates rely on computing STFTs, which are
computationally costly even when implemented using FFTs;
fourth, the updates are typically performed on whole frames,
without emphasis on local regularities; finally, the original
version of GL processes signals in batch mode.

On this last point, it is interesting to note that Griffin and
Lim did actually hint at how to modify their algorithm to use it
for online applications. They described briefly in [1] and with
more details in [16] how to sequentially update the phase us-
ing “cascaded processors” that each take care of one iteration;
their particular proposal however still incurs an algorithmic
delay of I times the window length if performing I iterations.
In [16], Griffin also presented several methods that he referred
to as “sequential estimation methods”: these only incur a sin-
gle frame delay and could thus be used for online application,

the best performing one being reported as on par with batch
GL.

While one can already see in Griffin’s account [16] sev-
eral elements to modify GL into an algorithm that can lead
to high quality reconstruction in a real-time setting, such
as sliding-block analysis across the signal and the use of
windows that compensate for partially reconstructed frames,
these ideas seem to have gone largely unnoticed and it is not
until much later that they were incorporated into more refined
methods. Beauregard, Zhu and Wyse proposed consecu-
tively two algorithms for real-time signal reconstruction from
STFT magnitude, the Real-Time Iterative Spectrogram Inver-
sion (RTISI) algorithm and RTISI with look ahead (RTISI-
LA) [17]. RTISI aims at improving the original batch GL in
two respects: allowing for on-line implementation, and gen-
erating better initial phase estimates. The algorithm considers
the frames sequentially in order, and at frame `, it only uses
information from the current frame’s magnitude and the pre-
vious overlapping frames. The initial phase estimate φ(0)

` for
frame ` is obtained as the phase of the partial reconstruction
from the previous frames, windowed by an analysis window,
which already ensures some consistency between the phases
of the current and previous frames. An iterative procedure
similar to GL is then applied, limited to the current frame’s
phase: at each iteration, frame `’s contribution to the signal is
obtained by the inverse DFT of the phase φ(i)

` combined with
the target magnitude; frame `’s contribution is then combined
by overlap-add to the contribution of the previous frames,
leading to a signal estimate for frame `; the phase φ(i+1)

` is
estimated as the phase of this signal estimate to which the
analysis window is applied.

RTISI does lead to better results than GL for the first
few iterations, but it quickly reaches a plateau and is ulti-
mately significantly outperformed by GL. This is mainly due
to the fact that RTISI does not consider information from fu-
ture frames at all, even though the contribution of these future
frames will later on be added to that of the past and current
frames, effectively altering the estimation performed earlier.
Its authors thus proposed an extension to RTISI including an
M frame look-ahead, RTISI-LA. Instead of considering only
the current frame as active, RTISI-LA performs GL-type up-
dates on the phases in a block of multiple frames. The contri-
bution of future frames outside the block is discarded during
the updates, because the absence of a reliable phase estimate
for them is regarded as likely to make their contribution more
of a disturbance than a useful clue. This creates an asymme-
try, which Zhu et al. [17] proposed to partially compensate
by using asymmetric analysis windows with a reverse effect.
Although the procedure relies on heuristic considerations, the
authors show that it leads to much better performance than
GL for a given number of iterations per block.

