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We investigate the infeasibility detection in the alternating direction method of multipliers (ADMM)
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by bounds. In addition, we derive the optimal value for the step size parameter in the ADMM
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the null space. In fact, the optimal step size parameter for the infeasible instances is identical
to that for the feasible instances. The theoretical results allow us to specify a practical termina-
tion condition for infeasibility and the performance of such criterion is demonstrated in a model
predictive control application.
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Infeasibility Detection in Alternating Direction Method of Multipliers for
Convex Quadratic Programs

Arvind U. Raghunathan1 and Stefano Di Cairano1

Abstract— We investigate the infeasibility detection in the
alternating direction method of multipliers (ADMM) when
minimizing a convex quadratic objective subject to linear equal-
ities and simple bounds. The ADMM formulation consists of
alternating between an equality constrained quadratic program
(QP) and a projection onto the bounds. We show that: (i) the
sequence of iterates generated by ADMM diverges, (ii) the
divergence is restricted to the component of the multipliers
along the range space of the constraints and (iii) the primal
iterates converge to a minimizer of the Euclidean distance
between the subspace defined by equality constraints and the
convex set defined by bounds. In addition, we derive the optimal
value for the step size parameter in the ADMM algorithm that
maximizes the rate of convergence of the primal iterates and
dual iterates along the null space. In fact, the optimal step
size parameter for the infeasible instances is identical tothat
for the feasible instances. The theoretical results allow us to
specify a practical termination condition for infeasibili ty and
the performance of such criterion is demonstrated in a model
predictive control application.

I. I NTRODUCTION

In this paper, we consider the solution of QPs of the form:

min
y

1

2
yTQy + qTy

s.t.Ay = b

y ∈ Y

(1)

wherey, q ∈ R
n, Q � 0 is a symmetric, positive semidef-

inite matrix, A ∈ R
m×n with m < n, b ∈ R

m and
Y = [ymin,ymax] where −∞ ≤ ymin

i < ymax
i ≤ ∞

for i = 1, . . . , n. The assumption onY is imposed for
computational reasons although the results developed in this
paper apply to general convex sets as well.

ADMM algorithms were first proposed by Gabay and
Mercier [1]. For a recent survey article refer to Boyd et al [2].
A number of recent papers that have studied convergence of
ADMM include [3]–[8]. All of the above cited papers con-
sider the convergence of the algorithm under the assumption
that the problem is feasible. Ecsktein and Bertsekas [9] show
that for infeasible convex problems at least one of the primal
and dual sequences generated by ADMM diverges. Aside
from [9], there has been little attention to the behavior of
the ADMM algorithm when the problem is infeasible.

In this paper we investigate the behavior of ADMM
algorithm on infeasible instances of convex QPs with equal-
ities and bounds. The ADMM formulation is based on our
previous work [8] where we split the QP (1) into two
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blocks, an equality constrained QP and a projection onto
the set defined byY . In [8] we established that our ADMM
algorithm converges 2-step Q-linearly to a solution when the
QP is feasible and derived the optimal step size parameter.
In this work, we consider the detection of infeasibility for
the QPs in (1) when using the ADMM formulation of [8].
In particular, we show that sequence of iterates generated
by the algorithm does not have a limit point. However, the
divergence of the iterates is restricted to the component ofthe
multipliers in the range space of the equality constraints.The
iterates for the equality and projection problem converge to
minimizers of the Euclidean distance between the subspace
defined by equality constraintsAy = b and the convex set
Y . The choice of optimal step size parameter is identical to
that for the feasible case derived in [8]. This shows that the
proposed ADMM algorithm converges at an optimal rate for
both feasible and infeasible QPs. Furthermore, the analysis
allows to define a criterion for identifying infeasible QPs
and terminating before the maximum number of iterations is
reached.

The rest of the paper is organized as follows. Section II
provides some background on the linear spaces, projection
operator and the notion of infeasibility of the QP in (1). The
ADMM algorithm is described in Section III. We provide
a characterization of the limiting behavior of the ADMM
algorithm on infeasible QPs in Section IV. Convergence
of the algorithm to the limiting sequence and derivation
of the optimal step size parameter is shown in Section V.
Section VI presents termination conditions and numerical
results on infeasibility detection in QPs arising from Model
Predictive Control. Conclusions and future work are dis-
cussed in Section VII.

