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Abstract
Statistical dialog managers can potentially make more robust
decisions than their rule-based counterparts, because they can
account for uncertainties due to errors in speech recognition and
natural language understanding. In practice, however, statistical
dialog managers can be difficult to use, as they may require a
large number of parameters to be inferred from limited data.
Consequently, hand-crafted rule based systems are still effec-
tive for practical use. This paper proposes a method to inte-
grate an existing rule-based dialog manager with a statistical
dialog manager based on Bayes decision theory, by incorpo-
rating the rule-based dialog manager into the cost function of
the statistical dialog manager. The cost function has two parts:
an efficiency cost that penalizes inefficient actions, as in con-
ventional statistical dialog approaches, and a regularization cost
that slightly penalizes system actions that differ from those that
would be chosen by the rule-based system. Our experiments,
which use a destination-setting task in an automobile dialog sce-
nario, demonstrate that the integrated system produces system
actions that are similar to those of an existing rule-based dialog
manager but enable task completion using fewer turns than the
rule-based system.
Index Terms: spoken dialog system, statistical dialog manager,
rule based system, cost-level integration, goal estimation

1. Introduction
A core component of any spoken dialog system is the dialog
manager. Based on the history of a dialog in progress, the dialog
manager provides an appropriate system action to help a user to
complete a task [1]. For each utterance made by the user, the in-
put to the dialog manager is the user intention, which represents
the user’s intended meaning as extracted from the user utterance
by the Automatic Speech Recognition (ASR) and Natural Lan-
guage Understanding (NLU) components of the system. These
components often produce errors in the obtained user intentions.

Statistical dialog managers have been widely studied [2–7]
as a way to handle these errors. By modeling the uncertainties
in the user intentions obtained from the ASR and NLU outputs,
statistical dialog managers can potentially make more robust de-
cisions than rule-based dialog managers. Statistical dialog man-
agers are generally formulated based on Bayes decision theory,
where the optimal system action can be determined by mini-
mizing the expected cost function (or, equivalently, maximizing
the expected reward function in the reinforcement learning con-
text [8]). Despite the uncertainty in the observations, a statisti-
cal dialog manager can produce a robust decision by optimizing
the expected value of the cost function over the distribution of
all possible past, present, and future user intentions and sys-
tem actions. Partially Observable Markov Decision Processes
(POMDPs) [9] have been studied as a promising framework

for statistical dialog managers in spoken dialog systems [2, 6].
However, statistical dialog managers can be difficult to use in
practice because they may have a large number of parameters
to be inferred from limited data, and this problem of sparse data
can make a statistical dialog manager unstable [10, 11]. Con-
sequently, even though hand-crafted rule based systems are not
as robust in the face of uncertain observations, rule-based dia-
log managers remain a practical choice and are used in many
real-world systems [12–15].

This paper proposes a method for integrating a statistical di-
alog manager with an existing rule-based dialog manager. The
relationships between user intentions and system actions that
are explicitly encoded into the rule-based system are used as a
means of regularizing the mapping between user intentions and
system actions that is inferred by the statistical dialog manager.
Our formulation is based on Bayes decision theory, and the in-
tegration with the rule-based system is accomplished by means
of a combined cost function. The cost function is composed of
two parts: an efficiency cost that penalizes redundant system
actions, and a regularization cost that penalizes system actions
that are different from those that would be selected by the rule-
based dialog manager.

As in conventional statistical dialog managers, the effi-
ciency cost encourages short dialogs by giving higher penal-
ties for system actions that increase the length of the dialog.
In this paper, we represent an existing rule-based dialog man-
ager using a graph structure and assign to each potential action
an efficiency cost, which is defined as the average number of
dialog turns needed to reach a hypothesized goal from that sys-
tem action [16, 17]. To compute this cost, we first represent the
rule-based dialog manager using a (deterministic) finite state
automaton, where the nodes represent the system actions and
the arcs represent the user intentions, as shown in Figure 1. The
cost is computed as the average distance from the node repre-
senting a potential system action to the node representing the
goal. This distance is computed by considering the graph struc-
ture as a directed unweighted graph (assuming equal probability
for possible user intentions) and using a breadth-first dynamic
programming search to compute the length of all paths to each
hypothesized goal state, given each hypothesized system action.
The length is averaged over all paths to get the efficiency cost.
In addition to this efficiency cost, there is a small regularization
cost, which is higher for system actions that are not identical to
those that would be chosen by the rule-based dialog manager.

