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Lyapunov-Based Control of the Sway Dynamics for Elevator Ropes

Mouhacine Benosman and Daiki Fukui

Abstract— In this work we study the problem of

rope sway dynamics control for elevator systems. We

formulate this problem as a bilinear control problem

and propose nonlinear controllers based on Lyapunov

theory, to stabilize the rope sway dynamics. We study

the stability of the proposed controllers, and test their

performances on a numerical example.

I. INTRODUCTION

The growing demand for high-rise buildings

motivates the problem of rope sway control, which

is very important in order to maintain a high safety

level of the elevator system. Indeed, even slight

external disturbances on the building, e.g. wind gust

or earthquake, at such dimensions of structures can

lead to important rope sway within the elevator shaft.

Considering the length of the ropes and their heavy

weight, it is clear that the rope sway can damage the

equipments that are installed in the elevator shaft and

can also cause damages to the elevator shaft structure

itself, without mentioning the potential danger caused

for the elevator passengers. For these reasons, it is

very important to be able to control the rope dynamics

within the elevator shaft. Furthermore, due to cost

constraints, it is preferable to be able to do so, with

minimum actuation capabilities. Many papers have

been dedicated to the problem of modelling and

control of long elevator ropes [1], [2], [3], [4], [5],

[6]. In [6], a simple model of a cable attached to

an actuator at its free end is used to investigate the

stiffening effect of the control force on the cable.

An energy analysis is used to tune an open-loop

sinusoidal force applied to the cable. In [4], a scaled

model for high-rise, high-speed elevators is developed.

The model is used to analyze the influence of the car

motion profiles on the lateral vibrations of the elevator

cables. An active stiffness control of the transverse

vibrations of elevator ropes is presented in [1]. The
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author propose a nonlinear modal feedback to drive an

actuator pulling on one end of the rope. The control

performance is investigated by numerical tests. In [5],

the authors proposed a novel idea to dissipate the

transversal energy of an elevator rope. The authors

used a passive damper attached between the car and

the rope. Numerical analysis of the transverse motion

average energy was conducted to find the optimal

value of the damper coefficient.

In this work we propose to investigate the problem of

elevators’ rope sway mitigation as a nonlinear control

problem. Following [1], we use an active actuator to

pull on one-side of the ropes. We show that in this case

the model of the elevator rope together with its actuator

writes as a bilinear model (in the control theory sense),

and we use this bilinear model to develop nonlinear

Lyapunov-based feedback controllers to stabilize the

rope sway dynamics. We study the stability of the

closed-loop dynamics, and show the performances of

these controllers on a numerical example.

The paper is organized as follows: We start the

paper with some preliminaries in Section II. In Section

III, we recall the model of the system and underline

its state-control bilinear form. Next, in Section IV,

we present the main results of this work, namely, the

nonlinear Lyapunov-based controllers, together with

their stability analysis. Section V is dedicated to some

numerical results. Finally, we conclude the paper with

a brief summary of the results in Section VI.

II. NOTATIONS AND PRELIMINARIES

Throughout the paper, R, R+ denotes the set of real,

and the set of nonnegative real numbers, respectively.

For x ∈ R
N we define |x| =

√
xTx, we denote by

Aij , i = 1, ..., n, j = 1, ...,m the elements of the

matrix A, and denote by sgn(.) the signum function.

III. ELEVATOR ROPE MODELLING

In this section we first introduce the infinite dimen-

sion model, i.e partial differential equation (PDE), of

a moving hoist cable, with non-homogenous boundary



Fig. 1. Schematic representation of an elevator shaft showing the

different variables used in the model

conditions. Secondly, to be able to reduce the PDE

model to an ODE model using a Galerkin reduction

method, we introduce a change of variables and re-write

the first PDE model in a new coordinates, where the

new PDE model has zero boundary conditions. Let us

first enumerate the assumptions under which our model

is valid.

- The elevator ropes are modelled within the framework

of string theory.

- The elevator car is modelled as a point mass.

- The vibration in the second lateral direction is not

included.

- The suspension of the car against its guide rails is

assumed to be rigid.

