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Abstract

One of the most common problems in CAD/CAM is to find an optimal tool path for milling a
pocket (defined by a planar shape on the x-y plane). Traditional approaches employ zigzag or
contour-parallel paths. Unfortunately, these approaches typically provide paths with high curva-
ture segments. Motions along such paths increase forces on the tool leading to increased wear
and a consequent decrease in tool life. Another objective for tool path planning is to minimize
the machining time. Thus for a given pocket shape we want to find the tool path such that this
exact shape is machined and the tool path is good with respect to some metric. This optimization
problem is very hard, so we restrict the class of admissible paths to spiral curves that wind around
the initial engagement point and eventually ”track” the boundary of the pocket. Our idea is to
find a function f(x,y) that is positive over the given pocket shape S and consider this function as
a kind of ”energy” of a one-degree-of-freedom oscillator. We make the correspondence between
the position x and velocity x of the oscillator and the spatial coordinates(x,y). If the oscillator
is conservative, the trajectories are (in general) closed curves corresponding to constant energy
and are level sets of f(x,x). One way to make a transition between these curves is to introduce
negative damping into the equation of motion of the oscillator. A fast milling simulator based on
composite adaptively sampled distance fields is discussed. We describe an algorithm that couples
the oscillator-based path planner and this milling simulator to evaluate paths.
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Abstract 

 

One of the most common problems in CAD/CAM is to find an optimal tool path for milling a pocket (defined by 

a planar shape on the x-y plane). Traditional approaches employ zigzag or contour-parallel paths. 

Unfortunately, these approaches typically provide paths with high curvature segments. Motions along such 

paths increase forces on the tool leading to increased wear and a consequent decrease in tool life. Another 

objective for tool path planning is to minimize the machining time. Thus for a given pocket shape we want to 

find the tool path such that this exact shape is machined and the tool path is good with respect to some metric. 

This optimization problem is very hard, so we restrict the class of admissible paths to spiral curves that wind 

around the initial engagement point and eventually “track” the boundary of the pocket. Our idea is to find a 

function f(x,y)  that is positive over the given pocket shape S and consider this function as a kind of “energy” 

of a one-degree-of-freedom oscillator. We make the correspondence between the position x and velocity x ̇ of 

the oscillator and the spatial coordinates(x,y). If the oscillator is conservative, the trajectories are (in general) 

closed curves corresponding to constant energy and are level sets of f(x,x ̇).  One way to make a transition 

between these curves is to introduce negative damping into the equation of motion of the oscillator. A fast 

milling simulator based on composite adaptively sampled distance fields is discussed. We describe an 

algorithm that couples the oscillator-based path planner and this milling simulator to evaluate paths. 
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1. Introduction 

 
One of the most common problems in material removal processes is to find a 

good/optimal tool path for milling a pocket. In the so-called pocket milling (shown in Figure 
1), the material is removed from the workpiece layer by layer. Traditional approaches 
employ zigzag or contour-parallel paths (Figures 2a and 2b). 

 

 

Figure 1. Pocket milling 
 

  

 
Figure 2. Pocket milling  strategies: (a) zigzag machining (b) contour-parallel machining 

(c) spiral contouring 
 

Unfortunately, these paths typically have high curvature segments. Motions along 
such paths increase forces on the tool, leading to increased wear and a consequent 
decrease in tool life. In addition to avoiding harmful cutting conditions, another objective for 
tool path planning is to minimize the machining time. Thus for a given pocket shape 
(defined by the set S in the x-y plane) we want to find the tool path such that this exact 
shape is machined and the tool path is “optimal”. 
Held (1991) is a good reference on many mathematical aspects of pocket machining, 
including the generation of tool paths. Dragomatz and Mann (1997) provides a 
bibliography on milling path generation literature. 

Bieterman and Sandstrom (2003) uses the solution of Laplace’s equation defined 
on the pocket region. The level sets of the principal eigenfunction define a smooth low-
curvature spiral path in a pocket interior to one that conforms to the pocket boundary. Their 
parameterization (by the winding angle) limits the applicability of the method to “nearly 
convex” shapes, as any ray from the center may only intersect the pocket region boundary 
once. The spiral tool path generation method based on solving the partial differential 
equation has difficulty in controlling the distance between two level-set curves. In order to 
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smooth out the sharp corner of tool path, Pamali (2004) used the clothoid as the transition 
near the corner of the spiral tool path. 

