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Abstract

Change detection is one of the most commonly encountered low-level tasks in computer vision
and video processing. A plethora of algorithms have been developed to date, yet no widely ac-
cepted, realistic, large-scale video data set exists for benchmarking different methods. Presented
here is a unique change detection video data set consisting of nearly 90000 frames in 31 video
sequences representing six categories selected to cover a wide range of challenges in two modali-
ties (color and thermal infrared). A distinguishing characteristic of this benchmark video data set
is that each frame is meticulously annotated by hand for ground-truth foreground, background,
and shadow area boundaries-an effort that goes much beyond a simple binary label denoting the
presence of change. This enables objective and precise quantitative comparison and ranking of
video-based change detection algorithms. This paper discusses various aspects of the new data
set, quantitative performance metrics used, and comparative results for over two dozen change
detection algorithms. It draws important conclusions on solved and remaining issues in change
detection, and describes future challenges for the scientific community. The data set, evaluation
tools, and algorithm rankings are available to the public on a website1 and will be updated with
feedback from academia and industry in the future.
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Abstract—Change detection is one of the most commonly
encountered low-level tasks in computer vision and video
processing. A plethora of algorithms have been developed to
date, yet no widely accepted, realistic, large-scale video dataset
exists for benchmarking different methods. Presented here is
a unique change detection video dataset consisting of nearly
90,000 frames in 31 video sequences representing 6 categories
selected to cover a wide range of challenges in 2 modalities
(color and thermal IR). A distinguishing characteristic of this
benchmark video dataset is that each frame is meticulously
annotated by hand for ground-truth foreground, background,
and shadow area boundaries – an effort that goes much beyond a
simple binary label denoting the presence of change. This enables
objective and precise quantitative comparison and ranking of
video-based change detection algorithms. This paper discusses
various aspects of the new dataset, quantitative performance
metrics used, and comparative results for over two dozen change
detection algorithms. It draws important conclusions on solved
and remaining issues in change detection, and describes future
challenges for the scientific community. The dataset, evaluation
tools, and algorithm rankings are available to the public on a
website1 and will be updated with feedback from academia and
industry in the future.

I. INTRODUCTION

Detection of change, and in particular motion, is a
fundamental low-level task in many computer vision and
video processing applications. Examples include visual
surveillance (video compression, zone monitoring, people
counting, anomaly detection, action recognition, etc.), smart
environments (occupancy analysis, parking lot management,
etc.), and content retrieval (video annotation, event detection,
object tracking, forensic labeling).

Change detection is closely coupled with higher level
inference tasks such as detection, localization, tracking, and
classification of moving objects, and is often considered to be
preprocessing step. Its importance can be gauged by the large
number of algorithms that have been developed to-date and
the even larger number of articles that have been published
on this topic. A quick search for ‘motion detection’ on IEEE
Xplore c© returns over 20,000 papers.

Among the many variants of change detection algorithms,
there seems to be no single algorithm that competently
addresses all of the inherent real world challenges such
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as sudden illumination variations, background movements,
shadows, camouflage effects (photometric similarity of object
and background) and ghosting artifacts (delayed detection of
a moving object after it has moved away) to name a few.

Due to the tremendous effort required to build an inclusive
benchmark dataset that supplies pixel-precision ground truth
labels and provides a balanced coverage of the representative
challenges, prior attempts to attain an objective evaluation of
change detection methods have been confined to limited partial
assessments.

The lack of a comprehensive dataset has a number of
negative implications. Firstly, it makes it difficult to ascertain
with confidence which algorithms would perform robustly
when the assumptions they are built upon are violated. Many
algorithms tend to overfit specific scenarios. A method tuned
to be robust to shadows may not be as robust to background
motion. A dataset that contains many different scenarios and
applies a variety of performance measures would go a long
way towards providing an objective assessment. Secondly, not
all authors are willing to (or have the resources to) compare
their methods against the most advanced and promising
approaches. As a consequence, an overwhelming importance
has been accorded to a small subset of easily implementable
methods such as [1], [2], [3] that were developed in the late
1990’s. The more recent and advanced methods have been
marginalized as a result. Besides, the implementation of the
same method varies significantly from one research group
to another in the choice of parameters and the use of other
pre- and post-processing steps. Thirdly, the fact that authors
often use their own data (that are not widely available to
everyone) makes a fair comparison much more problematic
if not impossible.

Recognizing the importance of change detection to the
computer vision and video processing communities, we
have assembled a change detection benchmark dataset:
www.ChangeDetection.net (CDnet) that consists of
nearly 90,000 frames in 31 video sequences representing 6
video categories (including thermal). We initially reported
on this dataset at the 2012 IEEE Change Detection Workshop
(within CVPR 2012) [4]. Here we expand on this initial report
by providing a more comprehensive review of state-of-the-art
and including results for additional 7 methods.

CDnet contains diverse motion and change detection
challenges in addition to typical indoor and outdoor scenes that
are encountered in most surveillance and smart environments,
and video analytics applications using static cameras. A
distinguishing feature of the 2012 CDnet is the fact that each
image is meticulously annotated for ground-truth foreground,
background, and shadow region boundaries; an effort that
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goes much beyond a simple binary label denoting the
presence of the change. The existence of ground-truth masks
permits a precise comparison and ranking of change detection
algorithms. CDnet also supplies evaluation tools in Matlab
and Python for quantitatively assessing the performance of
different methods according to 7 distinct metrics.

The overarching objectives of this paper are:
1) To provide the research community with a rigorous and

comprehensive scientific benchmarking facility, a rich
dataset of videos, a set of utilities, and an access to
author-approved algorithm implementations for testing
and ranking of existing and new algorithms for motion
and change detection. The already extensive dataset will
be regularly revised and expanded with feedback from
the academia and industry.

2) To establish, maintain, and update a rank list of the most
accurate motion and change detection algorithms in the
various categories for years to come.

3) To help identify the remaining challenges in order to
provide focus for future research.

Next, we provide an overview of previous motion detection
methods, surveys, and existing datasets. Details of the
2012 CDnet follow, including its categories, ground-truth
annotations, and performance metrics. We then describe
results and compare and contrast the performance of different
methods in each category. We conclude with a discussion of
solved and unsolved issues in change detection.

II. PREVIOUS WORK

Instead of undertaking a detailed discussion of the huge
body of existing literature on change detection, we briefly
summarize the frequently encountered approaches, datasets,
and surveys of change detection. An extensive survey of
change detection methods can be found in [5].

A. Motion vs. Change Detection
There is a large and growing body of literature on motion

and change detection the in computer vision and video
processing communities. Several closely related problems
that have been studied in the last two decades including
salient motion detection [6], background subtraction [7],
[8], [9], change detection [10], [11], [12], foreground
detection [13], foreground segmentation [14], and video-object
segmentation [15] share various objectives as well as core
solutions. In comparison to the change detection task, motion
detection may extend to camera motion, egomotion, articulated
body motion, epipolar geometry, etc. to name a few.

We refer to change detection as the process of detecting
foreground regions in a video. Such foreground regions
typically correspond to moving objects, e.g., people, animals,
vehicles, etc., in the scene whose movements change the
photometric values of the projected image pixels. We also
consider objects that become temporarily motionless and then
move (e.g., a car at a traffic light) as part of the foreground.
Although moving, we do not consider waves on a water
surface, objects shaken by wind (trees, flags, light poles,
etc.), moving shadows and object reflections as actual moving
objects.

B. Change Detection
Statistical change point analysis (see [16] and references

therein) refers to a large body of literature in statistics
and signal processing concerning the problem of detecting
changes in the statistical properties of time-series data
using parametric and nonparametric statistical tests. Typical
applications include neurology, bioinformatics, finance, quality
control, seismology, etc. In contrast to these applications, the
focus of this paper is on change detection in video, where
(a) the dimensionality and size of the data can be quite high:
typical video contains over one hundred thousand time-series
(one time-series for each pixel), each tens of thousands of
samples long, (b) there is strong spatially-localized temporal
correlation among the time series, and (c) there are multiple
changes across space and time, some highly correlated, some
not.

