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Abstract
Model-based methods and deep neural networks have both been tremendously successful paradigms
in machine learning. In model-based methods, we can easily express our problem domain knowl-
edge in the constraints of the model at the expense of difficulties during inference. Deterministic
deep neural networks are constructed in such a way that inference is straightforward, but we
sacrifice the ability to easily incorporate problem domain knowledge. The goal of this paper is
to provide a general strategy to obtain the advantages of both approaches while avoiding many
of their disadvantages. The general idea can be summarized as follows: given a model-based
approach that requires an iterative inference method, we unfold the iterations into a layer-wise
structure analogous to a neural network. We then de-couple the model parameters across layers
to obtain novel neural-network-like architectures that can easily be trained discriminatively using
gradient-based methods. The resulting formula combines the expressive power of a conventional
deep network with the internal structure of the model-based approach, while allowing inference
to be performed in a fixed number of layers that can be optimized for best performance. We
show how this framework can be applied to the non-negative matrix factorization to obtain a
novel non-negative deep neural network architecture, that can be trained with a multiplicative
back-propagation-style update algorithm. We present experiments in the domain of speech en-
hancement, where we show that the resulting model is able to outperform conventional neural
network while only requiring a fraction of the number of parameters. We believe this is due to the
ability afforded by our framework to incorporate problem level assumptions into the architecture
of the deep network.
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Abstract

Model-based methods and deep neural networks have both been tremendously
successful paradigms in machine learning. In model-based methods, we can eas-
ily express our problem domain knowledge in the constraints of the model at the
expense of difficulties during inference. Deterministic deep neural networks are
constructed in such a way that inference is straightforward, but we sacrifice the
ability to easily incorporate problem domain knowledge. The goal of this pa-
per is to provide a general strategy to obtain the advantages of both approaches
while avoiding many of their disadvantages. The general idea can be summa-
rized as follows: given a model-based approach that requires an iterative inference
method, we unfold the iterations into a layer-wise structure analogous to a neural
network. We then de-couple the model parameters across layers to obtain novel
neural-network-like architectures that can easily be trained discriminatively using
gradient-based methods. The resulting formula combines the expressive power
of a conventional deep network with the internal structure of the model-based
approach, while allowing inference to be performed in a fixed number of layers
that can be optimized for best performance. We show how this framework can
be applied to the non-negative matrix factorization to obtain a novel non-negative
deep neural network architecture, that can be trained with a multiplicative back-
propagation-style update algorithm. We present experiments in the domain of
speech enhancement, where we show that the resulting model is able to outper-
form conventional neural network while only requiring a fraction of the number
of parameters. We believe this is due to the ability afforded by our framework to
incorporate problem level assumptions into the architecture of the deep network.

1 Introduction

Two of the most successful general approaches to machine learning are model-based methods and
deep neural networks (DNNs). Each offers important well-known advantages and disadvantages.
The goal of this paper is to provide a general strategy to obtain the advantages of both approaches
while avoiding many of their disadvantages. The general idea can be summarized as follows: given
a model-based approach that requires an iterative inference method, we unfold the iterations into
a layer-wise structure analogous to a neural network. We then de-couple the model parameters
across layers to obtain novel neural-network-like architectures that can easily be trained discrimi-
natively using gradient-based methods. The resulting formula combines the expressive power of a
conventional deep network with the internal structure of the model-based approach, while allowing
inference to be performed in a fixed number of layers that can be optimized for best performance.
We call this approach deep unfolding.

A chief advantage of model-based approaches, such as probabilistic graphical models, is that they
allow us to use prior knowledge and intuition to reason at the problem level in devising inference
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algorithms, or what David Marr called the “computational theory” level of analysis [1, 2]. Important
assumptions about problem constraints can often be incorporated into a model-based approach in
a straightforward way. Examples include constraints from the world, such as the linear additivity
of signals, visual occlusion, three-dimensional geometry, as well as more subtle statistical assump-
tions such as conditional independence, latent variable structure, sparsity, low-rank covariances, and
so on. By hypothesizing and testing different problem-level constraints, insight into the nature of
the problem can be gained and used as inspiration to improve the modeling assumptions [2]. Un-
fortunately, inference in probabilistic models can be both mathematically and computationally in-
tractable. Approximate methods, such as belief propagation and variational approximations, allow
us to derive iterative algorithms to infer the latent variables of interest. However, despite greatly im-
proving the situation, such iterative methods are still often too slow for time-sensitive applications.
In such cases, rigorous discriminative optimization of such models can be challenging because they
may involve bi-level optimization, where the parameter optimization depends in turn on an iterative
inference algorithm [3].

Deterministic deep neural networks, which have recently become the state of the art in many applica-
tions, are formulated such that the inference is defined as a finite closed-form expression, organized
into layers which are typically executed in sequence. Discriminative training of the networks can
be used to optimize the speed versus accuracy trade-off, and has become indispensable in producing
systems that perform very well in a particular application. However, a well-known disadvantage
is that conventional DNNs are closer to mechanisms than problem-level formulations, and can be
considered essentially ”black-box” methods. It is difficult to incorporate prior knowledge about the
world or the problem. Moreover, even when one has a working DNN system, it is not clear how
it actually achieves its results, and so discovering how to modify its architecture to achieve better
results could be considered as much an art as a science.

The proposed methodology addresses these difficulties by bringing the problem-level formulation
of model-based methods to the task of designing deep neural network architectures. Each step
of the process can be solved by well-known methods: deriving iterative inference methods for a
given probabilistic model follows a long tradition that makes use of many well-known tools, and
unfolding the iterations and applying the chain rule for gradient-based training is also relatively
straightforward.

First we discuss the general framework, as well as its application in specific inference algorithms.
Then we present experiments in the domain of speech enhancement, using models based on non-
negative matrix factorization (NMF) [4, 5, 6]. In this domain, the NMF model embodies the
problem-level assumption that signals mix linearly and therefore their power spectra are approxi-
mately additive. Despite the apparent simplicity of the NMF model, it has no known closed-form
solution and relies on iterative inference methods, typically formulated as multiplicative updates.
A novel deep network architecture results from unfolding the iterations and decoupling the param-
eters. This architecture can be more powerful than the original model-based NMF method, while
still incorporating the basic additivity assumption from its problem-level analysis. Moreover it takes
the form of a non-negative deep network, for which multiplicative updates can be derived that pre-
serve non-negativity, without the need for constrained optimization. This is significant because it
would otherwise be difficult to arrive at the NMF-based architecture by reasoning directly from a
conventional deep network. By reasoning at the problem level with the model-based approach, our
methodology allows one to derive inference architectures and training methods that otherwise would
be very difficult to obtain.