Notation: We denote byR,R+ the set of reals and set
of non-negative reals, respectively. All vectors are assumed
to be column vectors. For a vectorx ∈ R

n, xT denotes its
transpose and for two vectorsx, y, (x, y) = [xT yT ]T . For a
matrix A ∈ R

n×n, ρ(A) denotes the spectral radius,λi(A)
denotes the eigenvalues andλmin(A), λmax(A) denote the
minimum and maximum eigenvalues. For a symmetric matrix
A, A ≻ 0 (A � 0) denotes positive (semi)definiteness. We
denote byIn ∈ R

n×n the identity matrix. The notation
λ ⊥ x ∈ Y denotes the inequalityλT (x′−x) ≥ 0, ∀x′ ∈ Y ,
which is also called thevariational inequality. We use‖ · ‖
to denote the2-norm for vectors and matrices. A sequence
{xk} ⊂ R

n converging tox∗ is said to converge at a Q-
linear rate if‖xk+1 − x∗‖ ≤ r‖xk − x∗‖ where0 < r < 1.
We denote by{xk} → x̄ the convergence of the sequence
to x̄.



II. BACKGROUND

We make the following assumptions on the QP in (1).
Assumption 1: The setY is non-empty,Y 6= ∅.
Assumption 2: The matrixA ∈ R

m×n has full row rank
equal tom.

Assumption 3: The hessian is positive definite on the null
space of the equality constraints, i.e.,ZTQZ ≻ 0 where
Z ∈ R

n×(n−m) is a basis for the null space ofA.

A. Range and Null Spaces

We will denote byR ∈ R
n×m an orthonormal basis

for the range space ofAT and by Z ∈ R
n×(n−m) an

orthonormal basis for the null space ofA. Then,

RTR = Im, ZTZ = In−m, (2a)

RTZ = 0 (2b)

RRT +ZZT = In. (2c)

where the first follows from the the orthonormality of basis
matrices, the second from orthogonality of the bases, and the
final one follows from the columns ofR,Z spanningRn.

B. Projection on to a Convex Set

Given a convex setY ⊆ R
n we will denote byPY : Rn →

Y the projection operator which is defined as the solution of
the following strictly convex program,

PY(y) := arg min
w∈Y

1

2
‖y −w‖2 (3)

The optimality conditions of (3) can be simplified as,

PY(y)− y − λ = 0

λ ⊥ PY(y) ∈ Y

}

=⇒ (PY(y)− y) ⊥ PY(y) ∈ Y .

(4)

C. Infeasible QP

Under Assumptions 1 and 2 QP (1) is infeasible iff

{y|Ay = b} ∩Y = ∅. (5)

Further, there existy◦ such thatAy◦ = b, w◦ ∈ Y ,

(y◦,w◦) = argmin
y,w

1

2
‖y −w‖2

s.t.Ay = b, w ∈ Y

(6)

where y◦ 6= w◦. It is easily seen from the optimality
conditions of (6) that

w◦ − y◦ ∈ range(AT ), λ◦ = w◦ − y◦,

λ◦ ⊥ w◦ ∈ Y
(7)

whereλ◦ is a multiplier for thew ∈ Y . It is easy to show that
Ay = αb+(1−α)Aw◦, for any0 < α < 1 is a hyperplane
separating the linear subspace defined by equalities and the
setY . Further, from the optimality conditions it is clear that
(y◦+ZyZ ,w

◦+ZyZ ,λ
◦) is a KKT point of (6) provided

yZ ∈ R
n−m 6= 0 is such thatw◦ + ZyZ ∈ Y . In other

words, the point(y◦,w◦) is only unique along the range
space ofAT . Observe that(y◦ + ZyZ ,w

◦ + ZyZ) are
minimizers of Euclidean distance between the hyperplane,
Ay = b and the convex set,Y .

III. ADMM A LGORITHM

Consider the following reformulation of the QP in (1),

min
y,w

1

2
yTQy + qTy

s.t.Ay = b,w ∈ Y

y = w.