Some of the commonly used change detection techniques
for video application can be categorized as frame differencing,
background modeling and subtraction, motion segmentation,
and matrix decomposition. We briefly discuss each of these
techniques below.

1) Basic models: Frame differencing aims to detect changes
in the state of a pixel, e.g., due to a moving object, by
subtracting the pixel’s intensity in the current frame from
its intensity in the previous frame or some reference frame.
Although this method is computationally very inexpensive, it
is sensitive to illumination changes. Another limitation is that
it cannot detect a moving object once it stops moving and
when the object motion becomes small; instead it typically
detects object boundaries, covered and exposed areas due to
object motion.

Change detection can be achieved by building a
representation of the scene, called background model, and then
observing deviations from this model for each incoming frame.
A sufficient change from the background model is assumed to
indicate a moving object.

The simplest strategy to detect motion is to subtract the
pixel’s color in the current frame from the corresponding
pixel’s color in the background model [7]. A temporal median
filter can be used to estimate a color-based background
model [17]. One can also generalize to other features
such as color histograms [18], [19] and local self-similarity
features [20]. In general, these temporal filtering methods are
sensitive to global illumination changes and incapable to detect
moving objects once they become stationary.

Early approaches use filters to predict background pixel
intensities (or colors). For these models, each pixel whose
observed color is far from its prediction is assumed to indicate
motion. In [21] and [22], a Kalman filter is used to model
background dynamics. Similarly, in [23] Wiener filtering is
used to make a linear prediction at pixel level. The main
advantage of these methods are their ability to cope with
background changes (whether it is periodic or not) without
having to assumed any parametric distribution. In case most
of the pixels in a frame exhibit sudden change, the background
models are assumed to be no longer valid at frame level. At
this point, either a previously stored pixel-based background
model is swapped in, or the model is reinitialized.
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A motion history image [24], [25] is obtained by successive
layering of frame differences. For each new frame, existing
frame differences are scaled down in amplitude, subject
to some threshold, and the new motion label field is
overlaid using its full amplitude range. In consequence, image
dynamics ranging from two consecutive frames to several
dozen frames can be captured in a single image.

More complex background models can be used. For
example, Hermade-Lopez and Rivera [26] implement a
background model designed to be robust to illumination
changes, cast shadows and camouflage. As opposed to other
basic methods which detect motion in a maximum likelihood
matter (which is sensitive to noise and isolated artifacts)
they implement a quadratic Markov measure field (QMMF)
which enforces spacial regularity with the help of a quadratic
programming solved.

2) Parametric Background Modeling & Subtraction: In
order to learn changes in time, a single Gaussian distribution
was proposed to model each pixel [3]. Once the parameters
of the Gaussian model have been updated over several
consecutive frames, the likelihood of the current pixel color
coming from this model is determined. The pixels that deviate
significantly from their models are labeled as the foreground
pixels. Since pixels in noisy areas are given a larger standard
deviation, a larger color variation is needed in those areas
to detect motion. This is a fundamental difference with the
basic models for which the tolerance is fixed for every pixel.
As shown by Kim et al. [27], a generalized Gaussian model
can also be used and Morde et al. [25] have shown that
a Chebychev inequality can also improve results. With this
model, the detection criteria depends on how many standard
deviations a color is from the mean.

A single Gaussian, however, is not a good model for
dynamic scenes [28] as multiple colors may be observed at
a pixel due to repetitive object motion, shadows or reflectance
changes. A substantial improvement is achieved by using
multiple statistical models to describe background color.
A Gaussian Mixture Model (GMM) [29] was proposed to
represent each background pixel. GMM compares each pixel
in the current frame with every model in the mixture until a
matching Gaussian is found. If a match is found, the mean
and variance of the matching Gaussian are updated, otherwise
a new Gaussian with the mean equal to the current pixel
color and some initial variance is introduced into the mixture.
Instead of relying on only one pixel, GMM can be trained to
incorporate extended spatial information [30].

Several papers [31] improved the GMM approach to add
robustness when shadows are present and to make the
background models more adaptive to parasitic background
motion. A recursive method with an improved update of
the Gaussian parameters and an automatic selection of
the number of modes was presented in [32]. Haines et
al. [33] also propose an automatic mode selection method,
but with a Dirichlet process. A splitting GMM that relies
on a new initialization procedure and a mode splitting
rule was proposed in [34], [35] to avoid over-dominating
modes and resolve problems due to newly static objects
and moved away background objects while a multi-resolution

block-based version was introduced in [36]. The GMM
approach can also be expanded to include the generalized
Gaussian model [37]. Let us mention that some GMM methods
with an automatic mode splitting and merging procedure are
sometimes considered as non-parametric methods [33].

As an alternative to mixture models, Bayesian approaches
have been proposed. In [13], each pixel is modeled as a
combination of layered Gaussians. Recursive Bayesian update
instead of the conventional expectation maximization fitting
is performed to update the background parameters and better
preserve the multi-modality of the background model. A
similar Bayesian decision rule with various features and
a learning method that adapt to both sudden and gradual
illumination changes in used in [38].

Another alternative to GMM is background clustering. In
this case, each background pixel is assigned a certain number
of clusters depending on the color variation observed in the
training video sequence. Then, each incoming pixel whose
color is close to a background cluster is considered part of the
background. The clustering can be done using K-means (or a
variant of it) [39], [40] or codebook [41].

3) Non-Parametric & Data-driven Background Modeling:
In contrast to parametric models, non-parametric kernel
density estimation (KDE) fits a smooth probability density
function to a time window with previously-observed pixel
values at the same location [8]. During the change detection
process, a new-frame pixel is tested against its own density
function as well as those of pixels nearby. This increases the
robustness against camera jitter or small movements in the
background. Similar effects can be achieved by extending the
support to larger blocks and using texture features that are less
sensitive to inter-frame illumination variations.

Although nonparametric models are robust against small
changes, they are expensive both computationally and in terms
of memory use. Moreover, extending the support causes small
foreground objects to disappear. As a consequence, several
authors worked to improve the KDE model. For instance,
a multi-level method [42] makes KDE computationally
independent of the number of samples. A trend feature is
used to reliably differentiate periodic background motion from
illumination changes [43].

Recently, data-driven methods using random samples for
background modeling have shown robustness to several types
of error sources. For example, ViBe [9], [44] not only shows
robustness to background motion and camera jitter but also
to ghosting artifacts. [45] shows robustness on a variety
of difficult scenarios due to its ability to tune its decision
threshold and learning rate based on previous decisions made
by the system. In both [9], [45], a pixel is declared as
foreground if it is not close to a sufficient number of
background samples from the past.

A shortcoming of the above methods is that they
do not account for any “temporal correlation” within
video sequences, thus they are sensitive to periodic (or
near-periodic) background motion. This prevents them from
detecting a structured or near-periodic changes, for example
alternating light signals at an intersection, motion of plants
driven by wind, the appearance of rotating objects, etc.
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Background model References

Basic

Running average [7], [18], [19], [20], [26]
Temporal median [17]
Motion history image [24], [25]
Kalman filter [21], [22]
Weiner filter [23]

Parametric

Single Gaussian [3]
Gaussian Mixture Model (GMM) [29], [30],
[31], [32], [35], [34], [36], [33]
Background clustering [39], [40], [41]
Generalized Gaussian Model [37], [27]
Bayesian [13], [38]
Chebyshev inequality [25]

Non-Parametric &
Data-driven

Kernel Density Estimation (KDE) [8], [42], [43],
[50]
Cyclostationary [12]
Stochastic K-nearest neighbors (KNN) [9], [45].
Deterministic KNN [32]
Bayesian [33]
Local binary patterns [47], [48]
Hidden Markov Model (HMM) [46]

Matrix Decomposition Principal Component Analysis (PCA) [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61]
Sparsity and dictionary learning [62], [63]

Motion Segmentation Optical flow segmentation [6], [64], [65]
GMM and Optical flow segmentation [40], [66]

Machine Learning
1-Class SVM [67]
SVM [68], [69], [70]
Neural networks [71], [72], [14], [73]

TABLE I: Overview of 6 families of motion detection methods.