Main contributions of this paper: The novel contributions of this paper include: a framework
for deriving novel deep network architectures from problem-level modeling constraints; a novel
non-negative deep network with non-negative parameters; multiplicative updates for training non-
negative deep networks; finally, experiments showing the benefit of this approach in the domain of
speech enhancement.

2 General formulation of deep unfolding

In the general setting we consider models for which inference is an optimization problem. One ex-
ample is variational inference, where a lower bound on the data likelihood is optimized to estimate
approximate posterior probabilities, which can then be used to compute conditional expected val-
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ues of hidden variables. As another example, loopy belief propagation is an iterative algorithm that
enforces local consistency constraints on marginal posteriors. When it converges, the fixed points
correspond to stationary points of the Bethe free energy [7]. Finally, non-negative matrix factoriza-
tion is a non-negative basis function expansion model, whose objective function can be optimized
by simple multiplicative update rules.

Here, we present a general formulation based on a model, determined by parameters θ, that specifies
the relationships between hidden quantities of interest yi and the observed variables xi for each data
instance i. At test time, estimating these quantities of interest involves optimizing an inference ob-
jective function Fθ(xi, φi), where φi are intermediate variables (considered as vectors) from which
yi can be computed: 1

φ̂i(xi|θ) = arg min
φi

Fθ(xi, φi), ŷi(xi|θ) = gθ(xi, φ̂i(xi|θ)), (1)

where gθ is an estimator for yi. For many interesting cases, this optimization cannot be easily done
and leads to an iterative inference algorithm. In probabilistic generative models, F might be an
approximation to the negative log likelihood, yi could be taken to represent hidden variables and φi
to represent an estimate of their posterior distribution. For example, in variational inference algo-
rithms, φi could be taken to be the variational parameters. In sum-product loopy belief propagation,
the φi would be the posterior marginal probabilities. On the other hand, for the non-probabilistic
formulation of NMF, φi can be taken as the activation coefficients of the basis functions that are up-
dated at inference time. Note that the xi, yi can all be sequences or have other underlying structure,
but here for simplicity we ignore their structure.

At training time, we may optimize the parameters θ using a discriminative objective function,

Eθ
def
=
∑
i

D(y∗i , ŷi(xi|θ)), (2)

where D is a loss function and y∗i a reference value. In some settings, we can also consider a
discriminative objective D(y∗i , φ̂i(xi|θ)) which computes an expected loss. In the general case, (2)
is a bi-level optimization problem since ŷi(xi|θ) is itself determined by an optimization problem (1)
that depends on the parameters θ.

We assume that the intermediate variables φi in (1) can be optimized iteratively using update steps
k ∈ {1 . . .K} of the form 2

φki = fθ(xi, φ
k−1
i ), (3)

beginning with φ(0)i . Note that, although all steps are assumed to use the same fθ, it may be com-
posed of smaller steps, each of which are different. This can occur in loopy belief propagation, when
different messages are passed in each step, or in variational inference, when different variational pa-
rameters are updated in each step.

Rather than considering this iteration as an algorithm, let us consider unfolding it as a sequence of
layers in a neural network-like architecture, where the iteration index is now interpreted as an index
to the neural network layer. The intermediate variables φ1, . . . , φK are the nodes of layers 1 to K
and (3) determines the transformation and activation function between layers. Finally, the yKi are
the nodes of the output layer, and are obtained by yKi = gθ(xi, φ

K
i ).

At this point, the parameters θ, which are tied across layers, could be discriminatively trained using
gradient-based methods with the chain rule, as in the back-propagation algorithm for neural net-
works. This is reminiscent of “back-propagation in time” for neural networks, where the weight
matrices are the same for each un-folded time step. This kind of approach has recently attracted
interest in the context of several particular models, such as sparse coding [8, 9] and non-negative
matrix factorization [10, 11]. Hinton et al. [12] also showed that restricted Boltzmann machine
inference can be seen as an infinite directed belief network with tied weights.

However, in the deep unfolding framework, we recognize that using the same parameters from
layer to layer is not strictly necessary in the context of discriminative training, and may even be

1We arbitrarily formulate it as a minimization, as in the case of energy minimization, but equivalently it
could be a maximization as in the case of probabilities.

2Indices k in superscript always refer to iteration index (similarly for l defined later as the source index).
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detrimental to performance. Therefore, we explicitly untie the parameters across layers to form a
more powerful deep neural network. Besides allowing the network to fit more complex functions,
we speculate that this untying may also reduce the susceptibility to local minima. Of course the cost
of untying is the possibility of over-fitting, but this is the same situation for all deep neural networks,
and can be handled in similar ways.

To formulate this untying, we define parameters θ def
= {θk}Kk=0 for each layer, so that φki =

fθk−1(xi, φ
k−1
i ) and yKi = gθK (xi, φ

K
i ). Then we can compute the derivatives recursively as in

back-propagation,

∂E
∂φKi

=
∂D
∂yKi

∂yKi
∂φKi

,
∂E
∂θK

=
∑
i

∂D
∂yKi

∂yKi
∂θK

, (4)

∂E
∂φki

=
∂E

∂φk+1
i

∂φk+1
i

∂φki
,

∂E
∂θk

=
∑
i

∂E
∂φk+1

i

∂φk+1
i

∂θk
, (5)

where k < K, and we sum over all the intermediate indices of the derivatives. The specific deriva-
tions will of course depend on the form of f , g and D, for which we give examples below.

3 Deep discriminative non-negative matrix factorization

Here we apply the proposed deep unfolding framework to the non-negative matrix factorization
(NMF) model [4], which can be applied to any non-negative signal. Although NMF can be applied in
many domains, here we focus on the task of single-channel source separation, which aims to recover
source signals from mixtures. In this context it encompasses the simple problem-level assumptions
that power or magnitude spectra of different sources approximately add together, and that each
source can be described as a linear combination of non-negative basis functions.