While RTISI and RTISI-LA were successful in overcom-
ing GL’s issues regarding online processing and poor initial-
ization, they did not tackle the problems of heavy reliance on
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costly FFT computations and lack of care for local regular-
ities in the time-frequency domain. Solving these problems
was difficult in the context of classical approaches relying
on enforcing constraints both in the time-frequency domain
(to impose a given magnitude) and the time domain (to en-
sure that magnitude and phase are consistent), because they
inherently had to go back and forth between the two domains,
processing whole frames at a time. A solution was proposed
by Le Roux et al. [18], whose key idea was to bypass the
time domain altogether and reformulate the problem inside
the time-frequency domain. The standard operation of classi-
cal iterative approaches, i.e., computing the STFT of the sig-
nal obtained by iSTFT from a given spectrogram, can indeed
be considered as a linear operator in the time-frequency do-
main. Le Roux et al. noticed that the result of that operation
at each time-frequency bin can be well approximated by a lo-
cal weighted sum (LWS) with complex coefficients on a small
neighborhood of that bin in the original spectrogram. While
the very small number of terms in the sum does not suffice
to reduce the complexity of the operation compared to using
FFTs, the locality of the sum opens the door to selectively up-
dating certain time-frequency bins, as well as to immediately
propagating the updated value for a bin in the computations
of its neighbors’ updates. Taking advantage of the sparseness
of natural sound signals, Le Roux et al. showed in particular
that focusing first on updating only the bins with high energy
not only reduced greatly the complexity of each iteration, but
also could lead to better initializations, the high energy re-
gions serving as anchors for lower energy ones. While the
LWS algorithm was originally proposed as an extension to
GL for batch-mode computations, the authors later showed
that it could be effectively used in online mode as well in
combination with RTISI-LA [19]. Interestingly, a different
prioritization of the updates based on energy, at the frame
level instead of the bin level, was also successfully used by
Gnann and Spiertz to improve RTISI-LA [20].

Recently, several authors investigated signal reconstruc-
tion from magnitudes with specific task-related side infor-
mation. Those developed in the context of source separa-
tion are of particular interest to this article. Gunawan and
Sen [21] proposed the multiple input spectrogram inversion
(MISI) algorithm to reconstruct multiple signals from their
magnitude spectrograms and their mixture signal. The phase
of the mixture signal acts as very powerful side information,
which can be exploited by imposing that the reconstructed
complex spectrograms add up to the mixture complex spec-
trogram when estimating their phases, leading to much bet-
ter reconstruction quality than in situations where the mix-
ture signal is not available. Sturmel and Daudet’s partitioned
phase retrieval (PPR) method [9] also handles the reconstruc-
tion of multiple sources. They proposed to reconstruct the
phase of the magnitude spectrogram obtained by Wiener fil-
tering by applying a GL-like algorithm which keeps the mix-
ture phase in high SNR regions as a good estimate for the

corresponding source and only updates the phase in low to
mid SNR regions. Both methods however only modify the
phase of the sources, and thus implicitly assume that the input
magnitude spectrograms are close to the true source spectro-
grams, which is not realistic in general in the context of blind
or semi-blind source separation. Sturmel and Daudet pro-
posed to extend MISI to allow for modifications of both the
magnitude and phase, leading to the informed source separa-
tion using iterative reconstruction (ISSIR) method [22], and
showed that it is efficient in the context of informed source
separation where a quantized version of the oracle magni-
tude spectrograms is available. Methods to jointly estimate
phase and magnitude for blind source separation and speech
enhancement will be presented later in this article.

SINUSOIDAL MODEL BASED PHASE ESTIMATION
In contrast to the iterative approaches presented in the previ-
ous section, sinusoidal model based phase estimation [4] does
not require estimates of the clean speech spectral magnitudes.
Instead, the clean spectral phase is estimated using only an es-
timate of the fundamental frequency, which can be obtained
from the degraded signal. However, since usage of the si-
nusoidal model is reasonable only for voiced sounds, these
approaches do not provide valid spectral phase estimates for
unvoiced sounds, like fricatives or plosives.

For a single sinusoid, sin (Ωn+ ϕ), with the normalized
angular frequency Ω, the phase difference between two sam-
ples n2 = n1 + R is given by ∆φ = φ(n2) − φ(n1) = ΩR.
For a harmonic signal, H sinusoids at integer multiples of
the normalized angular fundamental frequency Ω0, i.e. Ωh =
(h+ 1)Ω0 ∈ [0, 2π), are present at the same time:

s (n) =

H−1∑
h=0

Ah(n) cos
(
Ωh(n) · n+ ϕh

)
, (5)

with real-valued amplitude Ah and the initial time domain
phase ϕh of harmonic component h. Due to the fixed re-
lation between the frequencies, (5) is also referred to as the
harmonic model, which is a special case of the more gen-
eral sinusoidal model. The harmonic frequencies and ampli-
tudes are assumed to be constant over the length of one STFT
signal segment, i.e. Ah(`R+ n) = Ah` and Ωh(`R+ n) =
Ωh` , ∀n ∈ [0, 1, . . . , N − 1].