(8)

Proceeding as in [8], define the augmented lagrangian as,

Lβ(y,w,λ) :=
1

2
yTQy + qTy +

β

2
‖y −w − λ‖2 (9)

where β > 0 is the penalty parameter andβλ is the
multiplier for y = w. We propose to solve (8) by an ADMM
algorithm with steps:

yk+1 = argmin
y

Lβ(y,w
k,λk) s.t.Ay = b

= M(wk + λk − q̃) +Nb (10a)

wk+1 = argmin
w

Lβ(y
k+1,w,λk) s.t.w ∈ Y

= PY(y
k+1 − λk) (10b)

λk+1 = λk +wk+1 − yk+1 (10c)

whereM := Z
(

ZT (Q/β + In)Z
)−1

ZT , N := (In −

MQ/β)R(AR)−1, and q̃ = q/β. Observe that if the
step-size parameterβ is fixed, M ,Nb for the iterations
in (10) can be computed just once, possibly (long) before
the iterations in (10) being executed. Substituting (10a)
in (10b), (10c) and simplifying,

wk+1 = PY(v
k)

λk+1 = (PY − In)(v
k)

(11)

where(PY − In)(v
k) is shorthand for(PY(v

k)− vk) and,

vk = Mwk + (M − In)λ
k −Mq̃ +Nb. (12)

The update step (11) is of the form in (4) withy replaced
by vk and hence,

λk+1 ⊥ wk+1 ∈ Y . (13)

IV. L IMIT SEQUENCE OFADMM

Suppose QP (1) is infeasible, then there does not exist any
fix points for (10). If that were not the case, then from (10c)
there should existy,w such thaty = w, Ay = b and
w ∈ Y which violates the assumption of QP (1) being
infeasible. We will show that (10) generates a sequence in
which only the sequence of multipliers{λk} diverge. In
particular,{λ}k diverges along a direction in range(R). The
iterates{(yk,wk)} converge to a point(y◦+yQ,w◦+yQ)
minimizing the Euclidean distance between the hyperplane
and convex set, whereyQ ∈ range(Z), possibly equal to
0, is such thatw◦ + yQ ∈ Y . Notably, the limit point for
{(yk,wk)} is independent ofβ. First we characterizeyQ.

Lemma 1: Suppose Assumptions 1-3 hold and the QP (1)
is infeasible. Then, there existsyQ ∈ range(Z), λQ ∈ R

n,
with yQ, ZTλQ unique, such that

ZTQ(y◦ + yQ) +ZTq −ZTλQ = 0

λQ ⊥ (w◦ + yQ) ∈ Y .
(14)



Furthermore,(λQ+γλ◦) ∀ γ ≥ 0 is also a solution to (14).
Proof: SinceyQ ∈ range(Z), let yQ = Zy

Q
Z for some

y
Q
Z ∈ R

n−m. Substituting this in (14) and simplifying, it is
easy to show that (14) are the optimality conditions for,

min
y

Q

Z

1

2
(yQ

Z )T (ZTQZ)yQ
Z + (ZTq +ZTQy◦)TyQ

Z

s.t.w◦ +Zy
Q
Z ∈ Y .

(15)

The strict convexity of the QP (15) follows from Assump-
tion 3 and this guarantees uniqueness ofy

Q
Z , if one exists.

Weak Slater’s condition [10] holds for the QP (15) since the
constraints inY are affine andyQ

Z = 0 is a feasible point.
The satisfaction of convexity and weak Slater’s condition by
QP (15) implies that strong duality holds for (15) and the
claim on existence ofyQ

Z ,λQ holds. The uniqueness ofyQ

follows from uniqueness ofyQ
Z and full column rank ofZ.

The uniqueness ofZTλQ follows from the first equation
of (14) and uniqueness ofyQ.

To prove the remaining claim, consider the choice of
(λQ + γλ◦) as a solution to (14). Satisfaction of the first
equation in (14) follows fromλ◦ ∈ range(R) by (7) and
ZTR = 0 by (2b). As for the variational inequality in (14),

(λQ + γλ◦)T (w′ − (w◦ + yQ))

= (λQ)T (w′ − (w◦ + yQ))
︸ ︷︷ ︸

≥ 0

+ γ(λ◦)T (w′ −w◦)
︸ ︷︷ ︸

≥ 0

− γ(λ◦)TyQ

︸ ︷︷ ︸

= 0

≥ 0 ∀ w′ ∈ Y

where the first term is non-negative by variational inequality
in (14), the second term is non-negative by variational
inequality in (7) and the last term vanishes sinceλ◦ ∈
range(R) andyQ ∈ range(Z), proving the claim.
The next lemma establishes some properties of the ADMM
iterate sequence.