NMF operates on a matrix of F -dimensional non-negative spectral features, usually the power or
magnitude spectrogram of the mixture, M = [m1 · · ·mT ], where T is the number of frames and
mt ∈ RF+, t = 1, . . . , T are obtained by short-time Fourier transformation of the time-domain sig-
nal. With L sources, a set of Rl non-negative basis vectors wl

1, · · · ,wl
Rl

is assumed for each source
l ∈ {1, . . . , L}, and concatenated into matrices Wl = [wl

1 · · ·wl
Rl

]. A column-wise normalized
W̃l can be used to avoid scaling indeterminacy. The basic assumptions can then be written as

M ≈
∑
l

Sl ≈
∑
l

W̃lHl = W̃H. (6)

The β-divergence, Dβ , is an appropriate cost function for this approximation [13], which casts
inference as an optimization of Ĥ,

Ĥ = arg min
H

Dβ(M | W̃H) + µ|H|1. (7)

For β = 1, Dβ is the generalized KL divergence, whereas β = 2 yields the squared Euclidean
distance. An L1 sparsity constraint with weight µ is added to favor solutions where only few basis
vectors are active at a time.

The following multiplicative updates minimize (7) subject to non-negativity constraints [13],

Hk+1 = Hk ◦ W̃T (M ◦ (Λk)β−2)

W̃T (Λk)β−1 + µ
, (8)

for iteration k ∈ 1, . . . ,K, where ◦ denotes element-wise multiplication, the matrix quotient is
element-wise, Λk := W̃Hk. H0 is initialized randomly.

After K iterations, to reconstruct each source, typically a Wiener filtering-like approach is used,
which enforces the constraint that all the source estimates WlHl sum up to the mixture:

S̃l,K =
W̃lHl,K∑
l′ W̃

l′Hl′,K
◦M. (9)
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While in general, NMF bases are trained independently on each source before being combined,
the combination is not trained discriminatively for good separation performance from a mixture.
Recently, discriminative methods have been applied to sparse dictionary based methods to achieve
better performance in particular tasks [14]. In a similar way, we can discriminatively train NMF
bases for source separation. The following optimization problem for training bases, termed discrim-
inative NMF (DNMF) was proposed in [6, 11]:

Ŵ = arg min
W

∑
l

γlDβ

(
Sl |WlĤl(M,W)

)
, (10)

where Ĥ(M,W) = arg min
H

Dβ(M | W̃H) + µ|H|1, (11)

and γl are weights accounting for the application-dependent importance of the source l; for example,
in speech de-noising, we focus on reconstructing the speech signal. The first part (10) minimizes
the reconstruction error given Ĥ. The second part ensures that Ĥ are the activations that arise from
the test-time inference objective. Given the bases W, the activations Ĥ(M,W) are uniquely deter-
mined, due to the convexity of (11). Nonetheless, the above remains a difficult bi-level optimization
problem, since the bases W occur in both levels.

In [11] the bi-level problem was approached by directly solving for the derivatives of the lower
level problem after convergence. In [6] the problem was approached by untying the bases used
for reconstruction in (10) from the analysis bases used in (11), and training only the reconstruction
bases. In addition, (9) was incorporated into the discriminative criteria as

Ŵ = arg min
W

∑
l

γlDβ

(
Sl | S̃l,K(M,W)

)
, (12)

This model can be considered a first step toward the proposed approach in the context of NMF.

Here, based on our framework, we unfold the entire model as a deep non-negative neural network,
and we untie the parameters across layers as Wk for k ∈ {1 . . .K}. We call this new model deep
discriminative NMF (DDNMF). We cast this into our general formulation by defining

i = t, x = m, y∗ = Sl, φk = Hk, yK = S̃l,K , θk = Wk.

We identify the inference objective and estimator (1) with (11) and (9), the discriminative objective
(2) with (12), and the iterative updates (3) with (8).

In order to train this network while respecting the non-negativity constraints, we derive recursively
defined multiplicative update equations by back-propagating a split between positive and negative
parts of the gradient. Indeed, in NMF, multiplicative updates are often derived using a heuristic
approach which uses the ratio of the negative part to the positive part as a multiplication factor to
update the value of that variable of interest:

Wk+1 = Wk ◦
[∇WkE ]−
[∇WkE ]+

. (13)

To propagate the positive parts (and similarly the negative parts, with appropriate changes), we use:[
∂E

∂hkrk,t

]
+

=
∑
rk+1

([
∂E

∂hk+1
rk,t

]
+

[
∂hk+1

rk,t

∂hkrk,t

]
+

+

[
∂E

∂hk+1
rk+1,t

]
−

[
∂hk+1

rk+1,t

∂hkrk,t

]
−

)
, (14)

[
∂E
∂wkf,r

]
+

=
∑
t

∑
rk+1

([
∂hk+1

rk+1,t

∂wkf,r

]
+

[
∂E

∂hk+1
rk+1,t

]
+

+

[
∂hk+1

rk+1,t

∂wkf,r

]
−

[
∂E

∂hk+1
rk+1,t

]
−

)
. (15)

4 Experiments

The DDNMF method was evaluated along with competitive models on the 2nd CHiME Speech
Separation and Recognition Challenge corpus 3. The task is speech enhancement in reverberated

3http://spandh.dcs.shef.ac.uk/chime challenge/ – as of June. 2014
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noisy mixtures (S = 2, l = 1: speech, l = 2: noise). The background is mostly non-stationary
noise sources such as children, household appliances, television, radio, and so on, recorded in a
home environment. Training, development, and test sets of noisy mixtures along with noise-free
reference signals are created from the Wall Street Journal (WSJ-0) corpus of read speech and a
corpus of training noise recordings. The dry speech recordings are convolved with time-varying
room impulse responses estimated from the same environment as the noise. The training set consists
of 7 138 utterances at six SNRs from -6 to 9 dB, in steps of 3 dB. The development and test sets
consist of 410 and 330 utterances at each of these SNRs, for a total of 2 460 / 1 980 utterances. By
construction of the WSJ-0 corpus, our evaluation is speaker-independent. The background noise
recordings in the development and test set are different from the training noise recordings, and
different room impulse responses are used to convolve the dry utterances. In this paper, we present
results on the development set. To reduce complexity we use only 10 % of the training utterances
for all methods. Our evaluation measure for speech separation is source-to-distortion ratio (SDR)
[15].

4.1 Feature extraction

Each feature vector concatenates T = 9 consecutive frames of left context, ending with the target
frame, obtained as short-time Fourier spectral magnitudes, using 25 ms window size, 10 ms window
shift, and the square root of the Hann window. This leads to feature vectors of size TF where F =

200 is the number of frequencies. Similarly to the features in M, each column of Ŝl corresponds to
a sliding window of consecutive reconstructed frames. Only the last frame in each sliding window is
reconstructed, which leads to an on-line algorithm. For the NMF-based approaches, we use the same
number of basis vectors for speech and noise (R1 = R2), and consider Rl = 100 and Rl = 1000.
We denote the total asR =

∑
lR

l.We look at two regimes of maximum iterations,K = 4 for which
NMF-based approaches still have significant room for improvement in performance, and K = 25
for which, based on preliminary experiments, they are close to asymptotic performance.