Thus, the cost function for our statistical dialog manager
consists of two parts, both of which are derived from a rule-
based dialog manager. Through this cost function design, the
proposed statistical dialog manager is tightly integrated with the
rule-based dialog manager. Note that unlike the offline policy



SELECT_ITEM[{value=$NUMBER$}] 

SEARCH_POINT[{type=poi},{value=$POI$}] 

MODIFY_MAIN_COMMAND 
[{type=set_waypoint}] 

SEARCH_NEARBY[{base_point=curre
nt_position},{category=$GENRE$}] SELECT_ITEM[{value=$ITEM_NAME$}] 
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CHANGE_SCREEN 
[{screen=track_list},{album_name=NULL}] 

CHANGE_ROUTE[{route_type=NULL}] 

SEARCH_NEARBY[{base_point=curr
ent_position},{category=$GENRE$}] 

CHANGE_ROUTE[{route_type=NULL}] 
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: System action 𝑎𝑎 (node) 
<TEXT> 

: Goal action 𝑔𝑔 (final node) 
<TEXT> 

Figure 1: Part of a finite-state-automaton representation of a rule-based dialog manager. Nodes represent system actions, and arcs are user intentions.
Note that a single system action can be reached via multiple user intentions (e.g., specifying a slot value or uttering a full intention). The actual rule-based
system has various additional arcs, including some exception arcs (e.g., going back to the root node), that are omitted in our study for simplicity.

optimization required in reinforcement learning, the proposed
approach can compute the expected costs on the fly during dia-
log management.

The proposed approach was evaluated using database of di-
alog logs from user interactions with the existing rule-based
system, in a destination-setting task in an automobile scenario.

2. Formulation
2.1. Bayes decision theory for dialog manager

We first define our statistical decision problem [18] as that of
choosing an optimum system action ât at dialog turn t that mini-
mizes the objective function E(at), which we define below. The
problem is then to provide the expected cost function given ob-
servations based on Bayes decision theory. The observations
consist of the following variables:
• u1:t = {u1, · · · , ut}: sequence of user intentions from

the beginning of the dialog to the current turn, obtained
from user utterances by the ASR and NLU components.
We can also consider a list of the N best intentions at
each time step, with confidence scores.

• a1:t−1 = {a1, · · · , at−1}: sequence of decided system
actions from the beginning to the previous turn.

• arule
t : current system action that would be chosen by a

rule-based system.
Figure 1 illustrates part of our existing rule-based dia-
log manager, where arcs are user intentions and nodes
are system actions. For instance, the system action
SEARCH_WAYPOINT[{type=poi},{value=$POI$}] in the
upper right of the graph is a goal state, meaning that the
system understands the user’s goal (to set a particular way-
point) and executes the command, presenting the result.
This command’s slot information is given by type=poi
and value=$POI$. The user intentions are defined using
a similar representation, with some additional syntax (e.g.,
SELECT_ITEM[{value=$ITEM_NAME$}] for specifying a slot
value). A set of these observation variables is denoted as a his-
toryH1:t , {a1:t−1, a

rule
t , u1:t} as explained below.

These following variables are not observed, and must be
inferred from the observations:
• g: goal action, which is constant across all turns t. Ex-

amples are given by the filled nodes in Figure 1.

• at:t+T : sequence of system actions from the current turn
t to a future turn t+ T (where T > 0).

Based on the observed and unobserved variables, we provide
the following empirical Bayes risk function E(at), which is the
expected value of the cost function C(g, at:t+T ), given the ob-
servationsH1:t and the hypothesized system action at.

E(at) =
∑

g,at+1:t+T

C(g, at:t+T )p(g, at+1:t+T |H1:t, at). (1)

Here the cost function is marginalized over the posterior distri-
bution p(g, at+1:t+T |H1:t). Thus, we obtain a general form of
the empirical Bayes risk for our dialog manager. The following
sections provide a more detailed expression for this empirical
Bayes risk, along with some efficient approximations.

2.2. Empirical Bayes risk for proposed method

For the rest of the discussion, we assume a finite T (actually,
T = 1), which means that our dialog manager only considers
one step into the future in our dialog management. Although
this is different from previous statistical dialog managers that
are based on the reinforcement learning (where T = ∞), we
believe this is an efficient approximation, since the number of
turns in task-oriented dialogs is usually small. An additional ad-
vantage of this finite-future approximation is that we can com-
pute the expected cost function on-the-fly during dialog man-
agement [11,19,20], unlike standard reinforcement learning ap-
proaches that must pre-compute a policy function in advance.