A cyclostationary background generation method based on
frequency decomposition that explicitly harnesses the scene
dynamics is proposed in [12]. In order to capture the
cyclostationary behavior at each pixel, spectral coefficients of
temporal temporal intensity profiles are computed in temporal
windows and a background model that is composed of those
coefficients is maintained and fused with distance maps to
eliminate trail effects. An alternative approach is to use a
Hidden Markov Model (HMM) with discrete states to model
the intensity variations of a pixel in an image sequence.
State transitions can then be used to detect changes [46].
The advantage of using HMMs is that certain events, which
may not be modeled correctly by unsupervised algorithms,
can be learned using the provided training samples. Some
authors, such as Yao and Odobez [47] and Zhang et al. [48],
improved the Local Binary Patterns approach of Heikkila and
Pietikainen [49] to be more robust to dynamic scenes.

4) Motion Segmentation: Motion segmentation refers to the
assignment of groups of pixels to various classes based on the
speed and direction of their movements [65]. Most approaches
to motion segmentation first seek to compute optical flow
from an image sequence. Discontinuities in the optical flow
can help in segmenting images into regions that correspond
to different objects. In [6], temporal consistency of optical
flow over a narrow time window is estimated; areas with
temporally-consistent optical flow are deemed to represent
moving objects and those exhibiting temporal randomness are
assigned to the background.

Optical flow based methods will be erroneous if brightness
constancy or velocity smoothness assumptions are violated.
In real imagery, such violations are quite common. Typically,
optical flow methods fail in low-texture areas,around moving
object boundaries, at depth discontinuities, etc. Due to the

commonly imposed regularization term, most optical flow
methods produce an over smooth optical flow near boundaries.
This produces a halo artifact around moving objects. The
resulting errors may propagate across the entire optical
flow solution. As a solution, some authors [40], [66] use
motion segmentation and optical flow in combination with a
color-based GMM model.

5) Matrix Decomposition: Instead of modeling the
variation of individual pixels, the whole image can be
vectorized and used in background modeling. In [51], a holistic
approach using eigenspace decomposition is proposed. For a
certain number of input frames, a background matrix (called
eigen background) is formed by arranging the vectorized
representations of images in a matrix where each vectorized
image is a column. An eigenvalue decomposition via Principal
Component Analysis (PCA) is performed on the covariance
of this matrix. The background is then represented by the
most descriptive eigenvectors that encompass all possible
illuminations to decrease sensitivity to illumination.

It is well known that PCA methods suffer from fundamental
limitations [56], [58]. First, a video clip used to compute the
eigen background should not contain large moving objects as
otherwise the background will likely be corrupted. Second,
most PCA methods are geared towards grayscale videos since
the integration of RGB values is not trivial. Third, the PCA
background model is unimodal and does not account well for
videos with a dynamic background. Another limitation for
most PCA methods is their sensitivity to outliers (due to a
quadratic objective function) and their need to store entire
video in memory in order to compute the background model
and perform background subtraction.

Typical solutions to some of these problems are the
so-called robust-PCA methods. These methods either replace
the quadratic objective function by a robust function [74] or
decompose the training video into the sum of a low-rank
sparse matrix via the minimization of a L1 cost function [60],
[61]. Guyon et al. [57] introduced a spatial term in the
L1 cost function in order to add robustness to dynamic
backgrounds, while Seidel et al. [56] showed that a weighted
Lp cost function can further improve results. Some methods
[53], [55], [56], [59], [61] incorporate an online updating
scheme to avoid storing the entire video in memory. Xu et
al. [52] proposed a variation of the eigen background model
which includes a recursive error compensation step for more
accurate detection. Others, such as Doug et al. [54], proposed
illumination invariant approach based on a multi-subspace
PCA, each subspace representing different lighting conditions.

Instead of the conventional background and foreground
definition, Porikli [62] decomposes an image into “intrinsic”
background and foreground images. The multiplication of
these images reconstructs the given image. Inspired by the
sparseness of the intensity gradient, it applies a spatial
derivative filters in the log domain to a subset of the previous
video frames to obtain intensity gradient. Since the foreground
gradients of natural images are Laplacian distributed and
independent, the Maximum Likelihood (ML) estimate of the
background gradient can be obtained by a median operator
and the corresponding foreground gradient is computed. These
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gradient results are used to reconstruct the background and
foreground intensity images using a reconstruction filter and
inverse log operator. This intrinsic decomposition is shown to
be robust against sudden and severe illumination changes, but
it is computationally expensive.

Another background subtraction approach based on the
theory of sparse representation and dictionary learning is
proposed in [63]. This method makes the following two
important assumptions: (1) the background of a scene has a
sparse linear representation over a learned dictionary; (2) the
foreground is sparse in the sense that a majority of the pixels
of the frame belong to the background. These two assumptions
enable handling both sudden and gradual background changes.

6) Machine Learning: Motion detection methods in this
category use machine learning discriminative tools such as
SVM and neural networks to decide whether or not a pixel
is in motion. The parameters of these functions are learned
given a training video. Lin et al. [68] use a probabilistic SVM
to initialize the background model. They use the magnitude
of optical flow and inter-frame image difference as features
for classification. Han and Davis [70] model the background
using a kernel density approximation with multiple features
(RGB, gradient, and Haar) and employ a Kernel-SVM as a
discriminative function. A somewhat similar approach has also
been proposed by Hao [69]. These approaches are typical
machine learning methods that need positive and negative
examples for training. This is a major limitation for any
practical implementation since very few videos come with
manually labeled data. As a solution, Chen et al. [67]
proposed a GPU-based 1-class SVM method called SILK.
This method does not need pre-labeled training data, and
permits online updating of the SVM parameters. Maddalena
and Petrosino [71], [72] model the background of a video
with the weights of a neural network. A very similar approach
but with a post-processing MRF stage has been proposed by
Schick et al. [14]. Results reported in the paper show great
compromise between processing speed and robustness to noise
and background motion. Gregorio and Giordano [73] propose
a weightless neural network approach called CwisarD.

C. Previous Datasets

Without aiming to be exhaustive, we list below some of the
most widely used datasets and describe their characteristics:

• Wallflower [23]: This is a fairly well-known dataset that
continues to be used today. It contains 7 short video
clips, each representing a specific challenge such as
illumination change, background motion, etc. Only one
frame per video has been labeled.

• PETS [75]: The Performance Evaluation of Tracking and
Surveillance (PETS) program was launched with the goal
of evaluating visual tracking and surveillance algorithms.
The program has been collecting videos for the scientific
community since the year 2000 and now contains several
dozen videos. Many of these videos have been manually
labeled by bounding boxes with the goal of evaluating
the performance of tracking algorithms.

• CAVIAR2: This dataset contains more than 80 staged
indoor videos representing all kinds of human behavior
such as walking, browsing, shopping, fighting, etc. Like
the PETS dataset, a bounding box is associated with each
moving character.

• i-LIDS3: This dataset contains 4 scenarios (parked
vehicle, abandoned object, people walking in a restricted
area, doorway). Due to the size of the videos (more than
24 hours of footage) the videos are not fully labeled.

• ETISEO4: This dataset contains more than 80 video clips
of various indoor and outdoor scenes. Since the ground
truth consists mainly of high-level information such as the
bounding box, object class, event type, etc., this dataset
is more suitable for tracking, classification and event
recognition than change detection.

• ViSOR 20095 [76] is a web archive whose goal is to
collect, annotate, store and share surveillance videos.
More than 500 videos can be downloaded, all annotated
with bounding boxes. These videos are short indoor
and outdoor clips (usually less than 10 seconds) often
showing staged human actions and interactions. Although
it has a benchmarking section, it has been left “under
construction” since 2009.

• BEHAVE 20076: A dataset containing 7 real videos shot
by the same camera showing various human interactions
such as walking in a group, chasing each other, meeting,
splitting, etc. Ground truth consists of bounding boxes
surrounding moving objects.

• VSSN 20067: This dataset contains 9 semi-synthetic
videos composed of a real background and
artificially-moving objects. The videos contain animated
background, illumination changes and shadows, however
they do not contain any frames void of activity.