Lemma 2: Let {(yk,wk,λk)} be generated by the
ADMM algorithm (10). Then the following statements are
equivalent.

{wk} → w̄, {ZTλk} → λ̄Z , {R
T (λk+1 − λk)} → λ̄R

(16)
{wk} → w̄, {yk} → ȳ, ȳ 6= w̄ (17)

for someλ̄R 6= 0. Further, if (16) (or (17)) hold then,
{

(λk)T (wk − yk)

‖λk‖‖wk − yk‖

}

→ 1. (18)

Proof: Suppose (16) holds. From (10a)

{yk} → ȳ := M(w̄ +Zλ̄Z − q̃) +Nb.

from (2c) andMR = 0. From (16), it must hold by (10c)
that {ZT (wk − yk)} → 0, {RT (wk − yk)} 9 0. Thus,
ȳ 6= w̄.

Suppose (17) holds. From (10a) and using (17) we have
that{ZTλk} must converge. Since,̄y 6= w̄ and{ZTλk} →
λ̄Z , then by (10c) this implies that{RT (λk+1−λk)} → λ̄R

for someλ̄R ∈ R
m.

To show (18), consider the following decomposition,

wk − yk

‖wk − yk‖
= αk

1ζ + νk
1 ,

λk

‖λk‖
= αk

2ζ + νk
2 (19)

whereζ = (w̄ − ȳ)/‖w̄ − ȳ‖, andζTνk
i = 0, for i = 1, 2.

Further, from (16),(17) we have that{αk
i } → 1, {νk

i } → 0
for i = 1, 2. Substituting (19) in (18),

(λk)T (wk − yk)

‖λk‖‖wk − yk‖
= (αk

1ζ + νk
1)

T (αk
2ζ + νk

2)

= αk
1α

k
2 + ζT (αk

1ν
k
1 + αk

2ν
k
2) + (νk

1)
Tνk

2

≥ αk
1α

k
2 − αk

1‖ν
k
1‖ − αk

2‖ν
k
2‖ − ‖νk

1‖‖ν
k
2‖

where the second equality follows from expanding terms and
using‖ζ‖ = 1, while the last inequality is obtained from the
Cauchy-Schwarz inequality. The result in (18) follows from
the limit of the sequence ofαk

i ,ν
k
i .

Using Lemmas 1 and 2 we can state the limiting behavior
of the ADMM iterations (10) when the QP (1) is infeasible.

Theorem 1: Suppose Assumptions 1-3 hold. Then, the
following are true.

(i) If QP (1) is infeasible then,{(y◦+yQ,w◦+yQ, λ̂
k
)}

is a sequence satisfying (10) fork ≥ k′ sufficiently
large with,yQ,λQ as defined in (14) and,

λ̂
k
=

1

β
(λQ + (k − γ1)λ

◦), γ1 ≤ k′. (20)

(ii) If the ADMM algorithm (10) generates{(yk,wk,λk)}
satisfying (17) then, the QP (1) is infeasible. Further,
ȳ = y◦ + yQ, w̄ = w◦ +wQ andλk satisifes (20).
Proof: Consider the claim in (i). For proving that (10a)

holds, we need to show that,

y◦ + yQ −M(w◦ + yQ + λ̂
k
− q̃)−Nb = 0. (21)

Multiplying the left hand side of (21) byRT , usingRTM =
0, RTyQ = 0 and simplifying,

RTy◦ − (AR)−1b = (AR)−1(ARRTy◦ − b) = 0 (22)

where the last equality follows from (7). Multiplying
the left hand side of (21) byZT , from ZTM =
M̂ZT where M̂ = (ZTQZ/β + In−m)−1, ZTNb =
−(M̂ZTQ/β)RRT (y◦ + yQ) we obtain,

ZT (y◦ + yQ)− M̂ZT (w◦ + yQ + λ̂
k
− q̃)

