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Abstract
A mechanically decoupled steering system enables autonomous or semi-autonomous vehicle
steering by independently actuating the vehicle wheels and the steering wheel. In semi-
autonomous operation the steering system should be controlled such that the vehicle wheels
angle tracks a reference signal provided by the trajectory planner rapidly and safely, while
guaranteeing that a certain alignment is maintained between the steering wheel and the
vehicle wheels to avoid loss of ”driver’s panic”. We develop a controller for a mechanically
decoupled steering system that can achieve this by coordinating the steering column and the
steering rack actuators, while enforcing constraints on the motion of the vehicle wheels, on the
interaction between the steering wheel with the driver, and on the relative motion between
steering wheel and vehicle wheels. Our design is based on a particular command governor, for
which convergence is proven. The control strategy is simulated in closed loop with a detailed
simulation model.
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Governor-based Control for Rack-Wheel Coordination
in Mechanically Decoupled Steering Systems

Spyridon Zafeiropoulos, Stefano Di Cairano

Abstract— A mechanically decoupled steering system enables
autonomous or semi-autonomous vehicle steering by indepen-
dently actuating the vehicle wheels and the steering wheel.
In semi-autonomous operation the steering system should be
controlled such that the vehicle wheels angle tracks a reference
signal provided by the trajectory planner rapidly and safely,
while guaranteeing that a certain alignment is maintained
between the steering wheel and the vehicle wheels to avoid loss
of “driver’s panic”. We develop a controller for a mechanically
decoupled steering system that can achieve this by coordinating
the steering column and the steering rack actuators, while
enforcing constraints on the motion of the vehicle wheels, on the
interaction between the steering wheel with the driver, andon
the relative motion between steering wheel and vehicle wheels.
Our design is based on a particular command governor, for
which convergence is proven. The control strategy is simulated
in closed loop with a detailed simulation model.

I. I NTRODUCTION

Advanced steering systems are fundamental components
in future vehicles for enabling autonomous and semi-
autonomous driving. A well studied technology for advanced
steering system is Active Front Steering (AFS) [1]–[4].
Nonetheless, AFS cannot modify both the vehicle wheels
and the steering wheel, since there is no actuator for the
steering wheel. Thus, during semi-autonomous vehicle oper-
ation, when the vehicle is responding to the commands of a
trajectory planning system with the driver still handling the
steering wheel, there is no direct feedback to the driver on
what the vehicle is currently doing. This may result in loss
of drivability, i.e., loss of a predictable vehicle response to
the driver commands, and significant misalignment between
steering wheel and vehicle wheels. In torque-based steering
assist systems, such as Electric Power Steering (EPS) [5],
the actuator is connected to the steering wheel, which is me-
chanically coupled to the vehicle wheels. Thus, misalignment
never occurs. However, the mechanical coupling limits the
capabilities of improving vehicle cornering performance and
lateral stabilization [6] due to the rigid mechanical interaction
with the driver through the steering wheel.

In order to overcome the limitations of AFS and torque-
based steering assist systems, mechanically decoupled steer-
ing systems, such as the steer-by-wire [7], [8], have been
proposed. In these systems, the steering column (and hence
the steering wheel) and the steering rack (and hence the
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vehicle wheels) are always mechanically decoupled. The
steering wheel and the vehicle wheels are actuated by two
motors, one at the steering column and one at the steering
rack, respectively. The actuators are controlled by an elec-
tronic control unit (ECU) that coordinates them in order to
achieve the desired vehicle and steering wheel motion. Due
to the additional degrees of freedom, these steering systems
have the potential of handling more driving situations and
objectives, such as preservation and enhancement of the feel
for the road. Furthermore, the separated actuation allows
to operate the vehicle in semi-autonomous mode, when the
vehicle wheels are controlled based on a trajectory planned
by the autonomous system and the driver receives a non-
damaging feedback on what the vehicle is doing. In addi-
tion, the misalignment between steering wheel and vehicle
wheels can be limited, which improves drivability during
semi-autonomous operation, as the driver is (approximately)
informed on what the vehicle is doing and it feels it maintains
partial control over it. Limiting, and eventually removing, the
misalignment also simplifies the transition back to normal
(driver-control) mode.

