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Abstract

We present a simple method for calibrating a set of cameras that may not have overlapping field
of views. We reduce the problem of calibrating the non-overlapping cameras to the problem
of localizing the cameras with respect to a global 3D model reconstructed with a simultaneous
localization and mapping (SLAM) system. Specifically, we first reconstruct such a global 3D
model by using a SLAM system using an RGB-D sensor. We then perform localization and
intrinsic parameter estimation for each camera by using 2D-3D correspondences between the
camera and the 3D model. Our method locates the cameras within the 3D model, which is
useful for visually inspecting camera poses and provides a model-guided browsing interface of
the images. We demonstrate the advantages of our method using several indoor scenes.
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Abstract—We present a simple method for calibrating a set
of cameras that may not have overlapping field of views. We
reduce the problem of calibrating the non-overlapping cameras
to the problem of localizing the cameras with respect to a global
3D model reconstructed with a simultaneous localization and
mapping (SLAM) system. Specifically, we first reconstruct such
a global 3D model by using a SLAM system using an RGB-D
sensor. We then perform localization and intrinsic parameter
estimation for each camera by using 2D-3D correspondences
between the camera and the 3D model. Our method locates
the cameras within the 3D model, which is useful for visually
inspecting camera poses and provides a model-guided browsing
interface of the images. We demonstrate the advantages of our
method using several indoor scenes.
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I. INTRODUCTION

Camera calibration has been a long-standing research

topic as many vision algorithms require accurate intrinsic

and extrinsic parameters of cameras. Nowadays several

calibration toolboxes are readily available [1], [2], [3], [4]

for computing intrinsic parameters of perspective and om-

nidirectional cameras. Extrinsic parameters among multiple

cameras can be easily computed as well, if the cameras share

the field of views (FOVs). However, several applications,

such as surveillance and car navigation, benefit more from

cameras that do not have overlapping FOVs.

In this paper, we address the problem of calibrating

cameras with non-overlapping FOVs. We present a simple

and practical method by leveraging the recent advancement

of SLAM systems using a Kinect-style sensor [5], [6], [7],

[8], [9], [10], [11]. An overview of our method is shown

in Figure 1. We first reconstruct a 3D model of the scene

in which the non-overlapping cameras are located using an

RGB-D SLAM system. Once the 3D model is reconstructed,

the calibration can be done by localizing each camera with

respect to the 3D model using 2D-3D correspondences

between the camera and the 3D model. Note that the map

reconstruction process can be done using any SLAM system

and is completely independent of the calibration process

of non-overlapping cameras; thus our use of the SLAM

system is external, as opposed to the internal use of SLAM

algorithms employed in previous work [12], [13], [14] for

calibrating non-overlapping cameras attached on a mobile

platform as described in Section I-B

A. Contributions

The main contributions of this paper are summarized as

follows.

• We present a method for calibrating intrinsic and

extrinsic parameters of non-overlapping cameras by

exploiting an external SLAM system.

• We describe an efficient algorithm for localizing a 2D

image with respect to the reconstructed 3D model.

• We demonstrate a model-guided browsing interface of

the non-overlapping cameras as an application of our

method.

B. Related Work

Here we review prior camera calibration methods that as-

sume non-overlapping FOVs of the cameras. We categorize

the methods into (1) those calibrating a multi-camera rig

attached on a mobile platform and (2) those calibrating a

set of stationary cameras.