In speech enhancement, the sinusoidal model has for in-
stance been employed in [23], where the model parameters
are iteratively estimated from a noisy observation in the STFT
domain, and the enhanced signal is synthesized using (5). In
the absence of noise, synthesis results are reported to be al-
most indistinguishable from the clean speech signal, under-
lining the capability of (5) to accurately model voiced human
speech. In contrast to [23], we now discuss how the sinu-
soidal model (5) can be employed to directly reconstruct the
STFT phase. If the frequency resolution of the STFT is high
enough to resolve the harmonic frequencies Ωh in (5), in each
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frequency band k only a single harmonic component is dom-
inant. The harmonic that dominates frequency band k is de-
noted as

Ωhk,` = argmin
Ωh

`

{
|2πk/N − Ωh` |

}
, (6)

i.e. the component that is closest to the center frequency
2πk/N of the kth frequency band. Interpreting the STFT of
a signal as the output of a complex filter bank sub-sampled
by the hop size R, the spectral phase changes from segment
to segment according to

φS
k,` = φS

k,`−1 + Ωhk,`R = φS
k,`−1 + ∆φS

k,`. (7)

When the clean signal s (n) is deteriorated by noise, the
spectral phases and thus the temporal phase differences ∆φS

k,`

are deteriorated as well. With an estimate of the fundamental
frequency at hand, however, the temporal phase relations in
each band can be restored using (7) recursively from segment
to segment.

Already almost 50 years ago, a similar approach for the
propagation of the spectral phase along time has been taken
in the phase vocoder [5] for time-scaling or pitch-shifting of
acoustic signals. The temporal STFT phase difference is mod-
ified according to

φ̂S
k,` = φ̂S

k,`−1 + α∆φS
k,`, (8)

where in this context, ∆φS
k,` is often referred to as the in-

stantaneous frequency. By scaling ∆φS
k,` with the positive

real valued factor α, the instantaneous frequency of the signal
component is either increased (α > 1) or decreased (α < 1).
Comparing (7) to (8), the phase estimation along time for
speech enhancement can be expressed in terms of a phase
vocoder with a scaling factor of α = 1. However, the ap-
plication is completely different: instead of deliberately mod-
ifying the original phase, the clean speech phase is estimated
from a noisy observation. It is worth noting that for the phase
vocoder, in contrast to phase estimation in speech enhance-
ment, no fundamental frequency estimate is needed, as the
phase difference ∆φS

k,` = φS
k,`−φS

k,`−1 can be taken directly
from the clean original signal.

For an accurate estimation of the clean spectral phase
along segments (7) a proper initialization is necessary [4]. In
voiced sounds the bands between spectral harmonics contain
only little signal energy and, in the presence of noise, these
bands are likely to be dominated by the noise component, i.e.
φY
k,` ≈ φN

k,`, where φY
k,` and φN

k,` are the spectral phases of
the noisy mixture and the noise, respectively. Even though
the phase might be set consistent within each band, the spec-
tral relations across frequency bands are distorted already
at the initialization stage. Directly applying (7) to every
frequency band therefore does not necessarily yield phase
estimates which could be employed for phase-based speech
enhancement [4].

In the phase vocoder, this problem can be alleviated by
aligning phases of neighboring frequency bands relative to
each other, which is known as phase locking, e.g. [24]. There,
the phase is evolved along time only in frequency bands that
directly contain harmonic components. The phase in the sur-
rounding bands, which are dominated by the same harmonic,
is then set relative to the modified phase. For this, the spec-
tral phase relations of the original signal are imposed on the
modified phase spectrum.