In this paper we propose a control system architecture
and design for a mechanically decoupled steering system.
The objective of the control system is to track a reference
for the vehicle wheels angle supposedly provided by a
trajectory planner for (semi)autonomous vehicle operation,
while guaranteeing safe operation of the vehicle, of the
steering wheel, and a limited misalignment between the
steering wheel and the vehicle wheels. We design a governor
strategy that commands the setpoints of the steering wheel
and the vehicle wheels to achieve steady state tracking of
the steering wheel angle reference signal and alignment
between the steering wheel and the vehicle wheels, and to
enforce all the aforementioned constraints including during
the transients. The proposed design uses a slightly modified
a cost function with respect to the standard ones, e.g., in [9],
[10], and we prove that the main properties of the governor,
i.e., constraints satisfaction and finite time convergenceof
the command to the actual reference, are maintained.

The paper is structured as follows. In Section II we
model the mechanically decoupled steering system and we
describe the control objectives. In Section III we describe
the control architecture, and in Section IV we design the
governor for coordinating the two steering subsystems and
enforcing constraints, for which a proof of (finite time)
convergence is provided. In Section V we present simulation
results in closed-loop with a high-fidelity model developed
in CarSim [11] for different maneuvers. Conclusions are



summarized in Section VI.
Notation: We indicate the set of real, nonnegative real,

and nonnegative integer numbers byR, R0+, and Z0+,
respectively. Whena is a vector,[a]i is its ith component,
and‖a‖p is its p-norm, where ifp is skipped,p = 2. B(ρ) is
the 2-norm ball centered at the origin and with radiusρ > 0.
Inequalities between vectors are intended componentwise.
The notationint(X ), whereX is a set, indicates the interior
of the set, andX ⊕ Y is the Minkowski sum of setsX and
Y. We use the shorthand notation(x, y) = [x′ y′]′.

II. M ECHANICALLY DECOUPLEDSTEERING SYSTEM

The mechanically decoupled steering system considered
in this paper is composed of two subsystems, the steering
rack subsystem and the steering column subsystem, that are
mechanically disconnected and coordinated by a steering
control unit, as shown in Figure 1.

The steering rack subsystem is composed of an electric
motor (rack motor) that, through appropriate gearing, joints,
and shafts, steers the vehicle wheels that are also affectedby
the road aligning moment. Here, we assume the rack angle
to be equal to the vehicle wheels angle. The dynamics of the
steering rack subsystem is described by

δ̇r = ϕr, (1a)

Jrϕ̇r = −βrϕr + Tmot,r − Taln, (1b)

whereϕr [rad/s] is the vehicle wheels (and steering rack)
angular rate,δr [rad] is the vehicle wheels (and steering
rack) angle,Tmot,r [Nm] is the torque generated by the rack
motor, Jr [kg m2] is the moment of inertia of the steering
rack, vehicle wheels, and connecting shafts,βr [Nms/rad]
is the lumped friction coefficient of the steering rack, and
Taln [Nm] is the aligning moment torque.

The steering column subsystem is composed of an electric
motor (column motor) that, through appropriate gearing,
joints, and shafts, can apply torque and possibly steer the
steering wheel, where also the driver steering torque is
applied. Here we assume the steering column angle to be
equal to the steering wheel angle. The steering column
dynamics are described by

δ̇w = ϕw, (2a)

Jwϕ̇w = −βwϕw + Tdrv + Tmot,w, (2b)

whereϕw [rad/s] is the steering wheel (and column) angular
rate, δw [rad] is the steering wheel (and column) angle,
Tmot,w [Nm] is the torque generated by the column motor,
Jw [kg m2] is lumped moment of inertia of the steering wheel
column, steering wheel, and connecting shafts,βw [Nms/rad]
is the friction coefficient of the steering wheel column, and
Tdrv [Nm] is the steering torque by the driver.