• IBM8: This dataset contains 15 indoor and outdoor videos
taken from PETS 2001 plus additional videos. For each
video, 1 frame out of 30 is labeled with a bounding box
around each foreground moving object.

• Karlsruhe9: This dataset contains 4 grayscale videos from
the Institut für Algorithmen und Kognitive Systeme [80].
These videos show traffic scenes under various weather
conditions. The authors ground-truth labeled 10 frames
for each video.

• Li et al.[38]10: In order to validate their Bayesian
motion detection method, they used a dataset made of
10 indoor/outdoor videos containing illumination changes
and dynamic backgrounds. The videos are low-resolution
(usually 160 × 120) and only 10 frames for each video
sequence have been ground-truth labeled.

• Karaman et al. [77]: A dataset made up of 5 videos

2homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3hwww.homeoffice.gov.uk/science-research/hosdb/i-lids
4www-sop.inria.fr/orion/ETISEO
5www.openvisor.org/
6groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
7mmc36.informatik.uni-augsburg.de/VSSN06 OSAC
8www.research.ibm.com/peoplevision/performanceevaluation.html
9i21www.ira.uka.de/image sequences/
10perception.i2r.a-star.edu.sg/bk model/bk index.html

www.openvisor.org/
groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
i21www.ira.uka.de/image_sequences/
perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Dataset Description Ground truth
CD.net 2012 31 videos in 6 categories : baseline, dynamic background, camera jitter, shadow,

intermittent motion, and thermal.
Pixel-based labeling of 71,000 frames.

Wallflower [23] 7 short video clips, each representing a specific challenge such as illumination
change, background motion, etc

Pixel-based labeling of one frame per video.

PETS [75] Many videos aimed at evaluating the performance of tracking algorithms Bounding boxes.
CAVIAR 80 staged indoor videos representing different human behaviors such as walking,

browsing, shopping, fighting, etc.
Bounding boxes.

i-LIDS Very long videos meant for action recognition showing parked vehicle, abandoned
object, people walking in a restricted area, and doorway

Not fully labeled.

ETISEO More than 80 videos meant to evaluate tracking and event detection methods. High-level label such as bounding boxes, object
class, event type, etc.

ViSOR 2009 [76] Web archive with more than 500 short videos (usually less than 10 seconds) Bounding boxes.
BEHAVE 2007 7 videos shot by the same camera showing human interactions such as walking in

group, meeting, splitting, etc.
Bounding boxes.

VSSN 2006 9 semi-synthetic videos composed of a real background and artificially-moving
objects. The videos contain animated background, illumination changes and
shadows, however they do not contain any frames void of activity.

Pixel-based labeling of each frame.

IBM 15 videos taken from PETS 2001 plus additional videos. Bounding box around each moving object in 1
frame out of 30.

Karlsruhe 4 grayscale videos showing traffic scenes under various weather conditions. 10 frames per video have pixel-based labeling.
Li et al.[38] 10 small videos with illumination changes and dynamic backgrounds. 10 frames per video have pixel-based labeling.
Karaman [77] 5 videos coming from different sources (the web, the “art live” project, etc.) with

various illumination conditions and compression artifacts
Pixel-based labeling of every frame.

cVSG 2008 [15] 15 Semi-synthetic videos with various levels of textural complexity, background
motion, moving object speed, size and interaction.

Pixel-based labeling obtained by filming
moving objects (mostly humans) in front of
a blue-screen and then pasted on top of
background videos.

LIMU 8 simple indoor/outdoor videos, some borrowed from PETS2001. pixel-based labeling for 1 frame out of 15.
USCD 18 short videos with strong background motion and/or camera motion. pixel-based labeling.
SZTAKI 5 indoor/outdoor videos with shadows pixel-accurate labeling of foreground and

shadows for a subset of frames .
BMC 2012 [78] 29 outdoor videos, most being synthetic. Pixel-based labeling for 10 synthetic videos and

9 real videos. Ground truth of real videos is for
a small subset of images.

Brutzer et al. [79] Computer-generated videos showing a 3D scene representing a street corner. The
sequences include illumination changes, dynamic background, shadows, and noise.

Pixel-based labeling.

TABLE II: Overview of 15 video datasets.

coming either from the web, from the “art live” project11,
or from their own dataset. These videos contain various
illumination conditions and compression artifacts. Videos
have been manually labeled.

• cVSG 2008: In 2008, Tiburzi et al. [15] proposed
a semi-synthetic12 dataset consisting of 15 videos.
To simplify the ground-truth labeling operation, the
foreground moving objects (mostly humans) have been
filmed in front of a blue-screen and then pasted on top
of background videos. The resulting videos show various
levels of textural complexity, background motion, moving
object speed, size and interaction. Unfortunately, the web
site does not allow performance evaluation.

• LIMU 13: dataset from Kyushu University containing 8
simple indoor/outdoor videos, some being home-made
while others have been borrowed from PETS2001.
Pixel-accurate ground truth maps provided for 1 frame
out of 15.

• USCD 14: contains 18 short videos (less than 200 frames)
showing scenes with strong background motion and/or
camera motion.

• SZTAKI 15: contains 5 videos sequences with manual

11www.tele.ucl.ac.be/PROJECTS/art.live/
12www-vpu.ii.uam.es/CVSG/
13limu.ait.kyushu-u.ac.jp/dataset/en/
14svcl.ucsd.edu/projects/background subtraction/
15web.eee.sztaki.hu/ bcsaba/FgShBenchmark.htm

groundtruth for foreground moving objects and shadows.
The dataset can only be downloaded with a password
provided by the owner.

• BMC 2012 [78] 16: dataset created for the Background
Models Challenge (BMC) of the 2012 ACCV conference.
It consists of 29 outdoor videos, some being synthetic.
Ground truth is available for 10 synthetic videos showing
two scenes: a street and a roundabout. The main challenge
for these 10 videos is related to various illumination
conditions. Ground truth is also available for real images
although only a small subset of images have been labeled.
Although they provide a software to compute Recall,
Precision, F-measure, and PSNR, they provide to means
of ranking methods.

• Brutzer et al., 2011 [79] : Stuttgart Artificial Background
Subtraction Dataset released in 2011 in conjunction with
a CVPR survey paper. It contains 9 videos showing the
same street corner but with different challenges (light
on/off, compression artefats, etc.). Pixel-accurate ground
truth is available for all sequences. As for BMC, they
provide a software to compute precision, recall and
F-measure values but do not explain how methods can
be ranked besides the use of precision-recall curves.

16bmc.univ-bpclermont.fr/

www.tele.ucl.ac.be/PROJECTS/art.live/
www-vpu.ii.uam.es/CVSG/
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Additional details regarding these datasets can be found on a
web page of the European CANTATA project17. Many of these
datasets have ground-truth information represented in terms of
the bounding box for each foreground object. Furthermore, the
focus of several datasets is more on tracking as well as human
behavior and interaction recognition than change detection. As
such, the above datasets do not contain the diversity of video
categories present in the new dataset.

D. Survey Papers

To date, a number of survey papers have been written on
the topic of change detection algorithms. Below, we list key
survey papers that are devoted to the comparison and ranking
of change and motion detection algorithms. Most of these
papers use their own datasets.
• Benezeth et al., 2010 [7] used a collection of 29 videos

(15 camera-captured, 10 semi-synthetic, and 4 synthetic)
taken from PETS 2001, the IBM dataset, and the VSSN
2006 dataset. The authors also used semi-synthetic videos
composed of synthetic foreground objects (people and
cars) moving over a camera-captured background.

• Bouwmans et al., 2008 [81] surveyed GMM methods and
used the Wallflower dataset as a benchmark.

• Bouwmans et al., 2011 [5] presented one of the most
complete surveys to date with more than 350 references.
The paper reviewed methods spanning 6 motion detection
categories and the features used by each method. The
survey also listed a number of typical challenges and gave
insights into memory requirements and computational
complexity. The Wallflower dataset was used to compare
different methods.

• Nascimento and Marques, 2006 [82] used a single PETS
2011 video sequence which they manually labeled at
pixel resolution using a graphical editor.