Methods in the first category exploit the motion of a

mobile platform for calibrating multiple cameras rigidly

attached on the platform. Those methods capture image

sequences synchronously using the multiple cameras while

moving the platform, and then perform SLAM individually

for each camera to compute its relative motions. Esquivel et

al. [15] matched the relative motions of the multiple cameras

to compute the extrinsic parameters between cameras, which

is the same formulation as the hand-eye calibration prob-

lem [16], [17]. However, only matching the relative motions

has degeneracies when specific motions (e.g., planar mo-

tions, rotations and screw motions about an axis) or special

camera configurations (e.g., camera configurations where the

centers lie on a straight line) are used [12]. Several methods

have addressed the degeneracy by additionally matching

scene points, fusing the maps reconstructed from individual

cameras, and running bundle adjustment to jointly optimize

the relative motions of a reference camera, the extrinsic

parameters of the other cameras, and the scene points [12],

[13], [14]. Note that the above methods use SLAM algo-

rithms internally, i.e., the cameras to be calibrated are used

for SLAM; thus they require the motion of cameras, which

is not applicable if the cameras are stationary. In contrast,

we leverage an external SLAM system independent of the

cameras to be calibrated; thus our method is applicable



(a) Mobile SLAM system

(b) Reconstructed 3D model

(d) Camera calibration results with respect to the 3D model

(c) Images captured with 

non-overlapping cameras

Figure 1. Overview of our method for the Lounge scene. We use (a) an RGB-D SLAM system running in real time on a tablet to reconstruct (b) a 3D
model of the scene where the non-overlapping cameras are located. The blue camera icons shown in (b) denote the poses of keyframes computed in the
SLAM system. We then use the 3D model to localize (c) images captured with the non-overlapping cameras using 2D-3D correspondences. (d) Poses of
the non-overlapping cameras can be obtained with respect to the 3D model, shown as the red camera icons.

to stationary cameras. Knorr et al. [18] also assumed the

motion of cameras and presented an approach for refining

the extrinsic parameters during online operations by using

the homographies computed with respect to the ground plane

in an extended Kalman filter framework.

Methods in the second category relate multiple stationary

cameras with respect to a single reference object. After the

pose of each camera is computed with respect to the refer-

ence object, the poses of multiple non-overlapping cameras

can be related through the reference object. One can use a

large reference object (e.g., a calibration room with several

known 3D locations) so that all the cameras can observe

a part of the reference object, but building such a setup is

often not practical. Several methods have used mirrors to

image a standard-size reference object (e.g., checkerboard)

that is not originally in the FOV of the camera. A planar

mirror [19], [20], [21], multiple planar mirrors [22], and

a spherical mirror [23] have been used. These techniques

are simple and easy to use for small configurations that

use fewer cameras. However in larger setups, the mirror-

based techniques pose several challenges that are not always

straightforward to resolve. First, the accuracy degrades as

the distance between cameras becomes larger, since the

image of the reference object becomes smaller. Second, there

is always the under-emphasized, sometimes theoretically

impossible, mirror-grid placement problem that requires the

user to place the mirrors and grids such that the multiple

cameras can observe either direct or reflected views of the

calibration pattern simultaneously.

Another set of methods in the second category exploits

the motions of objects in the scene (e.g., humans and

cars), which is in particular used for surveillance camera

networks [24]. Several methods have been proposed for de-

termining the transition probabilities of one object observed



in one camera to another camera [25], [26], which provide

the topology of the camera network but not the geometric

calibration. Rahimi et al. [27] modeled the object motions

using the linear Gaussian Markov dynamics and estimated

one rotation and two translation parameters between multiple

cameras, assuming the ground plane is known in each

camera. Using linear object motion models, Pflugfelder and

Bischof [28] computed extrinsic parameters given the cam-

era rotations and intrinsic parameters, while Micusik [29]

computed them given only the gravity vector directions.

Although those approaches showed promising results, they

assume some calibration parameters to be known, and their

accuracy is limited due to the assumptions on the object

motions. In contrast, our method provides accurate intrinsic

and extrinsic parameters for camera networks by localizing

the cameras with respect to a global 3D model recon-

structed with an external SLAM system. In addition, the

reconstructed 3D model allows us to compute the transition

probabilities in the camera network by simulating object

motions in the 3D model if necessary.

To the best of our knowledge, a recent work of Heng et

al. [30] is the closest to ours. Although their method is

designed for calibrating multiple cameras attached on a

moving vehicle and close to the first category, it separates

the map reconstruction process from the camera localization

process. For the map reconstruction, they used all the images

captured with all the cameras in a visual SLAM system.

Once the map is reconstructed, the cameras can be localized

with respect to the map by using 2D-3D correspondences.

Their focus was on computing camera extrinsic parameters

as well as the rig pose jointly for moving platforms, whereas

our focus is on estimating the intrinsic and extrinsic parame-

ters of stationary cameras. Moreover, they used 2D cameras

for both map reconstruction and localization, while we use

different modalities, an RGB-D sensor and 2D cameras, for

map reconstruction and localization respectively.

II. NON-OVERLAPPING CAMERA CALIBRATION

Figure 1 shows an overview of our method. We use a

mobile SLAM platform consisting of an RGB-D sensor and

a tablet to reconstruct a 3D model of the scene. We then

perform localization of the non-overlapping cameras with

respect to the 3D model using 2D-3D correspondences. We

detail the map reconstruction and localization processes in

the following subsections.