The steering system receives a reference angler[rad] and
controls the rack motor torque so that the vehicle wheels
angle tracks such reference. During normal operation, the
reference angle is provided by the position of the steering
wheel, which is controlled by the driver. In semi-autonomous
operation, the reference angle is provided by a trajectory
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Fig. 1: Control architecture for the mechanically decoupled steering system.

planner, and the control unit must tracks such a reference
with the vehicle wheels angle, while controlling the steering
wheel to maintain some alignment between the steering
wheel and the vehicle wheels. For the correct operation of
the system a number of constraints needs to be enforced. For
instance, the vehicle wheels angle and the steering wheel
angle and their derivative need to remains in appropriate
ranges to avoid the loss of stability of the vehicle and a
negative interaction with the driver, respectively. Also,the
misalignment angle, i.e., the difference between steering
wheel angle and vehicle wheels angle, should be controlled
to maintain drivability and to inform the driver of the current
vehicle behavior. Summarizing, the control system should:
(i) Rapidly track the reference angle with the vehicle wheels
angle;(ii) Smoothly track the (steering-ratio scaled) vehicle
wheels angle with the steering wheel angle;(iii) Enforce
constraints on vehicle wheels angle dynamics, i.e., on the
vehicle dynamics;(iv) Enforce constraints on the steering
wheel angle dynamics, i.e., on the driver-vehicle interaction;
(v) Enforce constraints on the misalignment angle.

Next, we propose a control system design that addresses
(i)–(v).

III. C ONTROL SYSTEM ARCHITECTURE

We consider a control architecture schematically depicted
in Figure 1, where a governor receives the reference for the
vehicle wheels and the current state of the entire steering
system and sends commands of a target vehicle wheels angle
and a target steering wheel angle to the steering subsystem
rack and the steering column subsystem, respectively. The
commands are received by two feedback controllers that
actuate the rack motor and the column motor, based on the
states of the respective subsystem, to track them.

In the considered steering system, the driver torque and
the aligning torque are measured/estimated from appropriate
sensors, and hence considered as measured disturbances.
Thus, we define the net rack motor torqueTr = Tmot,r−Taln,
and the net column motor torqueTw = Tmot,w+Tdrv. Then,
we sample (2), (1) with periodTs and design the controllers

ur = Krxr +Hrvr, (3a)

uw = Kwxw +Hwvw, (3b)

whereur = Tr ∈ R, uw = Tw ∈ R, andvr ∈ R, vw ∈ R



are the commands forδr and δw, respectively, resulting in
the closed-loop systems

xj(k + 1) = Ajxj(k) +Bjvj(k), (4a)

yj(k) = Cjxj(k), j ∈ {r, v} (4b)

j ∈ {r, w}, where for the rack dynamicsxr = [δr ϕr]
′ ∈

R
2 is the state vector, andy = δr ∈ R is the output, and

xw = [δw ϕw]
′ ∈ R

2 is the state vector, andyw = δw ∈ R

is the output. Based on these models The feedback gains
Kj, j ∈ {r, w} are designed to stabilize the systems and
achieve a desired performance, and the feedforward gains
Hj , j = {r, w} are designed to obtain unitary dc-gain for
the closed-loop systems, that is, ifvj(t) = vj for all t ≥ t̄,
limt→∞ yj(t) = vj .

Remark 1: We have assumedTdrv Taln, to be measured,
which can be achieved by a torque sensor on the steering
column, and by measuring the rack motor voltage and
current. If the sensor measurement noise and uncertainties
are significantly large, the controllers (3) may be augmented
with integral action.