Chuang et al. (2007) generate tool paths based on the 2D Laplace parameterization 
of pocket contours and the redistribution of the original Laplace isoparametrics. The 
advantage of this approach is applicability for arbitrary pockets with or without interior 
islands. 
Sun et al. (2006) and Xu et al. (2012) maps the pocket shape onto the unit disk by means 
of mesh/conformal mapping. On this disk, a guide spiral is constructed and this spiral is 
then mapped back onto the original pocket shape. 

Figure 3 shows a quadrangular pocket (approximately 14×15 cm in size) and tool 
paths by three different methods. The used tool has diameter 12.7mm and the maximum 
width of cut is 11 mm. 
 
 

 
 
 
 
 

Figure 3. Tool paths for a 
quadrangular pocket (a) conventional path (b) spiral tool path (Xu et al., 2012) (c) 

curvilinear path (Bieterman and Sandstrom, 2003) 
 

According to Bieterman and Sandstrom (2003), such spiral tool paths can save 
around 30% machining time compared to the conventional tool path of Figure 3a. Yao 
(2006) and Yao and Joneja (2007) utilized generalized spiral curves centered at line 
segments or curve segments of the medial axis of the pocket for tool path generation. 

The method of Held et al. (2009) generates the tool path by interpolating growing 
disks placed on the medial axis of the pocket and works for arbitrary simply-connected 2D 
shapes bounded by straight-line segments and circular arcs. The path starts inside the 
pocket (from a user-specified starting point) and spirals out to the pocket boundary, 
complying with a user-specified maximum cutting width. 

Recently, level set methods (Sethian, 1996) have become popular. These methods 
are numerical techniques for computing propagating fronts by solving an initial value 
problem of a partial differential equation. Zhuang et al. (2010) presents a level set 
approach of tool path generation. The pocket boundary is first embedded into the level set 
function. To avoid high curvature corners the tool paths are realized by the propagation of 
the pocket boundary by using a curvature-dependent term. 
 
In this paper, we describe a novel idea for path generation, based on making a 
correspondence between the state-space trajectories of an oscillator and a two-
dimensional path. We describe this idea in detail. 
A fast milling simulator based on composite adaptively sampled distance fields has been 
recently developed at Mitsubishi Electric Research Laboratories. Combining the oscillator-
based path planner, the milling simulator and an optimizer, tool paths that are superior to 
those generated by the classical approaches can be produced. 
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2. Oscillator-based path planning 

 
Our idea is to find a function that is positive over the given pocket shape S (we 
utilize R-functions for this purpose) and consider this function as the total “energy” of a 
one-degree-of-freedom oscillator. We make the correspondence between the position  
and velocity  of the oscillator and the spatial coordinates . If the oscillator is 
conservative, the trajectories are (in general) closed curves corresponding to constant total 
energy and are level sets of . To make a transition between these curves, we 
introduce damping into the equation of motion of the oscillator.  
The correspondence is explained through the following steps. 

1. The pocket S and its boundary ∂S can be embedded into a function f( ) that is positive 
over the x-y plane within the pocket shape and zero on the boundary. For example, the 

pocket S specified is the unit disk ( ), and its boundary ∂S is the unit circle 
 as shown in Figure 3a.  The boundary is the zero level set of the function 

, i.e.  (Figure 3b). 
 

 
(a) A circular pocket S and its boundary ∂S 
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(b) 

Figure 3. (a) A pocket and its boundary (b) A positive function over the pocket 
 
2. Consider a 1 degree-of-freedom (DOF) mass-spring (harmonic) oscillator. 
The states of this oscillator are position  and velocity  and t is the 
independent variable time parametrizing the motion. Closed curves (circles) correspond to 

the motion of the oscillator with total energy   

The function 
   (1) 

is positive over the domain  and disappears on its boundary, thereby having the 

“embedding” properties described in 1. The function is related to the total energy, in 
that . 
3. The equation of motion of the harmonic oscillator can be derived by differentiating the 
total energy with respect to time as 

  (2) 

 
4. Instead of trying to connect the closed curves corresponding to constant energies of the 
oscillator obtain a spiral curve, in our method this spiral curve is obtained naturally by 
adding negative damping into the system (analogous to adding an energy injector to the 
oscillator, see Figure 4a), resulting in the equation of motion 

.  (3) 
The solution of this equation (starting from a point very close to the origin) is a curve 
(logarithmic spiral) spiraling outward from the origin as shown on the energy surface on the 
(x  plane in Figure 4b. 

 

 

 

x 



6  Error! Reference source not found., Error! Reference source not found.,Error! Reference source not found., 

Error! Reference source not found.   