• Hassanpour et al., 2011 [83] compare 7 commonly-used
methods based on time consumption, memory usage and
accuracy. They only account for two 100-frame-long
grayscale videos and report accuracy for only 4 frames.

• Brutzer et al., 2011 [79] used a synthetic
(computer-generated) dataset produced from only
one 3D scene representing a street corner. The sequences
included illumination changes, dynamic background,
shadows and noise, while lacking frames with no activity.

• Prati et al., 2001 [84] used indoor sequences containing
one moving person that were manually segmented into
foreground (human), shadow, and background areas. Only
112 frames were ground-truth labeled.

• Rosin and Ioannidis, 2003 [10] used a labeling program
that automatically locates moving objects based on their
position in space and properties such as color, size,
shape, etc. These properties were not used by the change
detection algorithms tested. However, the videos used
were not realistic as they were limited to lab scenes with
balls rolling on the floor.

• Bashir and Porikli, 2006 [85] conducted a performance
evaluation of tracking algorithms using the PETS 2001

17www.hitech-projects.com/euprojects/cantata/datasets cantata/

dataset by comparing the detected bounding box locations
with the ground-truth.

• Parks and Fels, 2008 [86] benchmarked 7 motion
detection methods and evaluated the influence of
post-processing on their performance. They used 7
outdoor and 6 indoor videos containing different
challenges such as dynamic backgrounds, shadows and
various lighting conditions.

• Piccardi [87] reviewed 7 background subtraction
methods and highlighted their strengths and weaknesses.
Although no quantitative evaluation was provided, the
paper included a formal investigation of computational
complexity and memory requirements.

• Radke et al. [11] performed an extensive survey of a
wide-range of algorithms devoted to the detection of
all kinds of changes in images. Most of the discussion
in the paper was related to background subtraction
methods, pre- and post-processing, and methodologies for
evaluating performance. No quantitative evaluation was
included.

At a high level, the existing surveys suffer from three main
limitations. First, the usual statistics reported in these papers, if
any, were not computed on a well-balanced dataset composed
of real (camera-captured) videos. Typically, synthetic videos,
real videos with synthetic moving objects pasted in, or real
videos out of which only 1 frame was manually segmented
for ground truth were used. Furthermore, very few datasets
contained more than 10 videos. Secondly, none of the papers
was accompanied by a fully-operational website that allows
users to upload their results and compare them against those
of others. Thirdly, the survey papers often reported common,
fairly simple motion detection methods, and did not report the
performance of more complex methods.

III. THE 2012 CDNET DATASET

The 2012 CDnet dataset consists of 31 videos depicting
indoor and outdoor scenes with boats, cars, trucks, and
pedestrians that have been captured in different scenarios
and contain a range of challenges. The videos have been
obtained with different cameras ranging from low-resolution
IP cameras, through mid-resolution camcorders and PTZ
cameras, to thermal cameras. As a consequence, spatial
resolutions of the videos in CDnet vary from 320 × 240 to
720 × 576. Also, due to diverse lighting conditions present
and compression parameters used, the level of noise and
compression artifacts varies from one video to another. The
length of the videos also varies from 1,000 to 8,000 frames and
the videos shot by low-end IP cameras suffer from noticeable
radial distortion. Different cameras may have different hue bias
(due to different white balancing algorithms employed) and
some cameras apply automatic exposure adjustment resulting
in global brightness fluctuations in time. We believe that the
fact that our videos have been captured under a range of
settings will help prevent this dataset from favoring a certain
family of change detection methods over others.

The videos are grouped into six categories according to
the type of challenge each represents. We selected videos so
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“Baseline” “Dynamic Background” “Camera Jitter” “Shadows” “Interm. Object Motion” “Thermal”

Fig. 1: Sample video frames from each of the 6 categories in the 2012 dataset available at www.changedetection.net and
typical detection results obtained using basic background subtraction [7] reported in the last row of Table III.

that the challenge in one category is unique to that category.
For example, only videos in the “Shadows” category contain
strong shadows and only those in the “Dynamic Background”
category contain strong parasitic background motion. Such a
grouping is essential for a clear identification of the strengths
and weaknesses of different change detection methods. With
the exception of one video in the “Baseline” category, that
comes from the PETS 2006 dataset, all the videos have been
captured by the authors.

A. Video Categories

31 videos totaling nearly 90,000 frames are grouped into
6 categories (Fig. 1) that have been selected to cover a wide
range of change detection challenges representative of typical
visual data captured today in surveillance, smart environment,
and video analytics applications. These 6 categories are:

1) Baseline: This category contains four videos, two indoor
and two outdoor. These videos represent a mixture of
mild challenges typical of the next 4 categories. Some
videos have subtle background motion, others have
isolated shadows, some have an abandoned object and
others have pedestrians that stop for a short while and
then move away. These videos are fairly easy, but not
trivial, to process, and are provided mainly as reference.

2) Dynamic Background: There are six videos in this
category depicting outdoor scenes with strong (parasitic)
background motion. Two videos represent boats on
shimmering water, two videos show cars passing next
to a fountain, and the last two depict pedestrians, cars
and trucks passing in front of a tree shaken by the wind
(second column in Fig. 1).

3) Camera Jitter: This category contains one indoor
and three outdoor videos captured by unstable (e.g.,
vibrating) cameras. The jitter magnitude varies from one
video to another.

4) Shadows: This category consists of two indoor and
four outdoor videos exhibiting strong as well as faint
shadows. Some shadows are fairly narrow while others
occupy most of the scene. Also, some shadows are cast
by moving objects while others are cast by trees and
buildings.

5) Intermittent Object Motion: This category contains
six videos with scenarios known for causing “ghosting”
artifacts in the detected motion, i.e., objects move, then
stop for a short while, after which they start moving
again. Some videos include still objects that suddenly
start moving, e.g., a parked vehicle driving away, and
also abandoned objects. This category is intended for
testing how various algorithms adapt to background
changes. One example of such a challenge is shown in
the 5-th column of Fig. 1 where new objects are added
to or existing objects are removed from the scene.

6) Thermal: In this category, five videos (three outdoor and
two indoor) have been captured by far-infrared cameras.
These videos contain typical thermal artifacts such as
heat stamps (e.g., bright spots left on a seat after a
person gets up and leaves), heat reflection on floors and
windows (see the last column of Fig. 1), and camouflage
effects, when a moving object has the same temperature
as the surrounding regions.

We would like to mention that although camouflage, caused
by moving objects that have very similar color/texture to
the background, is among the most glaring change detection
issues, we have not created a camouflage category. This is
partially because almost every real video sequence contains
some level of camouflage. It is difficult to create a dataset
in which there is a category exclusively with camouflage
challenges while other categories are void of it.

B. Ground-Truth Labels

As mentioned in Section II-C, the current online datasets
have been designed mainly for testing tracking and scene
understanding algorithms, and thus the ground truth is
provided in the form of bounding boxes. Although this can be
used to validate change detection methods, a precise validation
requires ground truth at pixel resolution. Therefore, ideally,
videos should be labeled a number of times by different
persons and the results averaged out. This, however, is
impractical due to resource and time constraints. Furthermore,
it is very difficult for a person to produce uncontroversial
binary ground-truth images for camera-captured videos. This
is particularly difficult near moving object boundaries and in
semi-transparent areas.

www.changedetection.net
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Due to motion blur and partially-opaque objects (e.g.,
sparse bushes, dirty windows, fountains), pixels in these areas
may contain both the moving object and background. As
a consequence, one cannot reliably classify such pixels as
belonging to either Static or Moving class. Since these areas
carry a certain level of uncertainty, evaluation metrics should
not be computed for pixels in these areas. Therefore, we
decided to produce ground-truth images with the following
labels:

1) Static: assigned grayscale value of 0,
2) Shadow: assigned grayscale value of 50,
3) Non-ROI18: assigned grayscale value of 85,
4) Unknown: assigned grayscale value of 170,
5) Moving assigned grayscale value of 255.