A. Map Reconstruction

Recently several SLAM systems using a Kinect-style

sensor have demonstrated impressive 3D reconstruction re-

sults [5], [6], [7], [8], [9], [10], [11]. We leverage those

SLAM systems and show a novel application of them to

non-overlapping camera calibration.

We used an RGB-D SLAM system that uses both point

and plane features as primitives [8]. Since planes are the

dominant structure in man-made scenes, using plane features

improves the registration accuracy as well as accelerates

the processing speed due to the smaller number of feature

matching candidates. The system is a keyframe-based SLAM

system, where frames with representative poses are stored as

keyframes in a map. For each new RGB-D frame, the system

extracts point features using the SURF keypoint detector and

plane features using a RANSAC-based plane fitting algo-

rithm on the depth map. The frame is then registered with

respect to the map by using a RANSAC-based registration

algorithm that uses both the point and plane features. The

frame is added to the map if its estimated pose is sufficiently

different from any existing keyframe poses. The keyframe

poses as well as point and plane features in the map are

jointly optimized using bundle adjustment asynchronously

from the frame-based registration.

In addition to the techniques presented in [8], we imple-

mented a loop closing algorithm to improve the accuracy

of SLAM when the camera comes back to locations visited

previously. For this purpose, we describe the appearance of

each frame by using a vector of locally aggregated descrip-

tors (VLAD) [31] representation on the SURF descriptors of

the point features. We compute VLAD for all the existing

keyframes in the map, and check the appearance similarity

with a new keyframe when we add it to the map. In addition

to the appearance similarity, we check the pose similarity

between the new keyframe and the existing keyframes. If

both similarities are high for any existing keyframe, then we

perform the geometric verification using the RANSAC-based

registration between the frames; if there are enough number

of inliers, we add the constraints between corresponding

point/plane features appearing in the two keyframes in the

bundle adjustment.

The SLAM system was implemented on a Surface Pro

tablet with an Asus Xtion PRO LIVE sensor as shown in

Figure 1(a). The system runs about 3 frames per second

on the tablet, enabling interactive 3D reconstruction; the

operator can get the feedback on whether the frames are

successfully registered or not and determine where to scan

next in real time. Figure 1(b) shows a 3D model as well as

keyframe poses generated by our system.

B. Camera Localization

Given the 3D model of the scene, our goal is to compute

the pose of each camera with respect to the 3D model.

Since the reconstructed 3D model acts as a single large-size

3D reference object, extrinsic parameters between multiple

non-overlapping cameras can be obtained once each of the

cameras is localized with respect to the 3D model. Our

localization works for each camera in the following two

stages: (1) finding 2D-3D point correspondences between

the image and the 3D model; and (2) estimating the camera

pose by using a Perspective-n-Point (PnP) algorithm.



Keyframes in the map

K closest keyframes
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Figure 2. Selecting candidate keyframes for point descriptor matching.
We first select K (= 2 in this figure) keyframes that are closest to the
query image in terms of the appearance using the VLAD descriptor. Then
for each of the K candidates, we add N − 1 (= 2) keyframes that are
closest in terms of their poses to form a cluster of N(= 3) keyframes. The
descriptor matching is done for each of the clusters of keyframes. After
the geometric verification using RANSAC, we select the best cluster that
produces the largest number of inliers.

Due to repetitive patterns and textureless regions in many

indoor scenes, finding point correspondences between a

query image and the entire 3D model is not straightfor-

ward. Furthermore, such an all-to-all matching approach

would be time-consuming. To handle these problems, we

use appearance-based keyframe matching and geometric

verification to find the correspondences. Figure 2 shows the

keyframe-matching technique. We first find a set of candi-

date keyframes that are close to the query image in terms of

the appearance using the VLAD, similar to the loop closing

process described in Section II-A. The VLAD descriptors

for the keyframes in the map can be pre-computed. Given a

query image, we compute the VLAD descriptor on the query

image, and then match it with those of the keyframes in the

map. We consider the K closest keyframes as candidates.

Then, for each of the K candidates, we form a cluster of

N keyframes by adding N − 1 closely located keyframes.