+ M̂ZT (Q/β)RRT (y◦ + yQ)

= M̂
(

(ZTQZ/β + In−m)ZT (y◦ + yQ)

−ZT
(

(w◦ + yQ + λ̂
k
− q̃) + (Q/β)RRT (y◦ + yQ)

))

= M̂
(

ZT (Q/β)(y◦ + yQ) +ZT (y◦ + yQ)

−ZT (w◦ + yQ + λQ − q̃)
)

= (M̂/β)
(

ZTQ(y◦ + yQ) +ZT q −ZTλQ
)

= 0

(23)
where the first equality follows simply by removinĝM as the
common multiplicative factor, the second equality follows



from (2c), the third equality from (7), (20) and the final
equality from (14). Combining (22) and (23) shows that
the said sequence satisfies (21). To prove that (10b) holds
consider for anyw′ ∈ Y ,

(

w◦ + yQ − y◦ − yQ + λ̂
k
)T (

w′ −w◦ − yQ
)

=
(

w◦ − y◦ + λ̂
k
)T (

w′ −w◦ − yQ
)

= −
1

β

(

λQ + (k + 1)λ◦
)T

(w′ −w◦ − yQ)

=
1

β

(

λQ + (k − γ1 + 1)λ◦
)T (

w′ −w◦ − yQ
)
≥ 0

(24)
where the second equality follows from (7) and (20), and
the inequality follows from Lemma 1 by noting thatγ =

(k − γ1 + 1) ≥ 0. Thus,w◦ +wQ = PY

(

y◦ + yQ − λk
)

holds and the sequence in the claim satisfies (10b). Finally,
the definition ofλk in (20) implies that (10c) holds, and
thus (i) is proved.

Consider the claim in part (ii). From (18) we have that for
any ǫ > 0 there existskǫ such that for allk ≥ kǫ,

(λk)T (wk − yk)

‖wk − yk‖2
≥ (1− ǫ)

‖λk‖

‖wk − yk‖
. (25)

From which we have that,

λk = αk(wk − yk) + µk, (26a)

αk =
(λk)T (wk − yk)

‖wk − yk‖2
≥ (1− ǫ)

‖λk‖

‖wk − yk‖
, (26b)

‖µk‖ ≤
√

1− (1− ǫ)2‖λk‖. (26c)

Then for allw′ ∈ Y we have that,

(wk − yk)T (w′ −wk)

=
1

αk
(λk)T (w′ −wk)
︸ ︷︷ ︸

≥0

−
1

αk
(µk)T (w′ −wk)

≥ −

√

1− (1− ǫ)2

1− ǫ
‖wk − yk‖‖w′ −wk‖

(27)

where the inequality follows from (13), the Cauchy-Schwarz
inequality and the substitution of (26b) and (26c). Hence,

lim
k→∞

(wk − yk)T (w′ −wk)

‖wk − yk‖‖w′ −wk‖
≥ 0 ∀ w′ ∈ Y

=⇒
(w̄ − ȳ)T (w′ − w̄)

‖w̄ − ȳ‖‖w′ − w̄‖
≥ 0 ∀ w′ ∈ Y .

(28)

and(w̄− ȳ) ⊥ w̄ ∈ Y . SinceAȳ = b, w̄ ∈ Y we have that
(ȳ, w̄) satisfies (7) and hence, the QP (1) is infeasible. From
uniqueness of the range space component in (6),RT ȳ =
RTy◦, RT w̄ = RTw◦ and alsoZT w̄ = ZT ȳ. From the
update steps in the ADMM (10) we have that,

ZT
(

Q
(

y◦ +ZZT (ȳ − y◦)
)

+ q − βλk
)

= 0,

λk ⊥ w◦ +ZZT (w̄ −w◦) ∈ Y ,
(29)

for all k sufficiently large, where first equation follows by re-
placingyQ, λQ byZZT (ȳ−y◦), βλk, respectively, in (23),

and the second condition follows from (13). The conditions
in (29) are the conditions in (14) and hence, Lemma 1 applies
to yield that ZZT (ȳ − y◦) = ZZT (w̄ − w◦) = yQ,
ZTλk = ZTλQ . Thus, ȳ = y◦ + yQ, w̄ = w◦ + yQ,
λk satisfies (20) and the claim holds.
Observe that in (20) the range space componentλQ is not

unique. The ADMM iterations only specify thatλ̂
k+1

−λ̂
k
=

λ◦, and hence that (20) holds for some constantγ1.