In the context of speech enhancement, the same principle
has been incorporated to improve the estimation of the clean
speech spectral phase [4]. However, since only a noisy signal
is observed, the clean speech phase relations across frequency
bands are not readily available. To overcome this limitation,
again the sinusoidal model is employed. The spectrum of a
harmonic signal segment is given by the cyclic convolution
of a comb-function with the transfer function of the analysis
window, which causes spectral leakage. The spectral leakage
induces relations not only between the amplitudes, but also
between the phases of neighboring bands. It can be shown
that phases of bands which are dominated by the same har-
monic are directly related to each other through the phase
response of the analysis window φW

k , see e.g. [4] for more
details. Accordingly, starting from a phase estimate at a band
that contains a spectral harmonic, possibly obtained using (7),
the phase of the surrounding bands can be inferred by ac-
counting for the phase shift introduced by the analysis win-
dow. For this, only the fundamental frequency and the phase
response φW

k are required, of which the latter can be obtained
off-line either from the window’s discrete-time Fourier trans-
form (DTFT) or from its DFT with a large amount of zero
padding. The complete setup of [4] is illustrated in Fig. 3.

It can be argued that for speech enhancement, the phase
reconstruction across frequency bands between harmonics is
more important than the temporal reconstruction on the har-
monics: on the one hand, the local SNR in bands that directly
contain harmonics is rather large for many realistic SNR sit-
uations, i.e. φY

k,` ≈ φS
k,`. Thus, the temporal alignment of the

harmonic components is maintained rather well in the noisy
signal. Further, the noisy phase φY

k,` in these bands typi-
cally yields a good starting point for the phase reconstruc-
tion along frequency. On the other hand, frequency bands
between harmonics are likely to be dominated by the noise,
i.e. φY

k,` ≈ φN
k,`, and the clean phase relations across bands

are strongly disturbed. Here, the possible benefit of the phase
reconstruction is much larger.

Even though the employed model is simple and limited
to purely voiced speech sounds, the obtained phase esti-
mates yield valuable information about the clean speech
signal that can be employed for advanced speech enhance-
ment algorithms. Interestingly, even the sole enhancement
of the spectral phase can lead to a considerable reduction of
noise between harmonic components of voiced speech after
overlap-add [4]. This is because the speech components of
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Fig. 3. Symbolic spectrogram illustrating the sinusoidal
model based phase estimation [4]. First, the fundamental fre-
quency is estimated and voiced segments are detected. Start-
ing from the noisy phase at the onset of a voiced sound in
segment `0, in bands containing harmonic components (red)
the phase is estimated along segments. Based on the temporal
estimates, the spectral phase of bands between the harmonics
(blue) is then inferred across frequency.

successive segments are adding up constructively after the
phase modifications, while the noise components suffer from
destructive interference, since the phase relations of the noise
have been destroyed. However, speech distortions are also
introduced, which are substantially reduced when the esti-
mated phase is combined with an enhanced magnitude, as
e.g. in [25]. Besides its value for signal reconstruction, the
estimated phase can also be utilized as additional information
for phase-aware magnitude estimation [25] and even for the
estimation of clean speech complex coefficients [12], which
will be discussed in more detail later.

GROUP DELAY AND TRANSIENT PROCESSING

Structures in the phase are not limited to voiced sounds, but
are also present for other sounds, like impulses or transients.
These structures are well captured by the group delay, which
can be seen at the lower left of Fig. 1, rendering it a useful rep-
resentation for phase processing. For example, the group de-
lay has been employed to facilitate clean speech phase estima-
tion in phase-sensitive noise reduction [26]. It can be shown
geometrically that if the spectral magnitudes of speech and
noise are known, only two possible combinations of phase
values remain, both of which perfectly explain the observed
spectral coefficients of the mixture. Mowlaee and Saedi in
[26], and references therein, proposed to solve this ambiguity
by choosing the phase combination that minimizes a function
of the group delay.

Besides phase estimation, the group delay has success-
fully been employed for the detection of transients sounds,
such as sounds of short duration and speech onsets. To illus-

trate the role of the phase for transient sounds, let us consider
a single impulse as the simplest example. The DFT of such
a pulse is A e−j2π

n0k
N , where n0 is the shift of the peak rela-

tive to the beginning of the current segment andA denotes the
spectral magnitude. Hence, we observe a linear phase with a
constant slope of −2π n0

N . For impulsive signals, we accord-
ingly expect a phase difference across frequency bands that is
approximately constant, i.e. a constant group delay. That this
is the case also for real speech sounds can be seen in the lower
left of Fig. 1, where transient sounds show vertical lines with
almost equal group delay.