4.2 Baseline 1: Deep Neural Network

To compare our DDNMF architecture with standard K-layer deep neural networks, we used the fol-
lowing setting. The feed-forward DNNs haveK−1 hidden layers with hyperbolic tangent activation
functions and an output layer with logistic activation functions. Denoting the output layer activations
for time index t by yt = (y1,t, . . . , yF,t)

T ∈ [0, 1]F , the DNN computes the deterministic function

yt = σ(WK tanh(WK−1 · · · tanh(W1xt))),

where xt are the input feature vectors and σ and tanh denote element-wise logistic and hyperbolic
tangent functions. As in the DDNMF experiments, T = 9 consecutive frames of context are concate-
nated together, but here the vectors xt are logarithmic magnitude spectra. Thus, the only difference
in the input feature representation with respect to DDNMF is the compression of the spectral ampli-
tudes, which is generally considered useful in speech processing, but breaks the linearity assumption
of NMF.

Previous attempts with DNNs have focused on direct estimation of the clean speech without taking
into account the mixture in the output layer, or on direct estimation of a masking function without
considering its effect upon the speech estimate. Here, based on our experience with model-based
approaches, we train the masking function such that, when applied to the mixture, it best recon-
structs the clean speech, which was also proposed in [16]. This amounts to optimizing the following
objective function for the DNN training:

E =
∑
f,t

(yf,tmf,t − slf,t)2 =
∑
f,t

(s̃lf,t − slf,t),

wherem are the mixture magnitudes and sl are the speech magnitudes. Thus, the sequence of output
layer activations yt can be interpreted as a time-frequency mask in the magnitude spectral domain,
similar to the ‘Wiener filter’ in the output layer of DDNMF (12). In our experiments, this approach
leads to 1.5 dB improvements relative to mask estimation. Although this comes from the model-
based approach, we include it here so that the DNN results are comparable solely on the context of
the deep architecture and not the output layer.
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Table 1: DNN source separation performance on the CHiME development set for various topologies.

SDR [dB] Input SNR [dB]
Topology -6 -3 0 3 6 9 Avg # params

3x256 3.71 5.78 7.71 9.08 10.80 12.75 8.31 644 K
1x1024 5.10 7.12 8.84 10.13 11.80 13.58 9.43 2.0 M
2x1024 5.14 7.18 8.87 10.20 11.85 13.66 9.48 3.1 M
3x1024 4.75 6.74 8.47 9.81 11.53 13.38 9.11 4.1 M
2x1536 5.42 7.26 8.95 10.21 11.88 13.67 9.57 5.5 M

Our implementation is based on the open-source software CURRENNT4. During training, the above
objective function is minimized on the CHiME training set, using back-propagation, stochastic gra-
dient descent with momentum, and discriminative layer-wise pre-training. Early stopping based on
cross-validation with the CHiME development set, and Gaussian input noise (standard deviation
0.1) are used to prevent aggressive over-optimization on the training set. Unfortunately, our current
experiments for DDNMF do not use cross-validation, but despite the advantage this gives to the
DNN, as shown below DDNMF nevertheless performs better.

We investigate different DNN topologies (number of layers and number of hidden units per layer)
in terms of SDR performance on the CHiME development set. Results are shown in Table 1.

4.3 Baseline 2: sparse NMF

Sparse NMF (SNMF) [17] is used as a baseline, by optimizing the training objective,

W
l
,H

l
= arg min

Wl,Hl

Dβ(Sl | W̃lHl) + µ|Hl|1, (16)

for each source, l. NMF and which we shall denote by SNMF. A multiplicative update algorithm to
optimize (16) for arbitrary β ≥ 0 is given by [18]. During training, we set S1 and S2 in (16) to the
spectrograms of the concatenated noise-free CHiME training set and the corresponding background
noise in the multi-condition training set. This yields SNMF bases W

l
, l = 1, 2. As initial solution

for W, we use exemplar bases sampled at random from the training data for each source. For the
sparsity weight we use µ = 5, which performed well for SNMF and DNMF algorithms for both
Rl = 100 and Rl = 1000 in the experiments of [6]. In the SNMF experiments, the same basis
matrix W is used both for determining Ĥ according to (7) and for reconstruction using (9).

4.4 Deep Discriminative NMF

In the DDNMF experiments, the KL divergence (β = 1) is used for the update equations, but we
use squared Euclidean distance (β = 2) in the discriminative objective (12) since this corresponds
closely to the SDR evaluation metric, and this combination performed well in [6]. In all the DDNMF
models we initialize the basis sets for all layers using the SNMF bases, W, trained as described in
Section 4.3. We then consider the C last layers to be discriminatively trained, for various values of
C. This means that we decouple the bases for the final C layers (counting the reconstruction layer
and analysis layers), and we train the bases Wk for k such that K − C + 1 ≤ k ≤ K using the
multiplicative back-propagation updates described in Section 3. Thus C = 0 corresponds to SNMF,
C ≥ 1 corresponds to DDNMF, with the special case C = 1 previously described as DNMF [6].

In the experiments, the K − C non-discriminatively trained layers use the full bases W, which
contain multiple context frames. In contrast the C discriminatively trained layers are restricted to a
single frame of context. This is because the network is being trained to reconstruct a single target
frame, whereas using the full context in Wk and M would enforce the additivity constraints across
reconstructions of the full context in each layer. Instead, Wk>K−C is of size (F × R), and is
initialized to the first F rows of W and the matrix M′, consisting of the first F rows of M, is
used in place of M. For DDNMF, the fixed basis functions W contain DF = TFR parameters
that are not trained, whereas the final C layers together have PD = CFR discriminatively trained
parameters, for a total of P = (T + C)FR.

4http://currennt.sf.net/
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Table 2: DDNMF source separation performance on CHiME Challenge (WSJ-0) development set.