V. CONVERGENCE OF THEALGORITHM

First, we recall some results on the projection operator.
Lemma 3 (Lemma 3 [8]): For anyv, v′ ∈ R

n:

(i) (PY(v)−PY(v
′))T ((In−PY)(v)−(In−PY)(v

′)) ≥ 0
(ii) ‖(PY(v), (In−PY)(v))−(PY (v′), (In−PY)(v

′))‖ ≤
‖v − v′‖

(iii) ‖(2PY − In)(v)− (2PY − In)(v
′)‖ ≤ ‖v − v′‖

The following result on spectral radius ofM is also useful.
Lemma 4 (Lemma 4 [8]): Suppose Assumptions 2 and 3

hold. Then,ρ(ZTMZ) < 1 andρ(M ) < 1.
Next, we introduce some properties satisfied by the iter-

ates (11). The proofs, which are not shown for the sake of
brevity, can be obtained using Lemmas 3 and 4.

Lemma 5: Suppose Assumptions 1–3 hold. Then, the se-
quence{(wk,λk)} produced by (11) is such that:

(i) ‖vk+1 − vk‖ ≤ ‖(wk+1,λk+1)− (wk,λk)‖
(ii) ‖(wk+1,λk+1)− (wk,λk)‖ ≤ ‖vk − vk−1‖

(iii) ‖(wk+1,λk+1) − (wk,λk)‖ ≤ ‖(wk,λk) −
(wk−1,λk−1)‖

(iv) ‖vk+1 − vk‖ ≤ ‖vk − vk−1‖.
Lemma 6: Suppose Assumptions 1- 3 hold and define,

uk = (2PY − In)(v
k)− (2PY − In)(v

k−1). (30)

Then, inequality in Lemma 5(iv) holds strictly ifZTuk 6= 0.
We omit the proof for brevity and refer the reader to

Theorem3 in [8] where a similar inequality is proved.
The following result characterizes the limit behavior of

iterates for infeasible QP (1) in terms of the sequence{vk}.
Lemma 7: Suppose Assumptions 1- 3 hold. Then,

vk+1 − vk = vk − vk−1 6= 0 (31)

holds iff yl = y◦+yQ, wl = w◦+yQ andλl satisfies (20)
∀ l ≥ k − 1.

Proof: The if part follows trivially for the given choice
of (wk,λk). Consider theonly if part. We cannot have
ZTuk 6= 0 since that will violate (31) by Lemma 6. Hence,
ZTuk = 0 =⇒ RRTuk = uk. Using (12),(30)

vk+1 − vk =
1

2

(
−uk + vk − vk−1

)

= (In − PY)(v
k)− (In − PY)(v

k−1)

= vk − vk−1 6= 0

(32)

where the last equality from (31). Combining this with
Lemma 5(i) and 5(ii), yields thatPY(v

k) = wk+1 = w̄

∀ k. Furthermore convergence ofwk andZTuk = 0 yields
thatZTλk = λ̄Z ∀ k. The update steps for (10a) yield that
yk = ȳ ∀ k. Further, from (32) we have thatλk 6= λk−1



which implies thatȳ 6= w̄. Thus, the sequence of iterates
satisfy conditions in Theorem 1(ii) and the claim follows.

Theorem 2: Suppose Assumptions 1-3 hold,β > 0 and
QP (1) is infeasible. Then, (i){vk} converges Q-linearly to
a sequence satisfying (31) and (ii){(wk,λk)}k≥2 converges
2-step Q-linearly to a sequence defined in Theorem 1(i).

Proof: Infeasibility of QP (1) ensures thaty◦, w◦,
yQ, λ◦, λQ are well-defined. From Lemma 6 we have
that {‖vk − vk−1‖} decreases monotonically until (31)
holds. Hence, the claim on{vk} is proved. The result
on {(wk,λk)} follows from Lemma 3(ii), the result on
monotonic decrease of{‖vk − vk−1‖} and Lemma 3(i).