For the detection of impulsive sounds, in [27] a linearity
index LIφ (k) is defined, which measures the deviation of the
observed phase difference across frequencies to the one that
is expected for an impulse at n0, i.e. −2π n0

N . The observed
phase-differences are weighted with the spectral magnitude
and averaged over frequency to obtain an estimate of the time
domain offset n0. Only if LIφ (k) is close to zero, i.e. the
observed phase fits well to the expected linear phase, an im-
pulsive sound is detected. The detection can be made either at
a segment level or for each time-frequency point separately.
While the former states if an impulsive sound is present in
the current signal segment or not, the latter allows to localize
frequency regions that are dominated by an impulsive sound,
like e.g. a narrowband onset.

Apart from the group delay, the instantaneous frequency
(IF), which corresponds to the temporal derivative of the
phase, has also been employed for the detection of transient
sounds, e.g. in [28] and the references therein. For steady-
state signals, like voiced sounds, the IF is changing only
slowly over time, due to the temporal correlation of the over-
lapping segments. When a transient is encountered, however,
the most current segment differs significantly from previous
segments and thus the IF also changes abruptly. This can
be observed at the lower right of Fig. 1, where at speech
onsets thin vertical lines appear in the IF deviation. Hence,
the change of the IF from segment to segment – and its distri-
bution – allow for the detection of transient sounds, like e.g.
note onsets [28].

The phase of transient sounds is not only relevant for
detection, but also for the reduction of transient noise. In
low SNR time-frequency regions, the observed noisy phase is
close to the approximately linear phase of the transient noise.
This can lead to artifacts in the enhanced signal if only the
spectral magnitude is improved and the noisy phase is used
for signal reconstruction: usage of the phase of the transient
noise reshapes the enhanced time domain signal in an un-
controlled way, such that it may again depict an undesired
transient behavior. Even for a perfect magnitude estimate,
the interfering noise is not perfectly suppressed if the phase
is not processed alongside. To illustrate this, let us consider
a speech signal degraded by an impulse train with a period
length of T0, which is non-zero every N0 = T0fs samples.
In Fig. 4, the noisy signal (left) is presented together with
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the result obtained when combining the true clean speech
STFT magnitudes with the noisy phase (center). Even though
the clean magnitude is employed, which represents the best
possible result for phase-blind magnitude enhancement, the
time domain signal still depicts residual impulses, which are
caused by the noisy phase. In regions where the enhanced
spectral magnitude is close to zero, i.e. in speech absence,
the phase is not relevant and the peaks are well suppressed.
During speech presence, however, the spectral magnitude is
non-zero and the phase becomes important. Accordingly, the
residual impulses are most prominent in regions with relevant
speech energy and low local SNRs, where the noisy phase is
close to the phase of the impulsive noise.

Recently, Sugiyama and Miyahara proposed the concept
of phase randomization to overcome this issue, see e.g. [27]
and references of the same authors therein. First, time fre-
quency points which are dominated by speech are identified
by finding spectral peaks in the noisy signal. These peaks
are excluded from the phase randomization to avoid speech
distortions. To further narrow down time-frequency regions
where randomization of the spectral phase is sensible, phase-
based transient detection can be employed as well [27]. Then,
the spectral phase in bins classified as dominated by transient
noise is randomized by adding a phase term that is uniformly
distributed between−π and π. In this way, the approximately
linear phase of the dominant noise component is neutralized.
The effect of phase randomization is depicted at the right of
Fig. 4, where a perfect magnitude estimate is combined with
the modified phase for signal reconstruction. It can be seen
that the residual peaks that are present when the noisy phase is
employed (center of Fig. 4) are strongly attenuated, showing
that phase randomization can indeed lead to a considerable
increase of noise reduction, especially in low local SNRs. It
is interesting to note that while the previously described iter-
ative and sinusoidal model based approaches aim at estimat-
ing the phase of the clean speech signal, the phase random-
ization approach merely aims at reducing the impact of the
phase of the noise on the enhanced speech signal. Although
the presented example is just a simple toy experiment, it still
highlights the potential of phase randomization towards an
improved suppression of transient noise, which has also been
observed for real-world impulsive noise, like tapping noise on
a touchscreen [27].