The closely located ones can be identified by finding the

similarity in the 6 degrees-of-freedom (DOF) pose space. In

practice, we found that the similarity computed using just

3 DOF translation is sufficient. Then, we perform the point

descriptor matching between the query image and the N
keyframes in each cluster. The parameter K, denoting the

number of clusters, depends on the nature of the scene. For

example, if the scene consists of R large repetitive patterns,

then using K ≤ R may lead to an incorrect pose. The

parameter N , denoting the size of each cluster, can be chosen

based on the difference between the FOV of the camera used

in SLAM and that of the camera used for obtaining the query

image. If the query image observes a large portion of the

scene, we can use a large value for N for robustness. For the

scenes shown in Figures 1, 3, and 4, we set in experiments

(K,N) = (1, 3), (1, 1), and (1, 3), respectively.

In the second stage, we geometrically verify the candidate

point correspondences using RANSAC. Here we have two

different cases. If the camera intrinsic parameters are known,

we use the standard P3P algorithm [32]. Otherwise, we use

the P5Pfr algorithm [33] to compute the intrinsic parameters

(focal length, distortion parameters) along with the 6 DOF

pose. In experiments, we computed only one distortion pa-

rameter, which makes the P5Pfr algorithm over-determined.

We select the best solution out of the K candidate clusters

of the keyframes that produces the largest number of inliers.

The initial estimates for the intrinsic parameters and the pose

are refined using the nonlinear least squares that minimizes

the sum of reprojection errors for all the inliers.

III. EXPERIMENTS

We performed experiments in several indoor scenes shown

in Figures 1, 3, and 4, which we refer to as Lounge,

Reception, and Garage scenes, respectively. The scenes

were reconstructed by using the mobile SLAM system as

described in Section II-A. For the Lounge and Reception

scenes, 2D images were captured by using a single USB

web camera (640×480 pixel resolution) placed at different

locations, and their poses were estimated by using the P5Pfr

algorithm followed by the nonlinear least squares. On the

other hand, for the Garage scene, 2D images were captured

by using a GoPro camera (1280×720 pixel resolution)

mounted at different locations on a car. We calibrated the

GoPro camera offline using a checkerboard [3] and corrected

the distortions of the captured images using the calibration

result. We then estimated the poses of the images using the

P3P algorithm followed by the nonlinear least squares.

A. Qualitative Results

Figures 1, 3, and 4 demonstrate the results of our cal-

ibration method. One of the advantages of our method is

that it allows us to visually inspect the estimated camera

poses with respect to the reconstructed 3D model; it can

be seen that the poses obtained from our method visually

match with those we used for capturing the images. We

also developed a visualization interface for browsing the

2D images with the aid of the reconstructed 3D model.

Please refer to the supplementary video demonstrating the

interface. The interface was inspired by the Photo Tourism

system [34], where the sparse point clouds and camera

poses reconstructed using structure from motion were used

to browse images from geometrically correct locations.

B. Quantitative Analysis

To perform quantitative analysis, we estimated the intrin-

sic parameters of the USB web camera using a checker-

board [2] as the ground truth and compared the parameters

with those obtained with the P5Pfr algorithm in our method.

Table I illustrates the results. Note that the camera model

used in the P5Pfr algorithm [33] and in [2] are different (in

terms of the focal length and the lens distortion model),

which implies that we cannot compare the exact values

of these parameters. Nevertheless, the intrinsic parameters

obtained by our method are close to those obtained with [2];

in particular, the focal length, which is typically the most

important intrinsic parameter for camera localization, has

an average error of 4% with respect to the ground truth

(computed as the mean for the x and y axes).



Figure 3. Results for the Reception scene. The reconstructed 3D model is depicted with the poses of keyframes (blue camera icons) as well as those
of the non-overlapping images (red camera icons). The images were captured with a USB web camera and their poses were computed using the P5Pfr
algorithm.

C. Comparison between P5Pfr and P3P

In our setup where non-overlapping cameras are placed in

large-scale scenes, obtaining the ground truth poses of the

cameras is challenging; therefore we evaluated the results of

extrinsic camera calibration by comparing the camera poses

estimated using the P5Pfr algorithm (with unknown intrinsic

parameters) and the P3P algorithm (with intrinsic parameters

given by [2]) for the Lounge and Reception scenes. Figure 5

visually compares the camera poses, while Table II shows

the difference of the poses in translation and rotation.