From Lemma 6 it is clear that rate of convergence is
influenced by the components ofuk along the null space
of the constraints. We can affect the contraction resulting
from the null space component by choosingβ∗ to minimize
‖2ZMZT−In−m‖

2 + 1
2 where the eigenvalues ofZMZT

satisfyλ(ZMZT ) = λ((ZT (Q/β + In)Z)−1) = β/(β +
λ(ZTQZ)). Thus, the optimal choice for the step size is
given by,

β∗ = argmin
β>0

max
i

(∣
∣
∣
∣

β

β + λi(Z
TQZ)

−
1

2

∣
∣
∣
∣
+

1

2

)

.

Theorem 3: Suppose Assumptions 1-3 hold. Then, the
optimal step-size for the class of convex QPs in (1) to
converge to the limiting sequence in Theorem 1(i) is

β∗ =

√

λmin(Z
TQZ)λmax(Z

TQZ). (33)
The choice of optimal step size parameter and proof is

identical to that for the feasible case derived in [8], so the
proof is omitted here. Thus, the choice of the step size for the
proposed ADMM algorithm results in optimal convergence
rate for both feasible and infeasible QPs.

VI. N UMERICAL RESULTS IN MPC APPLICATIONS

A. Practial Termination Condition

Based on Theorem 1, we propose the satisfaction of the
following conditions for detecting infeasibility:

max(β‖wk −wk−1‖, ‖λk − λk−1‖) > ǫo (34a)

max(‖yk − yk−1‖, β‖wk −wk−1‖)

max(β‖wk −wk−1‖, ‖λk − λk−1‖)
≤ ǫr (34b)

(λk)T (wk − yk)

‖λk‖‖wk − yk‖
≥ 1− ǫa (34c)

λk ◦ (wk − yk) ≥ 0 or
‖∆vk −∆vk−1‖

‖vk‖
≤ ǫv (34d)

where,0 ≤ ǫo, ǫr, ǫa, ǫv ≪ 1, ◦ represents the component-
wise multiplication operation and∆vk = vk − vk−1. The
left hand side (34a) is the error criterion used for termination
in feasible QPs [7], [8]. Condition (34a) requires that the
optimality conditions are not satisfied to a tolerance ofǫo,
while (34b) requires that the change iny,w iterates be much
smaller than the change in thew,λ iterates. In the case of a

feasible QP all the iterates converge and nothing specific can
be said about this ratio. However, as shown in Theorem 1
the multiplier iterates change by a constant vector in the
case of an infeasible QP. Hence, we expect the ratio in (34b)
to be small in the infeasibile case while (34a) is large.
The condition (34c) checks for the satisfaction of (18) to a
tolerance ofǫa. The first condition in (34d) checks that each
component ofλk andwk−yk have the same sign. In a sense,
this is a stricter requirement of the angle condition (34c).
In our numerical experiments we have observed that the
satisfaction of this condition can be quite slow to converge
when the iterates are far from a solution. In such instances,
we have also observed that, the quantity‖vk‖ has actually
diverged to a large value. To remedy this we also monitor
the ratio of‖∆vk − ∆vk−1‖ (which converges to0, refer
Lemma 7) to‖vk‖ (‖vk‖ → ∞). This ratio is expected
to converge to0 on infeasible instances. We recommend
following parameter setting:ǫo = 10−6, ǫr = 10−3, ǫa =
10−3, ǫv = 10−4. While these values have worked well on a
large number of problems, these constants might have to be
modifed depending on scaling of the problem.

B. Numerical Example

In this section we present some numerical results on the
infeasibility detection for the ADMM algorithm (10) applied
to the quadratic programs arising in constrained linear model
predictive control (MPC) [11]. MPC operates by repeatedly
solving at any sampling timet ∈ Z0+ the finite horizon
optimal control problem

min
Ut

‖xN |t‖
2
PM

+

N−1∑

i=0

(
‖xi|t‖

2
QM

+ ‖ui|t‖
2
RM

)
(35a)

s.t. xi+1|t = Asxi|t +Bsui|t (35b)

zi|t = Csxi|t +Dsui|t (35c)

xmin ≤ xi|t ≤ xmax, i = 1 . . .N (35d)

umin ≤ ui|t ≤ umax, i = 1 . . .N (35e)

zmin ≤ zi|t ≤ zmax, i = 1 . . .N (35f)

x0|t = x(t) (35g)

where ‖a‖2Q = aTQa, Ut = [u0|t, . . . , uN−1|t], and
PM, QM � 0, RM ≻ 0. The input applied to the plant is
selected from the the optimal solution of (35),U∗(t), as
u(t) = u∗