Under the previous assumption, following [3], [1],

the general PDE model of an elevator rope, depicted

on Figure 1, is given by

ρ( ∂
2

∂t2
+ v2(t) ∂

2

∂y2 + 2v(t) ∂
∂y∂t

+ a ∂
∂y

)

u(y, t)

− ∂
∂y
T (y, t)∂u(y,t)

∂y
+ cp

(

∂
∂t

+ v(t) ∂
∂y

)u(y, t) = 0
(1)

where u(y, t) is the lateral displacement of the rope. ρ

is the mass of the rope per unit length. T is the tension

in the rope, which varies depending on which rope in

the elevator system we are modelling, i.e. main rope,

compensation rope, etc. cp is the damping coefficient

of the rope per unit length. v = ∂l(t)
∂t

is the elevator

rope velocity, where l : R → R is a function (at least

C2 ) modelling the time-varying rope length. a = ∂2l(t)
∂t2

is the elevator rope acceleration.

The PDE (1) is associated with the following two

boundary conditions:

u(0, t) = f1(t)
u(l(t), t) = f2(t)

(2)

where f1(t) is the time varying disturbance acting on

the rope at the level of the machine room, due to

external disturbances, e.g. wind gust. f2(t) is the time

varying disturbance acting at the level of the car, due

to external disturbances. In this work we assume that

the two boundary disturbances acting on the rope are

related via the relation:

f2(t) = f1(t)sin
(π(H − l)

2H

)

, H ∈ R (3)

where H is the height of the building. This expression

is an approximation of the propagation of the boundary

disturbance f1 along the building structure, based on

the length l, it leads to f2 = f1 for a length 0 (which

is expected), and a decreasing force along the building

until is vanishes at l = H , f2 = 0 (which makes sense,

since the effect of any disturbance f1, for example

wind gusts, is expected to vanish at the bottom of

the building). As we mentioned earlier the tension of

the rope T (y) depends on the type of the rope that

we are dealing with. In the sequel, we concentrate on

the main rope of the elevator, the remaining ropes are

modelled using the same steps by simply changing the

rope tension expression.

For the case of the main rope, the tension is given by

T (y, t) = (me+ρ(l(t)−y))(g−a(t))+0.5Mcsg+U(t)
(4)

where g is the standard gravity constant, me,Mcs are

the mass of the car and the compensating sheave,

respectively, and U(t) is the control tension applied by

an actuator attached to the compensation sheave (the

same actuator placement has been considered in [1]).

Next, we reduce the PDE model (1) to a more tractable

model for control, using a projection Galerkin method

or assumed mode approach, e.g. [7], [8].

To be able to apply the assumed mode approach,

let us first apply the following one-to-one change of

coordinates1 to the equation (1)

u(y, t) = w(y, t) +
l(t) − y

l(t)
f1(t) +

y

l(t)
f2(t) (5)

One can easily see that this change of coordinates

implies trivial boundary conditions

w(0, t) = 0
w(l(t), t) = 0

(6)

1This change of coordinates is needed to write to original PDE

model as an equivalent PDE with homogenous boundary conditions.

To the best of our knowledge, it has not been proposed in previous

work on elevator ropes modelling, and is newly introduced in this

paper.



After some algebraic and integral manipulations, the

PDE model (1) writes in the new coordinates as

ρ∂
2w
∂t2

+ 2v(t)ρ ∂
2w

∂y∂t
+

(

ρv2 − T (y, t)
)

∂2w
∂y2 +G(t)∂w

∂y

+cp
∂w
∂t

= y (−ρs1(t) − cps2(t)) − ρf
(2)
1 + s4(t)

(7)

where G(t) = ρa(t)− ∂T
∂y

+cpv(t), and the si variables

are defined as

s1(t) = ll(2)−2l̇2

l3
f1(t) + 2 l̇

l2
ḟ1

+ (l3f
(2)
2 −f2l2l(2)+2ll̇2f2−2l2 l̇ḟ2)

l4
− f

(2)
1

l

s2(t) = l̇
l2
f1 − ḟ1

l
+ ḟ2

l
− f2

l̇
l2

s3(t) = f2−f1
l

s4(t) = −2v(t)ρs2(t) −G(t)s3(t) − cpḟ1(t)

(8)

associated with the two-point boundary conditions

w(0, t) = 0, w(l(t), t) = 0. (9)

Now instead of dealing with the PDE (1) with non-zero

boundary conditions, we can use the equivalent model,

given by equation (7) associated with trivial boundary

conditions (9).