The Static and Moving classes are associated with pixels for
which the motion status is obvious. The Shadow label is
associated with hard and well-defined moving shadows such as
the one in Fig. 2. Hard shadows are among the most difficult
artifacts to cope with and we believe that adding this extra
information improves the richness and utility of the dataset
(please note that evaluation metrics discussed in Section III-C
consider the Shadow pixels as Static pixels). The Unknown
label is assigned to pixels that are half-occluded or corrupted
by motion blur. All pixels located close to moving-object
boundaries are automatically labeled as Unknown (Fig. 2).
This prevents evaluation metrics from being corrupted by
pixels whose status is unclear.

The Non-ROI (not in region of interest) label serves two
purposes. Firstly, since most change detection methods incur a
delay before their background model stabilizes, we labeled the
first few hundred frames of each video sequence as Non-ROI.
This prevents the corruption of evaluation metrics due to errors
during initialization. Secondly, the Non-ROI label prevents the
metrics from being corrupted by activities unrelated to the
category considered. An example of this situation is shown
in the second row of Fig. 2, which illustrates a sequence of
cars that arrive, stop at a street light and then move away.
The goal of the video is to measure how well a change
detection method can handle intermittent motion. However,
since the scene is cluttered with unrelated activities (cars on
the highway) the Non-ROI label puts the focus on street-light
activities. Similarly, the top row in Fig. 2 illustrates the
Shadow category; the Non-ROI label is used to prevent the
metrics from corruption by trees moving in the background.

C. Evaluation Metrics

Finding the right metric to accurately measure the ability
of a method to detect motion or change without producing
excessive false positives and false negatives is not trivial. For
instance, recall favors methods with a low False Negative Rate.
On the contrary, specificity favors methods with a low False
Positive Rate. Having the entire precision-recall tradeoff curve
or the ROC curve would be ideal, but not all methods have the
flexibility to sweep through the complete gamut of tradeoffs.
In addition, one cannot, in general, rank-order methods based
on a curve. We deal with these difficulties by reporting the

18ROI stands for Region of Interest.

Fig. 2: Sample video frames from the Bungalows and Street
light sequences and corresponding 5-class ground-truth label
fields.

average performance of each method for each video category
with respect to 7 different performance metrics each of which
has been well-studied in the literature. Specifically, for each
method, each video category, and each metric, we report the
performance (as measured by the value of the metric) of the
method averaged across all the videos of the category.

Let TP = number of true positives, TN = number of
true negatives, FN = number of false negatives, and FP =
number of false positives. The 7 metrics that we use are:

1) Recall (Re): TP/(TP + FN)
2) Specificity (Sp): TN/(TN + FP )
3) False Positive Rate (FPR): FP/(TP + FN)
4) False Negative Rate (FNR): FN/(TN + FP )
5) Percentage of Wrong Classifications (PWC): 100(FN+

FP )/(TP + FN + FP + TN)
6) Precision (Pr): TP/(TP + FP )
7) F -measure: 2 Pr·Re

Pr+Re

For the Shadow category, we also provide an average
False Positive Rate that is confined to the hard-shadow areas
(FPR-S).

For each method, the above metrics are first computed for
each video in each category. For example, the recall metric for
a particular video v in a category c is computed as follows:

Rev,c = TPv,c/(TPv,c + FNv,c).

Then, a category-average metric for each category is computed
from the values of the metric for all videos in a single category.
For example, the average recall metric of category c is given
by

Rec =
1

|Nc|
∑
v

Rev,c

where |Nc| is the number of videos in category c. We also
report an overall-average metric which is the simple average of
the category-averages. For example, the overall-average recall
is given by

Re =
1

6

∑
c

Rec. (1)

Similar category-average and overall-average values are also
computed for the other metrics and categories accordingly. The
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overall-average metrics such as Re are reported in Table III
while category-average metrics such as Rec are reported on
our website. Averaging metrics in this way (as opposed to
pooling together all pixels across all videos and/or categories
and then averaging) prevents bias that would occur should
some videos be much larger in terms of frame size and/or
length; summing up across videos would give overwhelming
importance to larger videos.

In order to rank-order different change detection methods,
we need to rationally combine the performance across different
metrics (and/or categories) into a single rank that is indicative
of how well a method fares relative to other methods in each
category and across all categories. To this end, motivated
by the approach followed by Young and Ferryman [75],
we provide an average ranking R across all overall-average
metrics, and an average ranking RC across all categories. To
explain how these are computed, let ranki(m, c) denote the
rank of method i for metric m in category c. The average
ranking of method i in category c across all metrics is given
by:

RMc,i =
1

7

∑
m

ranki(m, c).

The overall ranking across categories RCi of method i is then
computed by taking the simple average of its average rankings
across all 6 categories:

RCi =
1

6

∑
c

RMc,i.

The average ranking Ri for method i across all overall-average
metrics is given by

Ri =
1

7

∑
m′

ranki(m
′)

where m′ is an overall-average metric such as the one
computed in equation (1) and ranki(m

′) denotes the rank of
method i according to the overall-average metric m′. We report
the values of R, RC, and the 7 overall-average metrics for
different methods in Table III.19 . The category-wide overall
rankings and category-average metrics are available on the
2012 section of www.changedetection.net website.

IV. METHODS TESTED

A total of 29 change detection methods were evaluated. 6
methods are relatively simple as they rely on plain background
subtraction, of which 2 use color features (Euclidean and
Mahalanobis distance methods described in [5], [7]), one uses
RGB histograms over time [19], one uses local self-similarity
features [20], and one use a more complex model which
implements a quadratic Markov measure field [26]. Two
fairly old, but frequently-cited methods have also been tested:
KDE-based estimation by Elgammal et al. [8] and GMM by
Stauffer and Grimson [29].

19All evaluation metrics are computed as empirical averages across the
test-set pixels whose number is on the order of 108 −−109 for each video
sequence. The confidence intervals of these empirical averages are therefore
on the order of 10−4 −−10−5.

We also have results for 6 improved GMM methods.
The self-adapting GMM by KaewTraKulPong [31], the
improved GMM method by Zivkovic and Heijden [32], the
multiresolution block-based GMM (RECTGAUSS-Tex) by
Dora et al. [36], the SGMM and SGMM-SOD methods by
Evangelio et al. [35], [34] which rely on a new initialization
procedure and novel mode splitting rule, and an automatic
mode selection method with a Dirichlet process (DPGMM)
by Haines et al. [33].

We also report results on novel KDE methods namely the
multi-level KDE by Nonaka et al. [42], and spatio-temporal
KDE by Yoshinaga et al. [43] as well as results for 3 machine
learning methods based on neural maps : CwisarD [73],
SOBS, and SC-SOBS [71], [72]. We also report results for
several non parametric methods such as a simple K-nearest
neighbor method [32] and 3 stochastic methods based on
background sample selection namely ViBe [9], ViBe+ [44],
and Hofmann’s self-adaptive method (PBAS) [45]. We
also included a recursive per-pixel Bayesian approach by
Porikli and Tuzel [13], a post-processing method based on
probabilistic super-pixels (PSP-MRF) [14], a probabilistic
method for matrix factorization based on the l1 loss [61]
and 2 recent methods using local binary patterns (Multi-Layer
Background Subtraction [47] and STLBP [48]).

And last, we report results for 2 fairly complex commercial
methods. One that does pixel-level detection using the
Chebyshev inequality and peripheral and recurrent motion
detectors by Morde et. al. [25] and Spectral-360 [88], a
patented but non-published method.

For each method, only one set of parameters was used for
all the videos. These parameters were selected according to
the authors’ recommendations or, when not available, were
adjusted to enhance the overall results. All parameters are
available on the changedetection.net website.

V. EXPERIMENTAL RESULTS

The overall results as of April 2014 are shown in Table III
where the methods have been sorted according to their average
ranking across categories (RC). A more comprehensive
tabulation of performance can be found on the website, where
a visitor can re-sort the methods by the average overall ranking
R as well as individual average metrics.