0|t.
The optimal control problem (35) can be formulated as a

family (for varying x(t)) of quadratic programs (1) where
yT = [xTuT zT ], the equality constraints are defined by the
system state and output equations (35b), (35c), the setY is
a box defined by (35d), (35e), (35f), and the cost function
is obtained from (35a). Assumption 1 is satisfied for admis-
sible control systems, Assumption 2 is always satisfied and
Assumption 3 is satisfied ifRM ≻ 0. The initialization (35g)
amounts to changing part of the equality constraint vector,
i.e.,bT = [x(t)T b̃T ]T , at the different sampling instants. All
the following numerical tests are executed in Matlab, and we
have verified the solution provided by the algorithm in (10)
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Fig. 1. Example: infeasible QP of MPC of a spacecraft with flexible
appendage subject to constraints: evolution of the norm of the ADMM
iterates variables/variable differences.

by multiple algorithms, includingquadprog [12] and the
active set QP solver in theNAG [13] package.

The example is an MPC controller for a1-axis re-
orientation maneuver for a spacecraft with a flexible ap-
pendage, such as a lightweight solar panel. The system is
modeled as a4th order system, see, e.g., [14], which is
augmented with two additional states, one for the reference
angle to be tracked, and one for the incremental represen-
tation of the input. The constraints include upper and lower
bound on the torque for controlling the angular rotation of
the spacecraft bus,|u| ≤ 0.1, and bounds on the maximal
deflection of the flexible appendage,|χ| ≤ 0.47, where
χ[m] is the lateral displacement of the tip of the flexible
appendage, from the position it holds while at rest.

The MPC controller is designed with sampling period
Ts = 0.25s,N = 8, RM = 4, QM = PM, QM = C′

MQyCM ,
whereCM is a matrix such thatCMx = (φ − rφ), φ is the
angle of the spacecraft bus,rφ is the reference for such angle,
x is the full state of the model,Qy = 1. It may take in the
order of103 − 104 iterations for solving the feasible QPs in
this example, depending on the initial conditions.

We set as initial conditionx(0) = [ 0 −0.45 0.5 0 ]
T , which

correspond to a situation where the appendage is significantly
bent in one direction, with a relatively larger velocity toward
the opposite direction. While the MPC problem is feasible
for t = 0, t = 1, and for these steps algorithm (10)
correctly compute the solution, due to the initial condition
and the limited actuation range att = 2 the problem
becomes infeasible. In Figure 1 we show the evolution
of ‖∆wk‖ = ‖wk − wk−1‖, ‖∆yk‖ = ‖yk − yk−1‖,
‖∆λk‖ = ‖λk − λk−1‖ = ‖yk−1 − wk−1‖, and cos θk,
where cos θk = (λk)T (wk−yk)

‖λk‖‖wk−yk‖
, during the iterations of

algorithm (10) att = 2. The algorithm terminates due to

‖∆wk‖ and ‖∆yk‖ being small andcos θ ≈ 1, which is
correctly detecting infeasibility. At termination‖∆λ‖ > 0,
i.e., w̄ 6= ȳ, which detects infeasibility.

VII. C ONCLUSION

We have presented infeasibilty detection in alternating
direction method of multipliers for a class of convex QPs.
In particular we have established that the divergence of
iterates is restricted to the multipliers along the range space
of the equality constraints. Furthermore, we have derived
the optimal step size parameter that maximizes the rate
of convergence for the bounded components of the iterate
sequence. In particular, the choice of the optimal step size
parameter in the infeasible case is shown to be identical to
that of the feasible case derived in [8]. Thus, the proposed
step size parameter is guaranteed to work well for both
feasible and infeasible instanced of QPs. We have confirmed
the approach by numerical results in example applications to
the QPs arising from constrained linear MPC.
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