 

 
(a) Trajectory on the positive energy function 

 

 
(b) Trajectory in x-x’ phase space 

Figure 4. (a) Spiral curve over the energy function (b) spiral curve in phase space. 

 
5. To generalize from the example, we construct a function f( ) that is positive over the 
given pocket shape S and zero at the boundary (we use R-functions for this purpose, see 
next Section) and consider this function as the “total energy” of a one-degree-of-freedom 
oscillator. The original spatial coordinates  now correspond to position  and velocity  

of the oscillator. The motion of the oscillator is fully characterized by a trajectory in the ( ) 
plane. If the oscillator is conservative, the trajectories are (in general) closed curves 
corresponding to constant total energy and are level sets of , i.e. 

  (4) 
The equation of motion of the oscillator is found by differentiating eq. (4) with respect to 
time 
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   (5) 

To make a transition between the closed curves of this conservative system we introduce 
a negative damping into the equation of motion (5) 

  (6) 

The damping coefficient will also serve as a parameter for the optimization problem. 
 
3. A class of functions positive over a domain: R-functions 

 
One possibility for finding functions that are positive over the desired domain is to use the 
so-called R-functions. 

Rvachev (1982) developed the theory of R-functions—real-valued functions that 
behave as continuous analogs of logical Boolean functions.  
More precisely, a real-valued function ƒ(x1,x2, . . . ,xn) is called an R-function if its sign is 
completely determined by the signs of its arguments xi. If the sign of a function is 
considered to be a logical property, negative values of a function can be considered to 
correspond with logical FALSE, and positive values can be considered to correspond with 
logical TRUE. In other words, an R-function ƒ works as a Boolean switching function, 
changing its sign only when its arguments change their signs; it can be regarded as “on” or 
“off” (or “true” or “false”) depending on the values of the input variables. For example, the 
function xyz can be negative only when the number of its negative arguments is odd. As 
another example, min(x1, x2) is an R-function whose companion Boolean function is logical 
“and” (Λ) (logical conjunction), and max(x1, x2) is an R-function whose companion Boolean 
function is logical “or” (V) (logical disjunction). This is seen in that function min(x1, x2) takes 
on positive values only when x1  AND x2 are positive; similarly function max(x1, x2) takes on 
positive values when x1 OR x2 are positive. 
 

A large number of R-functions are known and catalogued (see, e.g., Rvachev 
(1982) and Shapiro and Tsukanov (1999)), and have been assigned unique names such 
as Rα, R0

m, Rp, and the like depending on their nature and properties. To illustrate, the R-
function Rα is defined by:  

 

 (6) 
where α(x1,x2) is an arbitrary function such that −1<α(x1,x2)≦1. The precise value of α may 
or may not matter, and often it can be set to a constant. For example, setting α=1 yields 
the functions min and max respectively, but setting α=0 results in functions V0 and Λ0 that 
are analytic everywhere (i.e., can be represented by a convergent Taylor series), except 
when x1=x2=0. 
 
As another example, consider the R-function R0

m: 

 (7) 
 
where m is any even positive integer. This function is also analytic everywhere except at 
the origin x1=x2=0, where it is m times differentiable. 
Similarly, for the R-function Rp: 
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  (8) 
the function is analytic everywhere for any even positive integer p.  

In the foregoing expressions, choosing the (+/−) sign of arguments determines the 
type of R-function: (+) corresponds to R-disjunction (Boolean “or”), and (−) gives the 
corresponding R-conjunction (Boolean “and”) of the real-valued arguments x and y. 

Similarly to Boolean functions, R-functions are closed under composition, which 
means that a combination of several R-functions is another R-function which corresponds 
to a more complex logical expression. Thus, just as any logical function can be written 
using only three operations (logical negation or NOT), V (logical disjunction or OR), and Λ 
(logical conjunction or AND), three corresponding R-functions can be combined into a 
corresponding R-function. Expressed another way, for every formal logical sentence (i.e., 
for every Boolean function), one may construct a corresponding R-function using R-
conjunction, R-disjunction, and R-negation, whose sign is determined by the truth table of 
the logical sentence. For nonzero arguments, the negation operation is usually 
accomplished by changing the sign of the R-function. The logical disjunction Λ and 
conjunction V operations can respectively be accomplished in the usual case by 
performing intersection and union operations. Depending on the particular form of the R-
conjunction, R-disjunction, and R-negation chosen to construct the corresponding R-
function (i.e., depending on the “family” R0

m, Rp, etc. from which the R-functions are 
chosen), a rich variety of differential properties may be obtained. 
 