RELATION BETWEEN PHASE AND MAGNITUDE ESTI-
MATION
While so far we discussed phase estimation using iterative
approaches, sinusoidal model based approaches, and group
delay approaches, we now address the question how STFT
phase estimation can best be employed to improve speech en-
hancement. The most obvious way to do this is to combine
enhanced speech spectral magnitudes in the STFT domain
with the estimated or reconstructed STFT phases. It is in-
teresting to note that already Wang and Lim [10] stated that

obtaining a more accurate phase estimate than the noisy phase
is not worth the effort “if the estimate is used to reconstruct a
signal by combining it with an independently estimated mag-
nitude [...]. However, if a significantly different approach is
used to exploit the phase information such as using the phase
estimate to further improve the magnitude estimate, then a
more accurate estimation of phase may be important” [10].
However, at that point it was not clear how a phase estimate
could be employed to improve magnitude estimation.

Recently, Gerkmann and Krawczyk [25] derived a MMSE
estimator of the spectral magnitude when an estimate of the
clean speech phase is available, referred to as phase-sensitive
or phase-aware magnitude estimation. They were able to
show that the information of the speech spectral phase can
be employed to derive an improved magnitude estimator that
is capable of reducing noise outliers that are not tracked by
the noise PSD estimator. In babble noise, in a blind setup, the
PESQ MOS can be improved by 0.25 points in voiced speech
at 0 dB input SNR [25]. Further experimental results are given
in the following section.

Instead of estimating phase and magnitude separately,
one may argue that they should ideally be jointly estimated.
The first step in this direction was proposed by Le Roux and
Vincent [29] – and references of the same authors therein –
in the context of Wiener filtering for speech enhancement.
As a classical Wiener filter only changes the magnitudes in
the STFT domain, the modified spectrum X̃ is inconsistent,
meaning that STFT

(
iSTFT

(
X̃
))
6= X̃ . In contrast to this,

in [29] the relationship between STFT coefficients across
time and frequency is taken into account, leading to the con-
sistent Wiener filter [29], which modifies both the magnitude
and the phase of the noisy observation to obtain the separated
speech. Wiener filter optimization is formulated as a maxi-
mum a posteriori problem under Gaussian assumptions, and
a consistency-enforcing term is added either through a hard
constraint or a soft penalty. Optimization is respectively per-
formed directly on the signal in the time domain or jointly on
phase and magnitude in the complex time-frequency domain,
through a conjugate gradient method with a well-chosen pre-
conditioner. Thanks to this joint optimization, the consistent
Wiener filter was shown to lead to an improved separation
performance compared to the classical Wiener filter and other
methods that attempt to use phase information in combina-
tion with variance estimates [9, 21, 22], in an oracle scenario
as well as in a blind scenario where the speech spectrum is
obtained by spectral subtraction from a stationary estimate of
the noise spectrum.

In order to combine phase sensitive magnitude estimation
and iterative approaches, Mowlaee and Saeidi [26] propose to
place the phase sensitive magnitude estimator into the loop of
an iterative approach that enforces consistency. Starting with
an initial group-delay based phase estimate, they propose to
estimate the clean speech spectral magnitude using a phase
sensitive magnitude estimator similar to [25]. After comput-
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Fig. 4. From left to right: speech degraded by a click train, the result obtained by combination of the clean speech spectral
magnitude with the noisy phase, and the result after supplemental phase randomization. Samples that contain a click are
highlighted in red.

ing the iSTFT and the STFT they reestimate the clean speech
phase, and from this reestimate the magnitudes. With this ap-
proach convergence is reached after only few iterations.