The objectives of the steering controller in semi-
autonomous operation (i.e.,(i)–(v)) include enforcing con-
straints on vehicle, driver-vehicle interaction, and misalign-
ment which are formulated next as functions of the steering
system states and inputs. The constraints on the rack subsys-
tem and column subsystem that we consider are

δj,min ≤ δj ≤ δj,max, (5a)

ϕj,min ≤ ϕj ≤ ϕj,max, (5b)

Tj,min ≤ Tj ≤ Tj,max, j ∈ {r, w}. (5c)

The constraints on the rack subsystem (i.e.,j = r in (5))
limit the vehicle wheels angle, the angular rate, and the net
rack steering torque, which can also be seen as a proxy for
the angular acceleration, due to the mechanical design of
the steering system and to the impact of the steering motion
on the vehicle dynamics. Similarly, the constraints on the
column subsystem (i.e.,j = w in (5)) limit the steering
wheel angle, angular rate, and the net column steering torque,
due to the interaction of the steering system with the driver.
In particular, the steering wheel motion is controlled to
have limited range, velocity, and torque, to avoid excessively
aggressive effects on the driver who is holding it.

In addition, we consider the alignment constraint that
bounds the misalignment angle and hence “virtually couples”
the two subsystems,

M δ
min ≤ δw − ̺δr ≤ M δ

max, (6)

where̺ is the steering (gear) ratio, i.e., the value such that
in conventional steering systems̺δr = δw. Constraint (6)
ensures that the vehicle lateral motion is not completely
unexpected by the driver. A similar constraint could also
be enforced on the commanded steering wheel angle and
vehicle wheels angle,Mv

min ≤ vw − ̺vr ≤ Mv
max. An

additional alignment constraint can be formulated on the

angular velocities, i.e,

Mϕ
min ≤ ϕw − ̺ϕr ≤ Mϕ

max, (7)

which bounds the maximum difference between the steering
wheel angular rate and the vehicle wheels angular rate. The
objective of (7) is to guarantee that the change in the vehicle
lateral motion is not completely unexpected by the driver.

Indeed, if in (i)–(v) the constraint enforcement was not
of concern, one could just setvr(t) = r(t), vw(t) = ̺r(t)
in (3) and if r(t) = r, for all t ≥ t̄, the angles would
be asymptotically controlled to their desired values. Here,
in order to enforce (5) and (6) (and, if desired, (7)), the
feedforward commands in (4),vr, vw, are generated by a
governor

v = g(x, r), (8)

wherex = [x′
r x

′
w ]

′ is the full system state,r is the reference
for the vehicle wheels angle, andv ∈ R

2, [v]1 = vr, [v]2 =
vw is the governor command. The purpose of the governor
is to maintain the steady-state behavior, i.e., for the vehicle
wheels to track the reference, and for the steering wheel to
align, and in addition to enforce the constraints, including
during the transients.

IV. CONSTRAINT GOVERNORDESIGN

Different governor exists for enforcing constraints, such
as reference governor [10], [12], command governor [9],
extended command governor [13], and virtual state gover-
nor [14]. In [15] reference and extended reference gover-
nors were applied to the AFS for enforcing constraints on
lateral and roll vehicle dynamics, which dos not require
the coordination of steering wheel and vehicle wheels. The
coordination of the steering wheel and the vehicle wheels
is a major difference requiring a (particular) multivariable
governor.

In order to design a governor (8) that enforces the subsys-
tem constraints (5), and the alignment constraints (6) and/or
(7), we exploit themaximum output admissible set [12].
Given a systemx(k + 1) = f(x(k)), x ∈ R

n, and a
constrained outputz = h(x), z ∈ R

q, such thatz ∈ Z ⊂ R
q,

an output admissible setS∞ is a set such that

x(k) ∈ S∞ ⇒ h(x(t)) ∈ Z, ∀t ≥ k (9)

and the maximal output admissible set,O∞, is the largest
output admissible set, meaning that there exist no state value
x ∈ R

n and output admissible setS∞, such thatx ∈ S∞, and
x /∈ O∞. Furthermore,O∞ is an invariant set forx(k+1) =
f(x(k)), that is, if x(k) ∈ O∞, thenf(x(k)) ∈ O∞.