Following the assumed-modes technique, the solution

of the equation (7), (9) writes as

w(y, t) =

j=N
∑

j=1

qj(t)φj(y, t), N ∈ N (10)

where N is the number of bases (modes), included in

the discretization, φj , j = 1, ..., N are the discretiza-

tion bases and qj , j = 1, .., N are the discretization

coordinates. In order to simplify the analytic manipu-

lation of the equations, the base functions are chosen

to satisfy the following normalization constraints

∫ l(t)

0
φ2
j (y, t)dy = 1,

∫ l(t)

0
φi(y, t)φj(y, t)dy = 0, ∀i 6= j

(11)

To further simplify the base functions, we define the

normalized variable, e.g. [5], [3]

ξ(t) =
y(t)

l(t)
(12)

and the normalized base functions

φj(y, t) =
ψj(ξ)
√

l(t)
, j = 1, ..., N (13)

In these new coordinates the normalization constraints

(11) write as
∫ 1

0
ψ2
j (ξ)dξ = 1,

∫ 1

0
ψi(ξ)ψj(ξ)dξ = 0, ∀i 6= j

(14)

After classical (e.g. refer to [3]) discretization of the

PDE-based model (7), (9), we can write the reduced

ODE-model based on N -modes as

Mq̈ + Cq̇ + (K + βU)q = F (t), q ∈ R
N , F ∈ R

N

(15)

where

Mij=ρδij

Cij=ρl−1 l̇(2
∫ 1

0
(1−ξ)ψi(ξ)ψ

′

j(ξ)dξ−δij)+cpδij

Kij=
1

4
ρl−2 l̇2δij−ρl−2 l̇2

∫ 1

0
(1−ξ)2ψ′

i(ξ)ψ
′

j(ξ)dξ

+ρl−1(g−a(t))
∫ 1

0
(1−ξ)ψ′

i(ξ)ψ
′

j(ξ)dξ+mel
−2(g−a(t))

∫ 1

0
ψ

′

i(ξ)ψ
′

j(ξ)dξ

+ρ(l−2 l̇2−l−1 l̈)(0.5δij−
∫ 1

0
(1−ξ)ψi(ξ)ψ

′

j(ξ)dξ)−
cp l̇l

−1(
∫ 1

0
ψi(ξ)ψ

′

j(ξ)ξdξ+0.5δij)+0.5Mcsgl
−2

∫ 1

0
ψ

′

i(ξ)ψ
′

j(ξ)dξ

+U(t)l−2
∫ 1

0
ψ

′

i(ξ)ψ
′

j(ξ)dξ

βii=l−2
∫ 1

0
ψ

′2
i dξ=l

−2β̃ii

βij=β̃ij=0, ∀ i6=j
Fi(t)=−l

√
l(ρs1(t)+cps2(t))

∫ 1

0
ψi(ξ)ξdξ

+
√
l(s4(t)−ρf (2)

1 (t))
∫ 1

0
ψi(ξ)dξ

δij =

{

0, i 6= j

1, i = j
(16)

where si, i = 1, 2, 3, 4 are given in (8).

Remark 1: 1- In the previous developments we have

neglected the bending stiffness of the rope, introducing

it back does not change the obtained models. Indeed,

if we consider that the rope material and shape implies

a bending stiffness coefficient EI (where E is the

material Young modulus and I is moment of inertia

of the cross section of the rope), the model equation

(15) remains valid (e.g. [3]) with the addition of the

following term in the stiffness matrix K

K̃ij = EIl−4

∫ 1

0
ψ

(2)
i (ξ)ψ

(2)
j (ξ)dξ (17)

we see that these new terms are inversely proportional

to l4, which makes them negligible for long ropes, fur-

thermore, their addition does not change the structure

of the model and thus does not alter the results of this

paper.

2- The model (15), (16) has been obtained for the

general case of time-varying rope length l(t), however,

in this paper we only consider the case of stationary

ropes l = cte, which is directly deduced from (15),

(16), by setting l̇ = l̈ = 0, ∀t.
If we use the classical definition of the state vector

z = (q, q̇)T , then it is easy to see that the obtained

ODE model is a bilinear model in the state z and the

control vector U .