Another way to jointly estimate magnitudes and phases is
to derive a joint MMSE estimator of magnitudes and phases
directly in the STFT domain when an uncertain initial phase
estimate is available. This phase-aware complex estimator is
referred to as the Complex estimator with Uncertain Phase
(CUP) [12]. The initial phase estimate can be obtained by
an estimator based on signal characteristics, such as the si-
nusoidal model based approach [4]. Using this joint MMSE
estimator [12], no STFT iterations are required. The resulting
magnitude estimate is a non-linear trade-off between a phase-
blind and a phase-aware magnitude estimator, while the re-
sulting phase is a trade-off between the noisy phase and the
initial phase estimate. These trade-offs are controlled by the
uncertainty of the initial phase estimate, avoid processing ar-
tifacts and lead to an improvement in predicted speech qual-
ity [12]. Experimental results for the CUP estimator are given
in the following section.

EXPERIMENTAL RESULTS

In this section, we demonstrate the potential of phase pro-
cessing to improve speech enhancement algorithms. To focus
only on the differences due to the incorporation of the spectral
phases, we choose algorithms that employ the same statisti-
cal models and power spectral density estimators: for the
estimation of the noise PSD we choose our speech presence
probability based estimator with fixed priors (see [6, Sec. 6.3]
and references therein) while for the speech PSD we choose
the decision-directed approach [7]. We assume a complex
Gaussian distribution for the noise STFT coefficients and a
heavy-tailed χ-distribution for the speech magnitudes. Fur-
thermore, we use an MMSE estimate of the square root of
the magnitudes to incorporate the compressive character of
the human auditory system. These models are employed in
the phase-blind magnitude estimator [30], the phase-aware
magnitude estimator [25], and the phase-aware Complex esti-

mator with Uncertain Phase information (CUP) [12]. We use
a sampling rate of 8 kHz and 32 ms spectral analysis windows
with 7/8th overlap to facilitate phase estimation. To assess
the speech quality, we employ PESQ as an instrumental mea-
sure which has been originally proposed for speech coding
applications, but has been show to correlate with subjective
listening tests also for enhanced speech signals. The results
are averaged over pink noise modulated at 0.5 Hz, stationary
pink noise, babble noise, and factory noise, where the latter
three are obtained from the NOISEX-92 database. In order
to have a fair balance between male and female speakers, per
noise type, the first 100 male and the first 100 female utter-
ances from dialect region 6 of the TIMIT training database
are employed. The initial phase estimate is obtained based
on a sinusoidal model [4], which only yields a phase estimate
in voiced speech. The fundamental frequency is estimated
using PEFAC from the voicebox which can be found at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html. As with [4] we only have a phase esti-
mate in voiced sounds, we show the improvement in voiced
segments alongside the overall improvement for entire utter-
ances in Fig. 5. When the fundamental frequency estimator
detects unvoiced speech segments, the estimators fall back
to a phase-blind estimation. Thus, if evaluated over entire
signals, the results of the phase-aware estimators will get
closer to the phase-blind approaches while the general trends
remain.

It can be seen that employing phase information to im-
prove magnitude estimation [25] can indeed improve PESQ.
The dominant benefit of the phase-aware magnitude estima-
tors is that the phase provides additional information to distin-
guish between noise outliers and speech. Thus, the stronger
outliers in the processed speech are, the larger is the potential
benefit of phase-aware processing. While here we show the
average result over four noise types, a consistent improvement
for the tested nonstationary noise types has been observed.
While in stationary pink noise the PESQ scores are virtually
unchanged, the largest improvements have been achieved in
babble. This is because babble bursts are often of high energy
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Fig. 5. PESQ improvement over the noisy input. The re-
sults are averaged over four noise types. Evaluated in voiced
speech (left), and on the entire signal (right).

and may result in large outliers in phase-blind magnitude es-
timation that can be reduced by exploiting the additional in-
formation in the phase.