To estimate the cost, we first predict at+1 using frule, a de-
terministic function defined by a rule-based dialog manager:

ât+1 = frule(at, ut+1) if at 6= g. (2)

This function represents a transition in the finite state automa-
ton in Figure 1, where the next node at+1 is determined given a
current node at and a transition arc ut+1 from the graph. This
approximation enables us to compute the expectation over user
intention ut+1, rather than over at+1 as in the original cost
function. Note that if at is a goal action, we do not need to
consider the next system action, and hence frule is not used. In
addition, we include a dependency on the current rule-based ac-
tion arule

t in the cost function, to allow for regularization using



the rule-based system. Therefore, by substituting Eq. (2) into
the cost function, the expected cost function is rewritten as:

E(at) ≈
∑

g,ut+1

C(g, arule
t , frule(at, ut+1))p(g, ut+1|H1:t, at).

(3)

Here the posterior distribution p(g, ut+1|H1:t, at), which is
a distribution over the joint probability of g and ut+1,
should be factorized for practical use. By assuming g and
ut+1 are approximately conditionally independent, we can
factorize the posterior distribution as p(g, ut+1|H1:t, at) ≈
p(g|H1:t)p(ut+1|g, at). Thus, the empirical Bayes risk E(at)
is approximated as the following objective function of at:

E(at)≈
∑

ut+1,g

C(g, arule
t , frule(at, ut+1))p(ut+1|g, at)p(g|H1:t)

(4)

This is composed of p(g|H1:t), which is a goal estimation
model, p(ut+1|g, at), which can be regarded as a user simu-
lation model, and the cost function. The following sections de-
scribe these components in detail.

2.3. Goal estimation model
This paper uses a discriminative, rather than generative, ap-
proach to represent the goal estimation model, since we can
flexibly incorporate various information via feature engineer-
ing. We use multivariate logistic regression to compute
p(g|H1:t):

p(g|H1:t) ∝ exp
(
wᵀ

gφ(H1:t)
)
, (5)

where ᵀ is the transpose operation, wg is a weight vector for
goal g, and φ(H1:t) is a feature vector extracted from the his-
tory. We can also include the N -best NLU outputs, along with
their confidence scores, in the features. This makes the sys-
tem’s decisions more robust to ASR and NLU errors, which is
a well-known advantage of using a statistical dialog manager.

2.4. Cost function
The cost function is designed to encourage dialogs that are ef-
ficient and that resemble those of a rule-based system. For this
purpose, we split the cost function into three cases:

C(g, arule
t , frule(at, ut+1))

=


θg, at = g

θrC
′(g, frule(at, ut+1)), at = arule

t

C′(g, frule(at, ut+1)), otherwise.

(6)

In the first case, the system action is a goal action. Since the
rule-based dialog manager frule(at, ut+1) of Eq. (2) is not
well-defined in this case, we define a special cost using con-
trol parameter θg . Setting a smaller (or larger negative) value
for θg will encourage the manager to skip intermediate steps
in order to reach the goal more efficiently. The second case
assigns a regularization weight θr to the action that would be
selected by a rule-based system, to encourage the manager to
mimic the rule-based system. The third case’s cost function,
C′(g, frule(at, ut+1)), is discussed in the next section.

2.5. Graph-based cost and user simulation
Using Eq. (2), the remaining cost function can be rewritten as
C′(g, frule(at, ut+1)) = C′(g, ât+1). In this paper, this value
is obtained from the number of arcs in a path from the node ât+1

to the estimated goal g in the state graph of a rule-based system.
There are multiple paths from ât+1 to g, and the path length is
averaged by assuming that each path has equal probability. The
following cost is an example from Figure 1 in which there are
two paths (0.5 probability each) from state ât+1 to the goal g,
and each path’s cost is its length (1 arc):

C′(g, ât+1) = 1× 0.5 + 1× 0.5 = 1 when:{
ât+1 : SEARCH POINT[{type=poi},{value=$POI$}]

g : SEARCH WAYPOINT[{type=poi},{value=$POI$}]

If there is no path from ât+1 to g, then we compute the cost as
the cost from the root node to g.

In summary, the cost is basically computed from the dis-
tance between two nodes in the directed unweighted graph. We
can also consider variations in which we use other graph dis-
tance measures (e.g., longest path or random walk), or in which
we use a weighted graph [16, 21].