SDR [dB] Input SNR [dB]
Rl = 100 -6 -3 0 3 6 9 Avg. PD P
K = 4, C = 0 (SNMF) 2.03 4.66 7.08 8.76 10.67 12.74 7.66 - 360 K
K = 4, C = 1 (DNMF) 2.91 5.43 7.57 9.12 10.97 13.02 8.17 40 K 400 K
K = 4, C = 2 3.19 5.68 7.78 9.28 11.09 13.07 8.35 80 K 440 K
K = 4, C = 3 3.22 5.69 7.79 9.28 11.09 13.05 8.35 120 K 480 K
K = 4, C = 4 3.32 5.76 7.84 9.31 11.11 13.05 8.40 160 K 520 K
K = 25, C = 0 (SNMF) 4.16 6.46 8.51 9.90 11.61 13.40 9.01 - 360 K
K = 25, C = 1 (DNMF) 4.92 7.09 8.90 10.24 12.02 13.83 9.50 40 K 400 K
K = 25, C = 2 5.16 7.28 9.05 10.36 12.12 13.89 9.64 80 K 440 K
K = 25, C = 3 5.30 7.38 9.14 10.43 12.18 13.93 9.73 120 K 480 K
K = 25, C = 4 5.39 7.44 9.19 10.48 12.22 13.95 9.78 160 K 520 K

Rl = 1000 -6 -3 0 3 6 9 Avg. PD P
K = 4, C = 0 (SNMF) 1.79 4.45 6.94 8.66 10.61 12.76 7.54 - 3.6 M
K = 4, C = 1 (DNMF) 2.94 5.45 7.60 9.15 11.00 13.06 8.20 400 K 4 M
K = 4, C = 2 3.14 5.62 7.74 9.26 11.10 13.12 8.33 800 K 4.4 M
K = 4, C = 3 3.36 5.80 7.89 9.37 11.19 13.18 8.47 1.2 M 4.8 M
K = 4, C = 4 3.55 5.95 8.01 9.48 11.28 13.23 8.58 1.6 M 5.2 M
K = 25, C = 0 (SNMF) 4.39 6.60 8.67 10.06 11.82 13.67 9.20 - 3.6 M
K = 25, C = 1 (DNMF) 5.74 7.75 9.55 10.82 12.55 14.35 10.13 400 K 4 M
K = 25, C = 2 5.80 7.80 9.59 10.86 12.59 14.39 10.17 800 K 4.4 M
K = 25, C = 3 5.84 7.82 9.62 10.89 12.61 14.40 10.20 1.2 M 4.8 M

5 Discussion

Results in terms of SDR are shown for the experiments using DNNs in Table 1, and for the DDNMF
family in Table 2, for a range of topologies. The first thing to note is that the DDNMF framework
yields strong improvements relative to SNMF. Comparing the DNN and DDNMF approaches, we
can first see that the best DDNMF topology achieves an SDR of 10.20 dB, outperforming the best
DNN result of 9.57 dB, for a comparable number of parameters (4.8M for DDNMF versus 5.5M
for the DNN). Looking more closely at the trade-off between model size and performance shows
that the smallest DDNMF topology that outperforms the best DNN topology, is obtained for Rl =
100,K = 25, C = 2, and achieves an SDR of 9.64 dB using at least an order of magnitude fewer
parameters (only 440K parameters overall, only 80K of which are discriminatively trained). We take
this as strong evidence for the benefit of using a model-based approach to derive the deep learning
architecture.

Analyzing further the effect of topology on performance for DDNMF, we can see that discrimina-
tively training of the first layer gives the biggest improvement, but training more and more layers
consistently improves performance, especially in low SNR conditions, while only adding a modest
number of parameters per layer. Moving from Rl = 100 to Rl = 1000 does not lead to as much
gain as one might expect despite the huge increase in parameter size. This could be because we are
currently only training on 10 % of the data, and used a fairly conservative convergence criterion. For
the same model size, using K = 25 layers leads to large gains in performance without increasing
training time and complexity. However, it comes at the price of an increased computation cost at
inference time. Intermediate topology regimes need to be further explored to get a better sense of
the best speed/accuracy trade-off.

As potential further work in the speech enhancement domain, we could consider investigating the
application of our framework to models with continuity constraints or factorial structure [19, 20,
21, 22]. More general future research directions within the deep unfolding paradigm include the
unfolding of other classes of inference algorithms, such as loopy belief propagation for Markov
random fields or variational inference algorithms for intractable generative models.

We have introduced a general framework that allows model-based approaches to guide the explo-
ration of the universe of deep network architectures, which would otherwise be difficult to navigate.
We hope that this framework will inspire a new generation of novel deep network architectures
suitable for tackling difficult problems that require high-level domain insights.
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Supplementary material
A Chain rule for the general formulation

We assume in general that the architecture is made of layers where hk+1
i is a function of wk, hki ,

and the input xi. We assume that all variables are vectorized.

∂E
∂wkq

=
∑
i

∂D(xi, yi)

∂wkq

=
∑
i

∑
pk+1

(∑
pk+2

(
. . .

(∑
pK

∂D(xi, yi)

∂hKi,pK

∂hKi,pK (wK−1, hK−1i )

∂hK−1i,pK−1

)
. . .

. . .

)
∂hk+2

i,pk+2
(wk+1, hk+1

i )

∂hk+1
i,pk+1

)
∂hk+1

i,pk+1
(wk, hki )

∂wkq
or
∂E
∂wkq

=
∑
i

∑
pk+1

∂hk+1
i,pk+1

(wk, hki )

∂wkq

(∑
pk+2

∂hk+2
i,pk+2

(wk+1, hk+1
i )

∂hk+1
i,pk+1

(
. . .

. . .

(∑
pK

∂hKi,pK (wK−1, hK−1i )

∂hK−1i,pK−1

∂D(xi, yi)

∂hKi,pK

)
. . .

))

B Derivations for deep discriminative NMF

B.1 Chain rule for DDNMF

In the case of DNMF, the architecture is defined as follows, with H0 initialized, e.g., randomly:
Hk+1 =f(Wk,M,Hk) (17)

Ŝ =g(WK ,M,HK) (18)
The objective function is given by:

E =
∑
l

γlDβ(Sl|Ŝl) (19)

We assume that the sets of basis functions for all sources are stacked horizontally, and their activa-
tions are stacked vertically. In order to be able to assume different numbers of basis functions Rl
for each source, the stacked structures are indexed using a single index r, such that the elements
corresponding to source l are those for which r ∈ Il, where we defined the set Il = [[il, il+1[[ of
integers r such that il ≤ r < il+1, with i1 = 1 and il+1 = il +Rl.

We compute the gradient of E with respect to the parameters in the k-th layer, wkn,l,r.