Result 1 ( [12]): Consider the asymptotically stable lin-
ear systemx(k + 1) = Asx(k), x ∈ R

n, with linear
constrained outputsz(k) = Fsx(k) and subject to the
constraintz ∈ Z, where z ∈ R

q, (Fs, As) is observable
and Z is a polytope,Z = {z ∈ R

q : Hsz ≤ Ks}. The
maximum output admissible setO∞ is finitely determined
as a polytope defined by a finite number of constraints

O∞ = {x ∈ R
n : H∞x ≤ K∞}. (10)
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Consider the systemx(k + 1) = f(x(k), v(k)), z(k) =
h(x(k)), v(k) ∈ R, with performance outputy(k) = κ(x(k))
which has dc-gain fromv to y equal1. At time k ∈ Z0+,
given a desired reference valuer(k) ∈ R, a governor selects
the “closest” actual commandv ∈ R to r(k) such that if
v(t) = v for all t ≥ k, z(t) ∈ Z, for all t ≥ k.

The governors in [9], [10] exploit theO∞ set for the
system dynamics augmented with the dynamics of a constant
command,v(k + 1) = v(k), to select the control input.
Specifically, forx ∈ R

n andv, r ∈ R, the reference governor
is defined as

g(x, r) = argmin
v

‖r − v‖22 (11a)

s.t. (x, v) ∈ O∞ (11b)

Indeed for the case where theO∞-set is polyhedral, (11) is
a quadratic program which finds the projection ofr onto the
section obtained for the current statex of O∞. The simplest
implementation of the command governor [9] has a definition
similar to (11), whit the relaxed conditionv, r ∈ R

m,
m ∈ Z+, and allowing a positive definite matrix weight
in the cost function, yet still requiringr and v to have
the same dimension. Additional details can be found in the
tutorial [16]. A fundamental result on the reference governor
is recalled next.

Result 2 ( [10]): Consider the closed-loop systemx(k +
1) = f(x(k), g(x(k), r(k))), z(k) = h(x(k)), x ∈ R

n, z ∈
R

q, and the constraintz ∈ Z ⊂ R
q. For somek̄ ≥ 0, let

x(k̄) be such that a solutionv for (11) exists. Then, for every
t ≥ k̄, z(t) ∈ Z, and if r(t) = r for all t ≥ t̄ ≥ k̄, there
exists a finite timet1 ≥ t̄ such thatv(t) = r for all t ≥ t1.

A. Governor for mechanically decoupled steering system

In order to design a governor that generates the command
vectorv = [vr vw]

′ with the commands of both the vehicle
wheels and the steering wheel, we consider the system

x(k + 1) = Ax(k) +Bv(k) (12a)

z(k) = Fx(k) (12b)

z(k) ∈ Z, (12c)

wherex = [x′
r x′

w]
′, (12a) is constructed from (4), (12b)

and (12c) are constructed from (5), (6) and/or (7). Due to
the linear nature of the constraints (5)–(7), the setZ is
polyhedral, i.e.,Z = {z ∈ R

q : Hzz ≤ Kz}. According
to Result 1, for (12) augmented with the constant command
dynamicsv(k +1) = v(k), the maximum output admissible
set is the polytopeO∞ = {(x, v) : Hx

∞x+Hv
∞v ≤ K∞}.

Thus, we define the governor for the mechanically decou-
pled steering system as

gv(x, r) = argmin
v∈V

q‖r − [v]1‖
2 + ‖̺[v]1 − [v]2‖

2 (13a)

s.t. (x, v) ∈ O∞, (13b)

whereO∞ is the maximum output admissible set computed
from (12) andv(k + 1) = v(k), q ≥ 0 is a cost function
weight, andV is the (polytopic) set of allowed commands.

The objective function (13a) aims at computing the vehicle
wheel command that is closest to the reference, and the
steering wheel command that is closest to the vehicle wheel
command. In fact, the controller aims at rapidly reacting to
the reference angle provided from a path planner, and at the
same time aims at maintain alignment of the steering wheel
with the vehicle wheels for drivability and for informing
the driver of the current vehicle behavior. Often, it is not
possible to achieve the optimum of both objectives, because
the vehicle wheels can be moved faster than the steering
wheel, due to the limitations imposed by the interaction with
the driver encoded as constraints, andq ≥ 0 trades off the
two objectives.