We also added to Table III results from three pixel-based
majority vote methods. MajVote is a majority vote over the
29 methods whereas MajVote-3 and 5 are the majority vote
of the best combination of 3 and 5 methods (here CDPS,
Chebyshev probability, GPRMF, SGMM-SOD and STLPB).
These methods have been obtained by testing every possible
combination of 3 and 5 methods. Interestingly, the best
combination of 3 and 5 methods does not include Spectral-360
and PBAS, two of the top performing methods.

It should come as no surprise that the simplistic methods
based on plain background subtraction [7], [20], [19] are at
the bottom of the table, whereas more recent methods [88],
[34], [45], [48], [44], [14], [72] are at the top.

According to RC, the top performing method is
Spectral-360 [88] which is a patented but non-published
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Method Description RC R Re Sp FPR FNR PWC F-Measure Pr
MajVote — — — 0.77 0.993 0.007 0.23 1.80 0.77 0.84
MajVote-5 — — — 0.83 0.996 0.004 0.17 1.15 0.84 0.91
MajVote-3 — — — 0.84 0.996 0.004 0.16 1.25 0.85 0.90
Spectral-360 [88] Physic-based method using reflectivity 5.3 5.4 0.78 0.992 0.008 0.22 1.85 0.78 0.85
SGMM-SOD [34] Improved version of SGMM [35] 6.3 5.6 0.77 0.994 0.006 0.23 1.50 0.77 0.83
PBAS [45] Non-parametric and stochastic method 7.0 7.3 0.78 0.990 0.010 0.22 1.77 0.75 0.82
STLBP [48] Histogram of local binary patterns

(similar to [49])
8.2 6.4 0.72 0.995 0.005 0.28 2.27 0.76 0.86

DPGMM [33] Non-parametric Bayesian method 8.3 7.6 0.83 0.986 0.015 0.17 2.12 0.78 0.79
GPRMF [61] Matrix factorization based on l1 loss 8.5 12.0 0.84 0.973 0.027 0.16 3.16 0.79 0.81
CwisarD [73] Weightless neural approach 8.7 11.7 0.89 0.978 0.022 0.18 2.66 0.78 0.77
ViBe+ [44] Improved version of ViBe [9] 10.2 10.6 0.69 0.993 0.007 0.31 2.18 0.72 0.83
PSP-MRF [14] Probabilistic super-pixels 10.8 11.6 0.80 0.983 0.017 0.20 2.39 0.74 0.75
Chebyshev probability [25] Multistage method with Chebyshev

inequality and object tracking
13.2 12.7 0.71 0.989 0.011 0.29 2.39 0.70 0.79

SC-SOBS [72] Improved version of SOBS [71] 13.2 12.4 0.80 0.983 0.017 0.20 2.41 0.73 0.73
CDPS [26] Probabilistic segmentation based on

binary QMMF model
13.8 12.0 0.78 0.985 0.015 0.22 2.28 0.73 0.76

Multi-Layer Background
Subtraction [47]

Multi-layer + local binary patterns 14.0 14.4 0.69 0.989 0.011 0.31 2.77 0.70 0.80

SOBS [71] Neural maps 15.8 14.9 0.79 0.982 0.018 0.21 2.56 0.72 0.72
SGMM [35] GMM + new mode initialization,

updating and splitting rule
16.2 12.3 0.71 0.991 0.009 0.29 2.53 0.70 0.78

KDE Nonaka et al. [42] Multi-level KDE 16.5 16.0 0.65 0.993 0.007 0.35 2.89 0.64 0.77
KNN [32] Non-parametric KNN 16.8 15.3 0.67 0.991 0.009 0.33 2.80 0.68 0.79
GMM KaewTraKulPong [31] Self-adapting GMM 18.2 16.0 0.51 0.995 0.005 0.49 3.11 0.59 0.82
ViBe [9] Non-parametric and stochas- tic

spatio-temporal method
18.2 20.3 0.68 0.983 0.017 0.32 3.12 0.67 0.74

KDE Elgammal [8] Original KDE 18.2 20.3 0.74 0.976 0.024 0.26 3.46 0.67 0.68
KDE Yoshinaga et al. [43] Spatio-temporal KDE 19.7 17.6 0.66 0.991 0.009 0.34 3.00 0.64 0.73
Bayesian Multi layer [13] Bayesian layers + EM 21.2 22.7 0.60 0.983 0.017 0.40 3.39 0.63 0.74
GMM Stauffer-Grimson [29] Original GMM 21.3 17.6 0.71 0.986 0.014 0.29 3.10 0.66 0.70
GMM Zivkovic [32] GMM with automatic mode selection 24.3 19.7 0.70 0.985 0.015 0.30 3.15 0.66 0.71
Local-Self similarity [20] Basic method with self- similarity

measure
24.3 21.0 0.94 0.851 0.149 0.07 14.30 0.50 0.41

GMM RECTGAUSS-Tex [36] Multiresolution GMM 24.3 22.3 0.52 0.986 0.014 0.48 3.68 0.52 0.72
Histogram over time [19] Basic method with color histograms 25.3 23.0 0.77 0.934 0.066 0.23 6.97 0.55 0.53
Mahalanobis distance [5], [7] Basic background subtraction 26.7 22.6 0.76 0.960 0.040 0.24 4.66 0.63 0.60
Euclidean distance [5], [7] Basic background subtraction 28.2 23.9 0.71 0.969 0.031 0.30 4.35 0.61 0.62

TABLE III: Overall results as of April 2014 across all categories (RC: average ranking across categories, R: average overall ranking).

method. Although the patent is hard to read, we understand
that instead of using plain RGB or texture information as is
usually the case, they model the physical surface of the objects
with a spectral reflectance descriptor model. They mention
that their physic-based model together with a sophisticated
correlation technique between foreground and background
spectral reflectance to detect motion is the key of their success.

The second top method SGMM-SOD [34] is a modified
version of Stauffer and Grimson’s GMM method [29].
The success of SGMM-SOD can be attributed to three
innovations: i) a different initialization procedure of newly
created modes, ii) a background updating scheme that adapts
to changing conditions, and iii) a new splitting rule which
avoids over-dominating modes. PBAS, the method ranked
number 3 [45], uses a non-parametric probabilistic model
for the background at each spatial location based on a
random subset of pixel values from the recent past. Such a
stochastic non-parametric model makes these methods robust
to instabilities (background motion and camera jitter) and
intermittent motion artifacts. The fourth method STLBP [48]
is the oldest (and arguably the simplest) method among the
top ones. Each pixel is represented by a spatio-temporal LBP
(local-binary-pattern) histogram. These histograms are used to
model the background and a simple histogram intersection is

used as foreground detection. Let us mention that STLBP is
almost identical to work by Heikkila and Pietikainen [49].

A bit surprising are the majority vote results. MajVote is
in the top 3 methods when considering PWC, F-measure
and Precision while MajVote-5 and MajVote-3 outperform all
29 methods. This calls for an important conclusion: as of
today, there is no single best method that can serve as a
“silver bullet” for each scenario. It seems that the methods
are complementary by nature and combining them improves
results. We found this to be true even when combining
low-rank methods. This suggests modular change detection
methods that can adapt to the content of the video are likely
to perform very well.

A similar conclusion can be drawn from Table IV and
Fig. 3. Table IV shows the highest ranked methods for each
video category. As one can see, the 3 best overall methods
(Spectral-360, SGMM-SOD and PBAS) are not necessarily
the best methods over each category. Fig. 3 shows the mean
and std-dev of the F-measure for each category across all
the methods. This figure visually captures the difficulty of
each category: “Baseline” is the easiest whereas “Intermittent
Motion” is the most challenging category. Fig. 3 also shows
how different the methods can be.
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Category 1st 2nd 3rd

Baseline SC-SOBS [72] SOBS [71] GPRMF [61]
Dynamic Back. STLBP [48] CwisarD [73] DPGMM [33]
Shadows GPRMF [61] Spectral-360 [88] SGMM-SOD [34]
Camera Jitter GPRMF [61] CwisarD [73] STLBP [48]
Thermal STLBP [48] SGMM-SOD [34] Chebyshev [25]
Interm. Motion SGMM-SOD [34] CDPS [26] KDE Nonaka[42]

TABLE IV: Three highest ranked method for each category
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Fig. 3: Mean and standard deviation F-Measure for all methods
over each category.