For k = K, the gradient ∂E
∂wK

n,r
is the one obtained for the reconstruction basis functions in Discrim-

inative NMF.

For k < K, we use the chain rule to get:
∂E
∂wkn,r

=
∑
l′

γl′
∂Dβ(Sl

′ |Ŝl′)
∂wkn,r

=
∑
t

∑
rk+1

(
. . .

(∑
rK

(∑
n′

(∑
l′

γl′
∂Dβ(Sl

′

n′,t|Ŝl
′

n′,t)

∂Ŝl
′
n′,t

)
∂gln′,t(W

K ,M,HK)

∂hKrK ,t

)
∂frK ,t(W

K−1,M,HK−1)

∂hK−1rK−1,t

)
. . .

. . .
∂frk+2,t(W

k+1,M,Hk+1)

∂hk+1
rk+1,t

)
∂frk+1,t(W

k,M,Hk)

∂wkn,r
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This can be rewritten slightly more clearly as:

∂E
∂wkn,r

=
∑
t

∑
rk+1

∂frk+1,t(W
k,M,Hk)

∂wkn,r

(∑
rk+2

∂frk+2,t(W
k+1,M,Hk+1)

∂hk+1
rk+1,t

(
. . .

· · ·
∑
rK

∂frK ,t(W
K−1,M,HK−1)

∂hK−1rK−1,t

(∑
n′

(∑
l′

γl′
∂Dβ(Sl

′

n′,t|Ŝl
′

n′,t)

∂Ŝl
′
n′,t

)
∂gln′,t(W

K ,M,HK)

∂hKrK ,t

))
. . .

)

Once the values of hk have been computed in a forward pass, the gradient can be computed in a
backward pass, starting from the top layer, which is the most inner term in the sum above.

We give the expression for all terms in the sum, starting from the inside.

B.2 Top (K-th) layer derivative w.r.t. HK with Least-Squares divergence measure

Even though we typically use KL-divergence (β = 1) to train the analysis basis functions and
estimate the activations H, nothing prevents us from using a different discrepancy measure at the
final layer. If we want to optimize the signal-to-noise ratio (SNR) in the case where features are
magnitude spectra, we can minimize the Euclidean distance Dl

2 := D2(Sl|Ŝl) between the (true)
magnitude spectrum of the source l, Sl, and that of its reconstruction, Ŝl. This indeed directly
corresponds to maximizing the SNR, neglecting the difference between noisy and oracle phases (we
thus optimize for an upper-bound of the actual SNR). Note that similar updates can be obtained for
β = 1 in the last layer as well. We are also only interested in the quality of the reconstruction of a
single source, typically speech in a speech enhancement scenario.

Let us thus assume that γl = 1, γl′,l′ 6=l = 0, β = 2 in the reconstruction layer and Wiener filter is
used for reconstruction (and that fact is included in the optimization), i.e., we optimize to reconstruct
a single source l (e.g., speech), using the L2 norm as the error measure, and assume that the source
is reconstructed using

gl(WK ,M,HK) =
WK,lHK,l

WKHK
◦M,

where HK,l = [hKil ; · · · ; hKil+1−1] (we use the notation [a; b] for [aᵀbᵀ]ᵀ) and WK,l is defined

accordingly. Let us denote Λ = WKHK =
∑
l W

K,lHK,l, Λl = WK,lHK,l, and Λl = Λ−Λl.
Then we have:

[∇HK,lE ]+ = WK,lᵀ M2 ◦Λl ◦Λl

Λ3
, (20)

[∇HK,lE ]− = WK,lᵀ M ◦ Sl ◦Λl

Λ2
, (21)[

∇HK,lE
]
+

= WK,l
ᵀ M ◦ Sl ◦Λl

Λ2
, (22)[

∇HK,lE
]
− = WK,l

ᵀ M2 ◦ (Λl)2

Λ3
, (23)

where HK,l = [HK,1; · · · ; HK,l−1; HK,l+1; · · · ; HS ], and WK,l is defined accordingly.

B.3 Intermediate (k + 1-th) layer derivative w.r.t. Hk and Wk, k < K

Even though we may be using any β divergence for the last layer, and we in fact use β = 2, i.e., the
L2 distance, we use β = 1, i.e., the KL divergence, for the intermediate layers. We noticed that this
combination leads to better results than using the same β all the way through. This may be due to the
KL divergence being better suited to decomposing mixtures, as was shown in previous evaluations.

To simplify the update equations for Wk, we assume that Wk is not normalized in the final layers
where it is optimized. However, we do assume that it is normalized in lower layers which are not
optimized: the analysis basis functions were indeed trained under that assumption to avoid obtaining
trivial solutions regarding sparsity simply by rescaling W and H. Actually, any layer where Wk is
not optimized can use the normalized versions of the updates without any change.
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For the layers where Wk is not normalized, the update equation for Hk+1, which determines the
structure of the intermediate layers, is given by:

hk+1
rk+1,t

(Wk,M,Hk) = hkrk+1,t

∑
n

wkn,rk+1

mn,t∑
r′ w

k
n,r′h

k
r′,t∑

n

wkn,rk+1
+ µ

. (24)

Let αkr =
∑
n w

k
n,r and Λkn,t =

∑
r′ w

k
n,r′h

k
r′,t. The derivative of the intermediate layers is obtained

as:
∂hk+1

rk+1,t

∂hkrk,t
=

1

αkrk + µ

∑
n

wkn,rk
mn,t

Λkn,t
−

hkrk,t

αkrk + µ

∑
n

(wkn,rk)2
mn,t

(Λkn,t)
2
, for rk+1 = rk (25)

∂hk+1
rk+1,t

∂hkrk,t
=−

hkrk+1,t

αkrk+1
+ µ

∑
n

wkn,rk+1
wkn,rk

mn,t

(Λkn,t)
2
, for rk+1 6= rk (26)

and
∂hk+1

rk+1,t

∂wkn0,rk

=
hkrk,t

αkrk + µ

(
1−

wkn0,rk
hkrk,t

Λkn0,t

)
mn0,t

Λkn0,t

−
hkrk,t

(αkrk + µ)2

(∑
n

wkn,rk
mn,t

Λkn,t

)
, for rk+1 = rk

∂hk+1
k+1,t

∂wkn0,rk

= −
hkrk,t

αkrk+1
+ µ

wkn0,rk+1
hkrk+1,t

Λkn0,t

mn0,t
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, for rk+1 6= rk (27)

The split in positive and negative parts is as follows for
∂hk+1

rk+1,t

∂hk
rk,t

:

For rk+1 = rk: [
∂hk+1

rk+1,t

∂hkrk,t

]
+
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∑
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2
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For rk+1 6= rk: [
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∂hkrk,t

]
+
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∂hk+1

rk+1,t

∂hkrk,t
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−

=
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(Λkn,t)
2
. (31)

The split in positive and negative parts is as follows for
∂hk+1

rk+1,t

∂wk
n0,rk

:

For rk+1 = rk: [
∂hk+1

rk+1,t
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For rk+1 6= rk: [
∂hk+1

rk+1,t

∂wkn0,rk

]
+

= 0, (34)[
∂hk+1

rk+1,t
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]
−
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2
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As we will see in Section B.4.2, thanks to back-propagation, we never have to store these quantities
in full.