Consider the closed loop-system (12), (13)

x(k + 1) = Ax(k) +Bv(k) (14a)

v(k) = gv(x(k), r(k)) (14b)

z(k) = Fx(k) (14c)

z(k) ∈ Z. (14d)

The following corollary follows from Result 2.
Corollary 1: Consider the closed-loop system (14). For

some k̄ ≥ 0, let x(k̄) be such that a solutionv for
gv(x(k̄), r(k̄)) exists. Then, for everyt ≥ k̄, z(t) ∈ Z. �

The proof is immediate due to the use ofO∞ and it follows
the same steps as that in [10] for the (standard) governor (11),
since both exploitO∞ to guarantee (recursive) constraints
satisfaction. While indeed (13) uses the maximum output
admissible invariant set and results in a quadratic program,
it is different from the classical governors [9], [10] because of
the cost function (13a). In particular, while Result 2 for (11)
is obtained by the properties of projection (i.e.,v is the
projection of r onto the section ofO∞ obtained for the
current state), see, e.g. [10], this is not the case for (13)
because (13a) does not model a (standard) projection. Hence,
next we prove that the second part of Result 2, that is, finite
time convergence of the command, holds also for (13).

Let Jr(x) be the value function of (13), i.e., the optimum
of (13) for givenx andr. For the simplicity of notation we
definex+ = Ax + Bv, v+ = g(x+, r), ∆vi = [v+]i − [v]i,
i = {1, 2}, and along the trajectories of the system we use
the shorthand notationJr(k) = Jr(x(k)).

Lemma 1: Let v = gv(x, r), andv+ = gv(x
+, r), where

x+ = Ax+Bw. Then,Jr(x)−Jr(x
+) ≥ q([v+]1− [v]1)

2+
(([v+]1 − [v]1)− ̺([v+]2 − [v]2))

2.
The proof of Lemma 1 is omitted due to space limitations,

and it is based on proving thatJr(x)− Jr(x
+) ≥ q([v+]1 −

[v]1)
2 + (([v+]1 − [v]1)− ̺([v+]2 − [v]2))

2 by showing that
q(r − [v]1)

2 + (̺[v]1 − [v]2)
2 ≥ q(r − [v+]1)

2 + (̺[v+]1 −
[v+]2)

2+̺(∆v1)
2+(̺∆v1−∆v2)

2 by exploiting feasibility
of v+ = v and optimality of the actualv+.

Theorem 1: Let V contain only commands that are strictly
steady state admissible, i.e., for allv ∈ V , (xe(v), v) ∈
int(O∞), wherexe(v) is the equilibrium of (12) forv(k) =
v. Let r(k) = r for all k ≥ 0, and [r gr]′ ∈ V . For the
governor based on (13), let(x(0), v) ∈ O∞, then there
exists a finite index̄k ∈ Z0+ such thatv1(k) = r and



v2(k) = ̺v1(k) for all k ≥ k̄.
The proof of Theorem 1 is only sketched, due to space

limitations.
Due to the properties ofO∞, the closed-loop system

is recursively feasible, and henceJr(k + 1) ≤ Jr(k)
and limk→∞ Jr(k) = J∞

r . Using Lemma 1 we can
prove that limk→∞ ∆vi(k) = 0, i = {1, 2}, and hence,
limk→∞ v(k) = v∞. Thus, by the asymptotic stability
of (12), limk→∞ x(k) = xe ∈ int(O∞).

The rest of the proof follows the standard approach of,
e.g., [9], [17], by showing that given anyv ∈ V , the set
xe(v)⊕B(σ), whereσ > 0 is small yet finite and(xe(v)⊕
B(σ), v) ∈ int(O∞), is reached in finite time, and that for all
x ∈ xe(v) ⊕ B(σ) there existsγ∆

1 ≥ ǫv > 0, for arbitrarily
small yet finiteǫv, such thatv + v∆ with ‖v∆‖ ≤ γ∆

1 is
feasible forx. SinceJ(x) ≥ 0 for all x, andJ(0) is finite,
in finite time k̄ it has to occur that‖v(k̄) − [r gr]′‖ ≤ γ∆

1 ,
and hence,v(k̄ + 1) = [r gr]′, J(k̄ + 1) = 0.