A. Metrics
An interesting observation from Table III is that recall,

specificity, FNR and FPR are not good indicators of the overall
ranking. According to recall and FNR, the best method is the
Local-Self similarity which is actually ranked 25th. According
to specificity and FPR, the best method is STLPB (4th overall)
followed by GMM by Kaewtrakulpong and Bowden which is
at the 18th position. On the other hand, PWC, F-Measure and
precision correlate better with the average rankings as they
give the best score to SGMM-SOD, GPRMF and STLBP, some
of the highest ranked methods.

Between F-measure, PWC and precision, PWC and
F-measure correlate slightly better with the average ranking.
When methods are re-ordered according to PWC or F-
measure, methods do not shift in ranking by more than 5
positions (except for GPRMF [61] and CwisarD [73]). As for
precision, re-ranking often leads to a shift of up to 9 positions.
So, if only one metric were to be used to rank methods, PWC
or F-measure would probably be the best choices.

B. Solved and Remaining Issues
In order to assess the challenge that each video category

poses for the tested methods, we ranked the categories
according to score obtained by all methods in a given
category. As can be seen in Table V, videos with intermittent
motion pose the largest challenge in terms of the F-Measure
(0.51), FPR (0.033) and PWC (6.0%). On the other hand,
videos exhibiting steady background motion seem to be less
challenging. Many methods had difficulty with thermal videos
as most of the time they suffered from camouflage problems,
resulting in large FNR scores.

Also it is not clear from Table V how much of a challenge
do hard shadows pose for the tested methods. In order to
verify this, we computed FPR within shadow areas (FPR-S)
for all videos in the “Shadows” category. As can be seen in

Category F-Measure FPR FNR PWC
Interm. Motion 0.51 0.033 0.47 6.0
Camera Jitter 0.69 0.018 0.27 2.9
Dynamic Back. 0.65 0.009 0.20 1.2
Thermal 0.68 0.004 0.40 2.8
Shadows 0.78 0.011 0.17 2.1
Baseline 0.87 0.003 0.13 0.9

TABLE V: Median F-Measure, FPR, FNR and PWC obtained by
all 29 methods in each category.
Table VI, the tested methods attained FPR in shadow areas
between 0.2 and 0.64. This large FPR indicates that none of
the methods deals with shadows effectively. That being said,
STLBP is significantly more accurate than the other methods.
This suggests that the local binary pattern used by STLBP is a
better feature to detect motion than the usual RGB or texture
vectors.

ROC curves obtained for 9 methods and the majority vote
computed from them are shown in Fig. 4. First, except for
the thermal category, the majority vote outperforms every
method. This result correlates well with Table III and the
performance of majority voting. These curves also show that
intermittent motion and thermal videos are very challenging.
These two categories display the greatest disparity between
methods tested.

In order to identify where the methods fail, we computed
an error map for each frame of every video. Then, for each
frame of each video, we integrated all error maps into a
total error map by calculating the proportion of methods with
a true positive, a false positive, a true negative, or a false
negative at each pixel (Fig. 5). The red and green areas show
where methods suffer from false positives and false negatives,
respectively, whereas white and black areas show true positives
and true negatives, respectively. A careful inspection of the
total error maps leads us to the following observations:

1) camouflage is a problem that spans all categories and
for which none of the methods tested in this paper has
a decisive solution,

2) shadow-robust methods are only effective on soft
shadows; dealing with hard shadows is still an open
issue,

3) methods have a hard time dealing with thermal videos
due to reflection and camouflage issues,

4) intermittent motion is another challenge that none of the
tested methods handles well.

In order to illustrate these observations, we put in Fig. 6
the results for 3 of the top performing methods on 2 different
videos. As can be seen, all of them generate false positives and
false negatives due to camouflage, shadows and intermittent
motion. This shows that there is still room for improvement,
even for the top performing methods.

Intermittent motion causes methods to suffer from false
positives and false negatives. For example, a car pulling off
a driveway leads to false positives (ghosting artifact) while
people waiting in line cause false negatives. The ghosting issue
is illustrated in Fig. 7. When we look at a pixel’s history, a
ghosting artifact appears after a strong transition which reveals
the background color. Unfortunately, transition from the object
to the background color can barely be distinguished from a
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Fig. 4: ROC curves obtained for each category using 9 methods and the majority vote among these methods.

background to object color transition (at least using only pixel
history). This is shown in the right plot of Fig. 7 where the
color history goes from carpet to box and then from box to
carpet.

Ghosts and false negatives are related to how fast the
background is updated: too quick of an update leads to false
negatives whereas too slow of an update leads to ghosts. These
problems are difficult to handle because solving one issue
(say preventing the method from merging people waiting in
line with the background) exacerbates the other issue (say,
ghosting artifacts). Some methods such as ViBe [9] provide
tentative solutions to ghosting artifacts by pooling information
spatially. But such solutions are not sufficient to remove large
ghosting artifacts.

VI. CONCLUSIONS
We would like to summarize the salient findings of this

study through five conclusions which, we hope, would inspire
and guide future work on this topic.

1) Among the 7 metrics, PWC and the F-measure
correlate best with the average ranking across categories.

2) Videos with small recurrent background motion
(ripples on the water, trees shaken by the wind) do not
pose a heavy challenge for the top performing methods.
The same conclusion applies to baseline videos.

3) None of the above methods tested is robust to hard
shadows, intermittent motion, and camouflage. These
are open issues that are yet to be solved.

4) Contrary to common belief, detecting humans and
moving objects in thermal videos is not trivial. It is
often accompanied by reflections and camouflage effects
that no method handles well.

5) As of today, methods are complementary in nature and
combining them with a majority vote helps improving

Method FPR-S
STLBP [48] 0.2
Bayesian Multi-Layer [13] 0.33
KDE Nonaka et al. [42] 0.39
KDE Yoshinaga et al. [43] 0.40
KNN [32] 0.40
GMM KaewTraKulPong [31] 0.41
DPGMM [33] 0.42
Chebyshev probability [25] 0.42
RECTGAUSS-Tex [36] 0.48
SGMM [35] 0.49
GPRMF [61] 0.49
ViBe+ [44] 0.53
GMM Stauffer-Grimson [29] 0.54
GMM Zivkovic [32] 0.54
ViBe [9] 0.55
CwisarD [73] 0.56
SOBS [71] 0.57
Euclidean distance [5], [7] 0.58
PBAS [45] 0.58
PSP-MRF [14] 0.59
Histogram over time [19] 0.59
Mahalanobis distance [5], [7] 0.59
CDPS [26] 0.59
SC-SOBS [72] 0.60
Spectral-360 [88] 0.62
KDE Elgammal [8] 0.62
SGMM-SOD [34] 0.63
Local-Self similarity [20] 0.64

TABLE VI: Ranking of methods according to FPR in shadow areas
for videos in the “Shadows” category.

results. Future research should consider modular
change detection methods that would incorporate
complementary approaches.

VII. SUMMARY AND OUTLOOK
Change detection task plays a pivotal role in many computer

vision application as an early preprocessing step. Despite
the multitude of algorithms developed to date, there is no
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Fig. 5: Total error maps: failure areas for a large proportion of methods. Red shows locations with many false positives, green
- false negatives, white - true positives and black - true negatives.

clear way to establish which method responds well to certain
challenges, and thus selecting the “optimal” algorithm for a
given task is difficult.

In order to address this problem, we have prepared a
comprehensive dataset, called CDnet. In the 2012 version
of CDnet, each video sequence has been very carefully
hand-labeled to allow a accurate, objective and quantitative
ranking of change detection algorithms on 7 fidelity metrics.

The CDnet undertaking aims to provide the research
community with a rigorous scientific benchmarking facility
with a rich dataset of videos for testing and ranking of
existing methods. It offers utility code, documentation, and
consolidated algorithms for change detection. It also provides
an access to author-approved algorithm implementations.

This dataset will be regularly revised and expanded with
feedback from the academia and industry. We hope to maintain
and update a rank list of the most accurate change detection
algorithms in the various categories for years to come.
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