When an initial phase estimate is also employed as un-
certain prior information when improving the spectral phase
as proposed in the phase-aware complex estimator CUP [12],
the performance can be improved further. The CUP estima-
tor [12] employs the probability of a signal segment being
voiced to control the certainty of the initial phase estimate. In
unvoiced speech, the uncertainty is largest, effectively result-
ing in a phase-blind estimator. Therefore, again, we can only
expect a PESQ improvement in voiced speech. Compared
to phase-blind magnitude estimation [30] in voiced speech
and at an input SNR of 0 dB, an improvement in PESQ by
0.12 points is achieved when all parameters are blindly es-
timated, while 0.18 points are gained with an oracle funda-
mental frequency. Considering that the improvement of the
phase-blind estimator improves PESQ by 0.46 points, the ad-
ditional improvement of 0.18 points by incorporating phase
information in voiced speech is remarkable (factor 1.4), and
demonstrates the potential of phase processing for the im-
provement of speech enhancement algorithms. While the av-
erage improvements using phase processing are still moder-
ate, in specific scenarios, e.g. in voiced sounds or impulsive
noise, phase processing can help to reduce noise more effec-
tively than using phase-blind approaches. Audio examples
can be found at www.speech.uni-oldenburg.de/pasp.
html.

FUTURE DIRECTIONS
While the majority of single channel STFT domain speech
enhancement algorithms only address the modification of
STFT magnitudes, in this paper we reviewed methods that
also involve STFT phase modifications. We showed that
phase estimation could be done mainly based on models of
the signal or by exploiting redundancy in the STFT represen-

tation. Examples for model based algorithms are sinusoidal
model based approaches, and approaches that employ the
group delay. By contrast, iterative approaches mainly rely
on the spectro-temporal correlations introduced by the redun-
dancy of the STFT representation with overlapping signal
segments. While the results of the instrumental evaluations
indicate that a sophisticated utilization of phase information
can lead to improvements in speech quality, for a conclusive
assessment, formal listening tests are required, rendering the
subjective evaluation of particularly promising phase-aware
algorithms a necessity for future research.

Despite recent advances, there are still many open issues
in phase processing. For instance, similar to magnitude esti-
mation, phase estimation is still difficult in very low SNRs. A
promising approach for performance improvement is to join
the different types of phase processing approaches, for in-
stance by including more explicit signal models into iterative
phase estimation approaches or vice versa. A first step in this
direction is presented in [26]. As another example, while the
consistent Wiener filter only exploits the phase structure of
the STFT representation, an exciting challenge going forward
is to integrate models of the phase structure of the signal itself
into a joint optimization framework.

Modern machine learning approaches such as deep neu-
ral networks, which have proven to be very successful in im-
proving speech recognition performance, have recently been
shown to lead to state-of-the-art performance for speech en-
hancement using a magnitude-based approach. The natural
next step is to extend their use to phase estimation to further
improve performance. On top of the fact that they are data-
driven, which reduces the necessity for modeling assumptions
that may be inaccurate, a great advantage of such methods
over the iterative approaches for phase estimation presented
here or approaches based on non-negative matrix factoriza-
tion or Gaussian mixture models, is that they are typically
efficient to evaluate at test time.

Indeed, striving for fast light-weight algorithms is critical
in the context of assisted listening and speech communication
devices, where special requirements with respect to complex-
ity and latency persist. While more and more computational
power will be available with improved technology, for eco-
nomic reasons as well as to limit power consumption, it is
always of interest to keep the complexity as low as possible.
Thus, more research in reducing complexity remains of inter-
est. Complexity reduction could be obtained for instance by
decreasing the overlap of the STFT analysis, but its impact on
performance of phase estimation algorithms is not well stud-
ied. On the other hand, the lower bound on the latency of
the algorithms is dominated by the window lengths in STFT
analysis and synthesis. Further research could therefore also
address phase estimation using low latency filterbanks.

After many years in the shadow of magnitude-centric
speech enhancement, the phase-aware signal processing is
now burgeoning and expanding quickly: with still many as-
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pects to explore, it is an exciting area of research that is
likely to lead to important breakthroughs and push speech
processing forward.

Supplemental material and further references can be
found at www.speech.uni-oldenburg.de/pasp.html.
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