Remark 2: In order to improve robustness with respect to
abrupt driver actions or disturbances, (13b) can be substituted
by (Ax+Bv, v) ∈ O∞ thus allowing a one step to recover
feasibility after a disturbance.

V. SIMULATION RESULTS

In this section we show the behavior of the control system,
and in particular of the governor, for the mechanically de-
coupled steering system. We discuss the behavior in different
maneuvers, namely a step-steer, a slalom, and a double lane
change. The control architecture described in Section III is
implemented withTs = 50ms, and enforcing (5) and the
coordination constraint (6) in the governor. The governor
cost function in (13a) is designed to favor a fast response
of the steering rack angle. For the simulations we use a
proprietary model of the steering system connected with
the model of a compact car implemented in CarSim, which
provides a high fidelity and reliable simulation platform.
Our control architecture is implemented in Simulink. The
tests are executed for a constant longitudinal velocity of
60km/h on normal road (friction coefficientµ = 0.8). For
every test we show also the time history of the lateral
accelerationay[m/s2], the lateral velocityvy[m/s], and the
yaw rateφY [rad/s]. We denote by∆δrw[deg] the difference
between the steering wheel angle and the (scaled) vehicle
wheels angle (∆δrw = δw − ̺δr).

A step-steering of 60 degrees at the steering wheel is
shown in Figure 2. In this maneuver the vehicle wheels are
actuated to rapidly track the reference, while the steering
wheel is actuated more slowly, so that its motion is accept-
able for the driver. In the last part of the maneuver, the
difference between the vehicle wheels angle and the steering
wheel angle reaches the constraint, and hence the angular
velocity of the rack decreases, since it cannot anymore rotate
faster than the steering wheel.

In Figure 3 we show a double lane change maneuver with
4.5m lateral amplitude. Also in this case the constraint (6)
enforces a certain alignment to be maintained between steer-
ing wheel and vehicle wheels. In this case, the vehicle wheels
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(b) Steering rack. Upper plot: Reference angle
(red), vehicle wheels angle command (black), ve-
hicle wheels angle (blue), and constraints. Lower
plot: Vehicle wheels angular rate, and constraints.
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(c) Steering column. Upper plot: Scaled vehicle
wheels angle command (red), steering wheel an-
gle command (black), steering wheel angle (blue).
Lower plot: steering wheel angular rate.
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Fig. 2: Simulation of a60 degrees step-steer maneuver.

move rapidly to track the reference signal, thus providing a
fast response and good performance in executing the double
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(c) Steering column. Upper plot: Scaled vehicle
wheels angle command (red), steering wheel an-
gle command (black), steering wheel angle (blue).
Lower plot: steering wheel angular rate.
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(d) Misalignment between vehicle wheels and steering wheel,
and constraints.

Fig. 3: Simulation of a double lane change with4.5m lateral amplitude.

lane change. The steering moves more slowly thus informing
the driver of the current behavior of the vehicle without
having an aggressive effect on the driver himself.

VI. CONCLUSIONS

We have proposed a design for coordinating vehicle
wheels and steering wheel in mechanically decoupled steer-
ing systems in semi-autonomous vehicle operations, and in
particular when a reference trajectory for the vehicle wheels
angle is given. Our design is based on a governor that has the
objectives of tracking the reference for the vehicle wheels
angle and of aligning the steering wheel and the vehicle
wheels, while enforcing constraints on rack subsystem and
on steering wheel subsystem, and on the misalignment
between vehicle wheels and steering wheel. The controller
has been simulated in closed-loop with a CarSim vehicle
model showing that the desired behavior is achieved. The
properties of the governor have been proved, by appropriate
modifications of the proofs of existing governors.
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