The geometric model is then represented implicitly by functions, called for brevity 
“implicit functions”. Defined generally, an implicit equation relates two or more variables 
such that for any value of one variable, there are values of the others which make the 
equation true; thus, the one variable is defined as a function of the others. In the context of 
the invention, an implicit function is a function ƒ(x1,x2, . . . ,xn)=y that takes on zero values 
at desired locations in space; in other words, the zero set of the function implies the 
geometry of the defined set of points making up the geometric model.  

The implicit functions therefore define the geometric model (or portions thereof) by 
having points within the model and/or its boundary take a zero value and points outside the 
model take other discrete values. R-functions can be used to construct implicit functions. 

An example using R-functions for milling path generation using our idea is shown in 
Figure 5. 
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(a) Oscillator-based trajectory on a square domain 
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(b) Level curves for a non-convex domain 

Figure 5 (a) Milling path in a square pocket (b) Level curves for a non-convex 
pocket shape. 

4. Distance Fields Based NC Milling Simulation 

 
The cut shape is found by translating (sweeping) the shape of the cutting tool over its 

trajectory (we assume that the cutting process is planar and unencumbered by dynamic 
effects, i.e. the milling tool is rigid and has uniform cross section). To formalize this, we 
utilize the so-called Minkowski sum. The Minkowski sum of two sets of position vectors A 
and B is formed as , where each vector in A and each vector in B 
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are added. The tool (characterized by the set T describing its shape) moving along the 
path  cuts the pocket shape S, which is defined as . 

 
We have proposed a new approach to NC milling simulation that can rapidly 

generate a highly accurate representation of the milled workpiece. In this new 
representation each surface is implicitly represented by the signed Euclidean distance field 
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This function yields the minimum Euclidean distance from a point P to the closest in 
the boundary of the set S∂ . An octree bounding volume hierarchy is used to obtain spatial 
localization of geometric operations. 

4.1 Distance fields of 5-axis motions 

In this section, we develop a mathematical formulation for computing the swept 
volumes of general surfaces of revolution. The Cutter Workpiece Engagement (CWE) 
surface is the instantaneous intersection between the tool at final position and in-process 
workpiece as given in Figure 6. Sweeping an arbitrary set of points S along a motion M in 
a space is usually formulated as an infinite union operation expressed formally as, 

q

Mq

SMSsweep U
∈

=),(  (10) 

where Sq denotes the set S positioned according to a configuration q of motion M(t), within 
a normalized interval. M(t) is a one parameter family of rigid body transformations in E3. 
The distance from a point P in the space to the boundary of swept volume is defined in the 
world coordinate frame; 

2))(,(
inf)))(,(,( qPtMSsweepPd

tMSsweepq
S −=

∂∈

 (11) 

Finding the distance field of a swept volume requires computing the envelopes of 
the swept volume. This process is difficult for general 5-axis motions. Instead the 
computation of distance field is handled by an inverted trajectory approach where the 
problem is solved in tool coordinate frame instead of world coordinate frame. 
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Figure 6. Calculation of the CWE surface using Boolean operations 

When the test point P is viewed in tool coordinate frame, it moves along an inverted 
trajectory, P

T̂ which is defined according to the inverse of the motion M(t). In this tool 
coordinate frame, the distance field is now defined by, 

2ˆ,
min)ˆ,( zyTSdist

PTzSy
P −=

∈∂∈

 (12) 

In the 3-axis milling case, the tool axis is always constant in one direction, translates 
in space and only rotates around its own axis, however, in 5-axis milling case, addition of 
two rotational axes allow to machine variety of different workpieces and motions. 
Compared to 3-axis machining, the inverted trajectory has a more complex geometry 
because of the rotational effects as seen in Figure 7. Besides three translational 
movements, the tool can also be rotated around two axes. The minimum distance between 
the inverted trajectory and tool can be computed by using numerical search methods. 
Direct analytical solution of the minimum distance function is rather difficult; hence it is cast 
as a one-dimensional minimization problem. It is solved by employing an iterative 
numerical method which combines the golden section search and inverse quadratic 
interpolation. 
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Figure 7. 5-axis motion and inverted trajectory 

 
Figures 8 and 9 show the proposed algorithms to compute milling paths as well as to 
optimize these paths with respect to various user-chosen metrics.  
Concrete examples will be discussed in the full-length paper (this is subject to approval of 
Mitsubishi Electric). 
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Figure 8. The flow diagram of a method for path generation 

 
 

 
 

Figure 9. The flow diagram of a method for determining the tool path for NC pocket milling 
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