B.4 Multiplicative back-propagation updates

In NMF, multiplicative updates are often derived using a heuristic approach which splits the gradient
of the objective function with respect to the variable of interest into positive and negative parts, and
uses the ratio of the negative part to the positive part as a multiplication factor to update the value of
that variable of interest, e.g.,

Wk+1 = Wk ◦
[∇WE ]−
[∇WE ]+

(36)

The ratio and multiplication operations are performed term by term.

In order to obtain multiplicative updates in our setting, we need to recursively compute the positive
and negative parts of the gradient with respect to each variable.

B.4.1 General case

The whole gradient can be split into positive and negative terms recursively. For example, for

∂E
∂hkpk,i

=
∑
pk+1

∂E
∂hk+1

pk+1,i

∂hk+1
pk+1,i

∂hkpk,i
(37)

for each sample i, then[
∂E

∂hkpk,i

]
+

=
∑
pk+1
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∂E

∂hk+1
pk+1,i

]
+

[
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∂hkpk,i

]
+

+

[
∂E

∂hk+1
pk+1,i

]
−

[
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pk+1,i

∂hkpk,i

]
−

)
, (38)

[
∂E

∂hkpk,i

]
−

=
∑
pk+1

([
∂E

∂hk+1
pk+1,i

]
+

[
∂hk+1

pk+1,i
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]
−

+

[
∂E
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pk+1,i

]
−

[
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]
+

)
. (39)

For ∂E
∂wk

qk

, the expression involves ∂E
∂hk+1

pk+1,i

and
∂hk+1

pk+1,i

∂wk
qk

, with an extra summation over i:

∂E
∂wkqk

=
∑
i

∑
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∂E
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∂hk+1
pk+1,i
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. (40)

The split becomes:[
∂E
∂wkqk

]
+

=
∑
i

∑
pk+1

([
∂E

∂hk+1
pk+1,i

]
+

[
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]
+

+
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−

[
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]
−

)
, (41)

[
∂E
∂wkqk

]
−

=
∑
i

∑
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∂E

∂hk+1
pk+1,i

]
+

[
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∂wkqk

]
−

+

[
∂E
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pk+1,i

]
−

[
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∂wkqk

]
+

)
. (42)

Note that this general formulation can be applied to any model with non-negative parameters, even
though here we use the NMF variable names.

B.4.2 Details for DDNMF

Splitting the gradient for H:

∂E
∂wkn,r

=
∑
t

∑
rk+1

∂E
∂hk+1

rk+1,t

∂hk+1
rk+1,t

∂wkn,r
(43)

then:[
∂E
∂wkn,r

]
+

=
∑
t

∑
rk+1

([
∂hk+1

rk+1,t
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]
+

[
∂E
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]
+

+

[
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∂wkn,r

]
−

[
∂E
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rk+1,t

]
−

)
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2

wkn,rh
k
r,t

αkr + µ

[
∂E

∂hk+1
r,t

]
−

(to compensate for the term rk+1 = rk)

+
∑
t

hkr,t

(αkr + µ)2

(∑
n′

wkn′,r
mn′,t

Λkn′,t

)[
∂E

∂hk+1
r,t

]
−

(same)

=
∑
t

mn,t

Λkn,t

(
hkr,t

αkr + µ

[
∂E

∂hk+1
r,t

]
+

)
− wkn,r

∑
t

mn,t

(Λkn,t)
2

(
(hkr,t)

2

αkr + µ

[
∂E

∂hk+1
r,t

]
+

)

+
∑
t

hkr,t

 mn,t

(Λkn,t)
2

∑
rk+1

wkn,rk+1

αkrk+1
+ µ

(
hkrk+1,t

[
∂E

∂hk+1
rk+1,t

]
−

)
− wkn,r

∑
t

mn,t

(Λkn,t)
2

(
(hkr,t)

2

αkr + µ

[
∂E

∂hk+1
r,t

]
−

)

+
∑
t

hkr,t

(αkr + µ)2

(∑
n′

wkn′,r
mn′,t

Λkn′,t

)[
∂E

∂hk+1
r,t

]
−

(44)

It is very important to carefully compute these quantities to avoid having to consider computations
or storage involving tensors. It turns out that the above expression can be reformulated using only
matrix operations. Altogether, we get:

[∇WkE ]+ =
M

Λk

(
Hk

(Wk)ᵀ1N×T + µ
◦ [∇Hk+1E ]+

)ᵀ

+

{
M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]−

))}
(Hk)ᵀ

−Wk ◦

{
M

(Λk)2

(
(Hk)2 ◦

(
[∇Hk+1E ]+ + [∇Hk+1E ]−

)
(Wk)ᵀ1N×T + µ

)ᵀ}

+
1R×T

(
Hk ◦

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]−

)ᵀ
((Wk)ᵀ1N×R + µ)2

, (45)

where 1a×b is an a × b matrix of all 1. This matrix is only used here for notation purposes, and in
practice, we use MATLAB’s bsxfun to avoid having to explicitely create it.