The translation difference was computed as the Euclidean

distance between two camera centers, while the rotation

difference was computed as θ = ‖ log(RT

1
R2)‖F /

√
2, which

is the angle of the rotation matrix required to transform

one rotation matrix R1 to the other R2. Note that inliers

selected by P5Pfr and P3P may not be the same due to the

differences in the camera models. Nevertheless, the poses

computed by the two algorithms are close, which indicates

that the computed poses are close to the ground truth. The

translation differences are small compared to the size of the

scene (approximately 7× 4× 3 m for the Lounge scene and

7× 2× 3 m for the Reception scene), except for the image

3 in the Reception scene, where the number of inliers was

small and the inliers were distributed only around the center

of the image. We also observed that the average reprojection

errors were less than 2 pixels.

D. Processing Time and Statistics

In our experiments the SLAM pipeline for reconstructing

3D models was completely done on the tablet in real time.

Scanning the entire scenes in Figures 1, 3, and 4 took about

5 minutes, and those models contained 175, 110, and 205

keyframes, respectively. The localization process took about

0.2 seconds for each image, demonstrating that the non-

overlapping camera calibration can be efficiently done once

the 3D models are obtained.

IV. CONCLUSIONS AND DISCUSSION

RGB-D sensors such as Kinect have made breakthroughs

in many vision problems such as 3D reconstruction and



Camera positions Captured images (after dist. correction) Calibration results

Figure 4. Results for the Garage scene. The reconstructed 3D model is depicted with the poses of keyframes (blue camera icons) as well as those of the
non-overlapping images (green camera icons). The images were captured with a GoPro camera, whose distortions were corrected by using the calibration
result obtained with [3]. The poses of the images were then computed using the P3P algorithm.

Table I
INTRINSIC PARAMETERS COMPUTED USING THE P5PFR ALGORITHM FOLLOWED BY NONLINEAR LEAST SQUARES IN OUR METHOD FOR DIFFERENT

SCENES AND IMAGE LOCATIONS. FOR THE Lounge SCENE IN FIGURE 1, THE IMAGES 1 AND 2 CORRESPOND TO THE TOP AND BOTTOM IMAGES IN (C).
FOR THE Reception SCENE IN FIGURE 3, THE IMAGES 1 TO 3 ARE FROM THE LEFT TO RIGHT IN THE BOTTOM ROW. THE GROUND TRUTH VALUES

OBTAINED USING A CHECKERBOARD [2] ARE ALSO SHOWN. WE COMPUTED A SINGLE FOCAL LENGTH FOR OUR METHOD, WHILE [2] PROVIDES TWO

FOCAL LENGTHS IN THE x AND y AXES. NOTE ALSO THAT P5PFR AND THE CHECKERBOARD METHOD [2] USE DIFFERENT LENS DISTORTION

MODELS. THE UNIT IS IN PIXELS AND THE USB WEB CAMERA HAS A RESOLUTION OF 640×480 PIXELS.

Lounge Reception
Ground Truth

Image 1 Image 2 Image 1 Image 2 Image 3

Focal Length 801.1 914.6 869.0 838.8 827.7 (851.2, 865.2)

Principal Point (x) 312.2 282.1 346.2 346.5 342.5 361.9

Principal Point (y) 157.1 219.6 226.4 239.8 345.8 216.4

Table II
DIFFERENCE BETWEEN THE CAMERA POSES COMPUTED USING THE P5PFR AND P3P ALGORITHMS. BOTH METHODS USED NONLINEAR LEAST

SQUARES REFINEMENT AFTER THE INITIAL RANSAC SOLUTIONS.

Lounge Reception

Image 1 Image 2 Image 1 Image 2 Image 3

Translation (cm) 16.1 12.4 10.3 6.0 67.6

Rotation (◦) 4.3 3.9 1.5 2.2 5.4

human pose estimation. Despite several algorithms for non-

overlapping camera calibration, this problem has always

remained challenging due to many practical constraints. In

this paper we addressed the problem of non-overlapping

camera calibration by reducing the problem to localizing

each camera with respect to the reconstructed 3D model

obtained using an RGB-D SLAM system. This enables us

to provide a model-guided browsing interface for visualizing

the images obtained from the non-overlapping cameras.

Although the proposed method has obvious simplicity and

practical advantages, it still suffers from a few limitations.

First, the accuracy of our calibration method is bounded

by the accuracy of the external RGB-D SLAM system.