We can also use the graph to compute the user intention
probability p(ut+1|g, at) in Eq. (4) by assuming equal proba-
bility for all possible actions (outdegree of at) to reach goal g:

p(ut+1|g, at) =
1

outdegree of at to reach g
. (7)

This part can be also use a weighted graph [16], if we have
sufficient data to learn the user model, or we can also simulate
some uncertainty from the alternative hypotheses in the ASR
and NLU components using posterior lattices or N -best lists.

Based on the goal estimation model, cost function, and the
user simulation model, we can compute the empirical Bayes
risk for each action at.

2.6. Slot state
Finally, we briefly explain a slot state vector used in our dia-
log manager, which prevents a dialog manager from reaching
a goal unless the required slot information has been provided
by a user. In our example, the slot information is embedded in
the user intention (e.g., {value=$POI$} means that the slot
is filled by a specific Point-Of-Interest obtained from the NLU
component). Therefore, we retain this slot information state in
a dialog as a binary vector b = {bi ∈ {0, 1}}, where each ele-
ment bi corresponds to the ith slot (e.g., POI, ADDRESS, etc.)
and equals 1 when the slot is filled but 0 otherwise. The current
slot state is represented by this vector, with the slot contents
obtained from the history of user intentions, i.e., b(u1:t). By
checking the consistency between the slot vectors of a system
action b(at) and user intentions in the history (b(u1:t)), we
can prevent the system from selecting an inappropriate action.
A probabilistic treatment of this slot state (from N -best ASR
and NLU outputs) can also be considered in our framework.

3. Experiments
We evaluated the proposed dialog manager in an automobile
destination-setting task based on the efficiency of dialogs and
how closely the system actions match those of an existing rule-
based system. We used two sets of dialog log data (task1: 996
dialogs and 2031 turns; task2: 686 dialogs and 1550 turns) that
were collected using our Japanese rule-based spoken dialog sys-
tem, which achieved 75.5% and 89.9% task completion rates re-
spectively during user evaluations. The log data contained esti-
mated user intentions from the NLU component, the rule-based
system actions, and user goals, as shown in Figure 1. The num-
ber of distinct user intentions, system actions, and goal actions
appearing in the data sets are 219, 110, and 45, respectively.



Figure 2: An example of the log data and simulated dialogs with the Japanese ASR results and system prompts with English translation, estimated
N -best intentions, and rule-based and proposed system actions. Detailed explanations are found in Section 3.2.

ASR result and system prompt (log) Estimated intentions and rule-based actions (log) System actions obtained by the proposed method (simulation)

𝑢1 (JP) ガソリンスタンド１番近いガソリンスタンドに寄って下さい
(EN) Gas station, Please stop by the nearest gas station.

SEARCH_NEARBY[{base_point=current_position},{category=$GENRE$}], 
score=0.906196
SEARCH_NEARBY[{base_point=waypoint},{value=$NUMBER$},{category=$
GENRE$}], score=0.082799 

𝑎1 (JP) 現在地近くのガソリンスタンドを検索しました。リストから選択してください。
(EN) Searched nearby gas stations. Please select one from the list.

SEARCH_NEARBY[{base_point=current_position},{category=$GENRE$}] SEARCH_NEARBY[{base_point=current_position},{category=$GENRE$}]

𝑢2 (JP) ４番エネオスカマクラシて車に寄って下さい
(EN) Number 4. Please stop by ENEOS in the Kamakura station.

SELECT_ITEM[{value=$NUMBER$}], score= 0.998939
→SEARCH_POINT[{type=poi},{value=$POI$}]

𝑎2 (JP) ENEOS鎌倉ステーションを検索しました。経由地にしますか、目的地にしま
すか、登録地にしますか。
(EN) Searched the place of ENEOS in the Kamakura station. Do you set it as a 
viapoint, destination, or register it?

SEARCH_POINT[{type=poi},{value=$POI$}] SEARCH_WAYPOINT[{type=poi},{value=$POI$}]

𝑢3 (JP) 経由地にして下さい
(EN) Please set it as a viapoint.

MODIFY_MAIN_COMMAND[{type=set_waypoint}], score=0.999155
→SEARCH_WAYPOINT[{type=poi},{value=$POI$}

𝑎3 (JP) ENEOS鎌倉ステーションを経由地に追加しました。
(EN) Added ENEOS in the Kamakura station as a viapoint.

SEARCH_WAYPOINT[{type=poi},{value=$POI$}]

Table 1: Goal estimation rates for various settings.