The negative part of the gradient is exactly the same, except that
[

∂E
∂hk+1

rk+1,t

]
−

and
[

∂E
∂hk+1

rk+1,t

]
+

are

interchanged:[
∂E
∂wkn,r

]
−

=
∑
t

∑
rk+1

([
∂hk+1

rk+1,t

∂wkn,r

]
+

[
∂E

∂hk+1
rk+1,t

]
−

+

[
∂hk+1

rk+1,t

∂wkn,r

]
−

[
∂E

∂hk+1
rk+1,t

]
+

)

=
∑
t

[
∂hk+1

r,t

∂wkn,r

]
+

[
∂E

∂hk+1
r,t

]
−

+
∑
t

∑
rk+1

[
∂hk+1

rk+1,t

∂wkn,r

]
−

[
∂E

∂hk+1
rk+1,t

]
+

(46)
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[∇WkE ]− =
M

Λk

(
Hk

(Wk)ᵀ1N×T + µ
◦ [∇Hk+1E ]−

)ᵀ

+

{
M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]+

))}
(Hk)ᵀ

−Wk ◦

{
M

(Λk)2

(
(Hk)2 ◦

(
[∇Hk+1E ]+ + [∇Hk+1E ]−

)
(Wk)ᵀ1N×T + µ

)ᵀ}

+
1R×T

(
Hk ◦

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]+

)ᵀ
((Wk)ᵀ1N×R + µ)2

(47)

Splitting the gradient for Hk: Now the gradient with respect to Hk, which is used recursively:[
∂E

∂hkrk,t

]
+

=

[
∂E

∂hk+1
rk,t

]
+

[
∂hk+1

rk,t

∂hkrk,t

]
+

+
∑
rk+1

[
∂E

∂hk+1
rk+1,t

]
−

[
∂hk+1

rk+1,t

∂hkrk,t

]
−

,

=

[
∂E

∂hk+1
rk,t

]
+

[
∂hk+1

rk,t

∂hkrk,t

]
+

+
∑
rk+1

[
∂E

∂hk+1
rk+1,t

]
−

hkrk+1,t

αkrk+1
+ µ

∑
n

wkn,rk+1
wkn,rk

mn,t

(Λkn,t)
2

=

[
∂E

∂hk+1
rk,t

]
+

[
∂hk+1

rk,t

∂hkrk,t

]
+

+
∑
n

wkn,rk

 mn,t

(Λkn,t)
2

∑
rk+1

([ ∂E
∂hk+1

rk+1,t

]
−

hkrk+1,t

) wkn,rk+1

αkrk+1
+ µ


(48)

where [
∂hk+1

rk,t

∂hkrk,t

]
+

=
1

αkrk + µ

∑
n

wkn,rk
mn,t

Λkn,t
. (49)

This can also be rewritten using matrix computations:

[∇HkE ]+ =
[∇Hk+1E ]+ ◦

(
(Wk)ᵀ M

Λk

)
(Wk)ᵀ1N×T + µ

+ (Wk)ᵀ

{
M

(Λk)2
◦

(
Wk

( [∇Hk+1E ]− ◦Hk

(Wk)ᵀ1N×T + µ

))}
(50)

The negative part is similar again, just interchanging [∇Hk+1E ]+ and [∇Hk+1E ]−:[
∂E

∂hkrk,t

]
−

=

[
∂E

∂hk+1
rk,t

]
−

[
∂hk+1

rk,t

∂hkrk,t

]
+

+
∑
rk+1

([
∂E

∂hk+1
rk+1,t

]
+

[
∂hk+1

rk+1,t

∂hkrk,t

]
−

)
(51)

and in matrix notations:

[∇HkE ]− =
[∇Hk+1E ]− ◦

(
(Wk)ᵀ M

Λk

)
(Wk)ᵀ1N×T + µ

+ (Wk)ᵀ

{
M

(Λk)2
◦

(
Wk

( [∇Hk+1E ]+ ◦Hk

(Wk)ᵀ1N×T + µ

))}
(52)

B.5 DDNMF gradient computation procedure

Let us put everything together for the case of single-source reconstruction with Wiener filter and
minimization of L2 distance (β = 2) at the last layer, and KL-divergence NMF updates for Hk

without normalization of Wk in the layers where we optimize Wk (but with normalization for
all layers up to there). Assuming that a forward computation of Hk for k = 1, . . . ,K as been
performed, we compute positive and negative parts of the gradients as follows:
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• Compute the gradient for the last layer with respect to HK .

[∇HK,lE ]+ = WK,lᵀ M2 ◦Λl ◦Λl

Λ3
, (53)

[∇HK,lE ]− = WK,lᵀ M ◦ Sl ◦Λl

Λ2
, (54)[

∇HK,lE
]
+

= WK,l
ᵀ M ◦ Sl ◦Λl

Λ2
, (55)[

∇HK,lE
]
− = WK,l

ᵀ M2 ◦ (Λl)2

Λ3
, (56)

where Λ = ΛK , Λl = ΛK,l, Λl = ΛK,l.
• Compute recursively the gradient for lower layers with respect to Hk using:

[∇HkE ]+ =

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]+

(Wk)ᵀ1N×T + µ

+ (Wk)ᵀ
{

M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]−

))}
(57)

[∇HkE ]− =

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]−

(Wk)ᵀ1N×T + µ

+ (Wk)ᵀ
{

M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]+

))}
(58)

• Compute the gradient with respect to Wk for those layers where we want to optimize Wk.
If Wk is tied across layers, the gradients at those layers can simply be summed.

[∇WkE ]+ =
M

Λk

(
Hk ◦ [∇Hk+1E ]+
(Wk)ᵀ1N×T + µ

)ᵀ

+

{
M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]−

))}
(Hk)ᵀ

−Wk ◦

{
M

(Λk)2

(
(Hk)2 ◦

(
[∇Hk+1E ]+ + [∇Hk+1E ]−

)
(Wk)ᵀ1N×T + µ

)ᵀ}

+
1R×T

(
Hk ◦

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]−

)ᵀ
((Wk)ᵀ1N×R + µ)2

(59)

[∇WkE ]− =
M

Λk

(
Hk ◦ [∇Hk+1E ]−
(Wk)ᵀ1N×T + µ

)ᵀ

+

{
M

(Λk)2
◦
(

Wk

(Wk)ᵀ1N×R + µ

(
Hk ◦ [∇Hk+1E ]+

))}
(Hk)ᵀ

−Wk ◦

{
M

(Λk)2

(
(Hk)2 ◦

(
[∇Hk+1E ]+ + [∇Hk+1E ]−

)
(Wk)ᵀ1N×T + µ

)ᵀ}

+
1R×T

(
Hk ◦

(
(Wk)ᵀ M

Λk

)
◦ [∇Hk+1E ]+

)ᵀ
((Wk)ᵀ1N×R + µ)2

(60)

• From there, we can form multiplicative update equations for Wk.

Note that only the [∇Hk+1E ]± for the layer k+1 need to be available when performing computations
for Hk and Wk, and they can thus be replaced iteratively as we descend through layers, limiting the
memory requirements.
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