However, we believe that the accuracy of recent SLAM

systems has reached a sufficient level to be used for the

calibration purpose as demonstrated in this paper. Second,

if the descriptor matching fails to identify the closest images

to the query image, our method fails to estimate the correct

pose. Placing some discriminative reference object in the

FOV of the camera would resolve such cases.
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Figure 5. Comparison of the camera poses computed using P5Pfr (red) and P3P (green) for the Lounge (left) and Reception (right) scenes.
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[12] P. Lébraly, E. Royer, O. Ait-Aider, and M. Dhome, “Calibra-
tion of non-overlapping cameras - Application to vision-based
robotics,” in Proc. British Machine Vision Conf. (BMVC), Sep.
2010, pp. 10.1–10.12.

[13] G. Carrera, A. Angeli, and A. J. Davison, “SLAM-based
automatic extrinsic calibration of a multi-camera rig,” in Proc.
IEEE Int’l Conf. Robotics and Automation (ICRA), May 2011,
pp. 2652–2659.

[14] L. Heng, B. Li, and M. Pollefeys, “CamOdoCal: Automatic
intrinsic and extrinsic calibration of a rig with multiple
generic cameras and odometry,” in Proc. IEEE/RSJ Int’l Conf.
Intelligent Robots and Systems (IROS), Nov. 2013, pp. 1793–
1800.

[15] S. Esquivel, F. Woelk, and R. Koch, “Calibration of a multi-
camera rig from non-overlapping views,” in Proc. DAGM
Conf. Pattern Recognition, 2007, pp. 82–91.

[16] R. Horaud and F. Dornaika, “Hand-eye calibration,” Int’l J.
Robotics Research, vol. 14, no. 3, pp. 195–210, Jun. 1995.

[17] K. Daniilidis, “Hand-eye calibration using dual quaternions,”
Int’l J. Robotics Research, vol. 18, no. 3, pp. 286–298, Mar.
1999.

[18] M. Knorr, W. Niehsen, and C. Stiller, “Online extrinsic multi-
camera calibration using ground plane induced homogra-
phies,” in Proc. IEEE Intelligent Vehicles Symp. (IV), Jun.
2013, pp. 236–241.

[19] P. Sturm and T. Bonfort, “How to compute the pose of an
object without a direct view?” in Proc. Asian Conf. Computer
Vision (ACCV), vol. II, Jan. 2006, pp. 21–31.

[20] R. K. Kumar, A. Ilie, J.-M. Frahm, and M. Pollefeys, “Simple
calibration of non-overlapping cameras with a mirror,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), Jun. 2008.



[21] K. Takahashi, S. Nobuhara, and T. Matsuyama, “A new
mirror-based extrinsic camera calibration using an orthogo-
nality constraint,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), Jun. 2012, pp. 1051–1058.

[22] J. A. Hesch, A. I. Mourikis, and S. I. Roumeliotis, “Extrinsic
camera calibration using multiple reflections,” in Proc. Euro-
pean Conf. Computer Vision (ECCV), vol. IV, Sep. 2010, pp.
311–325.

[23] A. Agrawal, “Extrinsic camera calibration without a direct
view using spherical mirror,” in Proc. IEEE Int’l Conf.
Computer Vision (ICCV), Dec. 2013, pp. 2368–2375.

[24] R. J. Radke, “A survey of distributed computer vision al-
gorithms,” in Handbook of Ambient Intelligence and Smart
Environments, H. Nakashima, H. Aghajan, and J. C. Augusto,
Eds. Springer, 2010, pp. 35–55.

[25] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between
cameras,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 2, Jun. 2004, pp. II–205–II–210.

[26] K. Tieu, G. Dalley, and W. E. L. Grimson, “Inference of non-
overlapping camera network topology by measuring statistical
dependence,” in Proc. IEEE Int’l Conf. Computer Vision
(ICCV), vol. 2, Oct. 2005, pp. 1842–1849.

[27] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous cal-
ibration and tracking with a network of non-overlapping
sensors,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 1, Jun. 2004, pp. I–187–I–194.

[28] R. Pflugfelder and H. Bischof, “Localization and trajectory
reconstruction in surveillance cameras with nonoverlapping

views,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4,
pp. 709–721, Apr. 2010.

[29] B. Micusik, “Relative pose problem for non-overlapping
surveillance cameras with known gravity vector,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), Jun. 2011, pp. 3105–3112.

[30] L. Heng, M. Bürki, G. H. Lee, P. Furgale, R. Siegwart, and
M. Pollefeys, “Infrastructure-based calibration of a multi-
camera rig,” in Proc. IEEE Int’l Conf. Robotics and Automa-
tion (ICRA), May 2014.

[31] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez,
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