Task 1 (%) Task 2 (%)
1-best 74.8 72.8
N -best 76.2 74.8
+ confidence score 78.0 77.0
+ L1 regularizer 78.1 77.9

3.1. Goal estimation

Table 1 presents the accuracy of goal prediction for each turn
of a dialog before the final turn. The goal accuracies in each
task were evaluated using the models that were trained using
the other task’s data. The training and prediction were per-
formed by using LIBLINEAR [22]. Since the NLU component
also providesN -best intentions with confidence scores, we used
these values as a feature, which improved goal estimation by
5.1% from the 1-best results in Task 2. The final configuration
with L1 regularization was used in the dialog evaluations.

3.2. Dialog evaluation
The proposed dialog manager was evaluated using the log data
obtained from the rule-based system. For each turn of a dia-
log, the proposed dialog manager selected the optimal action
according to the empirical Bayes risk (Eq. (4)) given the his-
tory data (composed of user intentions and rule-based system
actions1). The goal cost factor θg in Eq. (6) was fixed at −10.0
to encourage the system to reach the goal in fewer turns.

Table 2 compares the result of the proposed system with the
rule-based system. The percentage of dialogs in which our sys-
tem successfully completed a task in fewer turns than the rule-
based system (Early success) was computed for Task 1 and 2.
The result shows that the proposed approach reduced the num-
ber of turns in more than half of dialogs in both tasks, which
confirms the efficiency of the proposed approach. The early
success rates of the N -best goal estimation results improved
upon the 1-best results by around 4%, which shows the effec-
tiveness of the proposed statistical dialog manager at mitigating
the effects of errors in the NLU and ASR components. Table 2
also shows the coincidence rate, which computes the rate of the
same actions obtained from the rule-based and proposed man-
agers. In the case of N -best with θr = 1.0 (this means we
only used the graph-based cost in Eq. (6) without the regular-
ization), we found that only 50–60% of system actions selected
by the proposed dialog manager were the same as those cho-
sen by the rule-based manager. Although these newly selected

1The “rule-based” system actions in the history should be replaced
with the system actions obtained by the proposed dialog manager for
realistic evaluation. However, since this would normally affect the sub-
sequent user intentions, we would not be able to evaluate it using dialog
log data. Although this paper evaluated our proposed approach using
rule-based log data, evaluation with real users is important future work.

Table 2: The rate of successful dialog completion with fewer
turns than the rule-based system (Early success), and the coin-
cidence rate of system actions from the proposed and rule-based
systems.

Early success (%) Coincidence (%)
Task 1 Task 2 Task 1 Task 2

1-best (θr = 1.0) 56.1 55.9 61.5 46.6
N -best etc. (θr = 1.0) 60.4 60.7 59.8 49.5
N -best etc. (θr = 0.5) 59.5 60.7 70.2 69.2

system actions must be different from the rule-based system’s
in order to improve dialog efficiency, too many actions that dif-
fer from those of the rule-based system, which already achieved
very high task completion rates, may not be desirable. The set-
ting of the regularization cost θr aims to avoid this situation,
and N -best results with θr = 0.5 keep the early success rates
similar, while improving the coincidence rates by 10–20%. This
result shows the effectiveness of the proposed dialog manager’s
regularization using the rule-based actions.

Figure 2 provides a typical example of how the simulated
dialog of the proposed dialog manager can reach the goal with
fewer turns. The 2nd column lists the Japanese ASR results and
system prompts in the rule-based system’s log data, with En-
glish translations. The 3rd column lists the estimated N -best
user intentions with their confidence scores in the user inten-
tion rows (u1, u2, and u3), and the system actions obtained
from the rule-based system in the system action rows (a1, a2,
and a3). The 4th column lists the system actions chosen by the
proposed dialog manager. In this example, the rule-based sys-
tem in the 3rd turn (a3 row) confirmed whether the command
is about setting a viapoint, destination, or registering a point.
However, in the 1st user turn (u1 row), the user already spec-
ified his/her command to set a waypoint (this information was
included in the 2nd-best user intention), and our goal estimator
correctly estimated the command from this information. Thus,
the proposed manager provided the goal action without the con-
firmation, which reduced the number of turns from 3 to 2.

4. Summary
This paper proposes a statistical dialog manager that can im-
prove the efficiency of dialogs from an existing rule-based sys-
tem, while choosing similar actions to those of the rule-based
system, by incorporating the rule-based system into the cost
function. Preliminary evaluation using dialog log data from
the rule-based system demonstrates the effectiveness of the pro-
posed dialog manager. In future work, we will perform more
realistic evaluation with user data from the proposed system. In
addition, we will compare the proposed system with other sta-
tistical dialog managers by using public data (e.g., [23]).
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