IV. MAIN RESULT: LYAPUNOV-BASED

CONTROLLERS

In this section we present Lyapunov-based feedback

controllers designed to stabilize the rope sway dynam-

ics.

Theorem 1: Consider the rope dynamics (15), (16),

with non-zero initial conditions, with no external dis-

turbances, i.e. f1(t) = f2(t) = 0,∀t, and with constant

length l, then the feedback control

Unom−1(z) =

{

umax
q̇T β̃q√

1+(q̇T β̃q)2
, if q̇T β̃q > 0

0, if q̇T β̃q ≤ 0
(18)

where z = (qT , q̇T )T , renders the closed-loop equilib-

rium point (0, 0) globally asymptotically stable, with

|Unom−1| ≤ umax, furthermore |Unom−1| decreases as

function of q̇T β̃q.

Proof: We define the control Lyapunov function

as

V (z) =
1

2
q̇T (t)Mq̇(t) +

1

2
qT (t)Kq(t) (19)

where x = (qT , q̇T )T .

First we compute the derivative of the Lyapunov func-

tion along the dynamics (15), without disturbances, i.e.

F (t) = 0, ∀t

V̇ (z) = q̇T (−Cq̇ −Kq − βUq) + qTKq̇

= −q̇TCq̇ − q̇TβqU
(20)

To ensure the negative definiteness of V̇ (x) we define

the first controller (18). Using the continuity of (18) at

q̇T β̃q = 0 and LaSalle theorem, e.g. [9], we can con-

clude that the states of the closed-loop dynamics con-

verge to the set S = {z = (qT , q̇T )T ∈ R
2N , s.t. q̇ =

0 }. Next, we analyze the closed-loop dynamics: Since

the boundedness of V implies boundedness of q̇, q

and by equation (15), boundedness of q̈. Boundedness

of q̇, q̈ implies the uniform continuity of q, q̇, which

again by (15), implies the uniform continuity of q̈. Next,

since q̇ → 0, and using Barbalat’s Lemma, e.g. [9],

we conclude that q̈ → 0, and by invertibility of the

stiffness matrix K + βU we conclude that q → 0.

Finally, the fact that V is a radially unbounded function,

ensures that the equilibrium point (q, q̇) = (0, 0) is

globally asymptotically stable. Furthermore the fact

that |Unom−1| ≤ umax, and the decrease of |Unom−1|
as function of q̇T β̃q is deduced from equation (18).

Remark 2: By examining the Lyapunov derivative

(20), we can see that instead of the C0 controller (18),

we could use a smooth controller of the form

Unom−1(z) = umax
q̇T β̃q

√

1 + (q̇T β̃q)2

However, the advantage of the switching controller

(18) is the fact that it necessitates less control energy,

since when the condition q̇T β̃q ≤ 0 is satisfied, it does

not apply any extra control and only uses the system’s

natural damping.

The nominal controller Unom−1 given by (18) does not

take into account the disturbance F (t) explicitly. We

present next a controller that takes into account F (t)
in the design of the control law. However, since in

practical applications we seldom have access to direct

measurements of the disturbance signal F (t), we use

the so called Lyapunov reconstruction technique, e.g.

[10], to augment the nominal controller Unom−1 with

an additional feedback term which is based only on

an upper bound of the disturbance signal F (t) (i.e.

does not need the exact measurements of F (t)) and

which ensures the stabilization of the sway to a small

amplitude, which can be tuned by the choice of the

feedback gains.

First let us state the following assumption.

Assumption 1: The time varying disturbance func-

tions f1, f2 are such that, the function F (t) is bounded,

i.e. ∃Fmax, s.t. |F (t)| ≤ Fmax, ∀t.
Theorem 2: Consider the rope dynamics (15), (16),

under non-zero external disturbances, i.e. f1(t) 6=
0, f2(t) 6= 0, and with constant length l, then under

Assumption 1, the feedback control

U(z) = Unom−1(z) + ksgn(q̇T β̃q)(Fmax + ǫ)|q̇|,
k > 0, ǫ > 0

(21)

where z = (qT , q̇T )T , ensures that the solutions of

(15), (16) and (21) converges to the invariant set S̃ =
{(qT , q̇T )T ∈ R

2N , s.t. kl−2|q̇T β̃q| ≤ 1 }.

Proof: Using the same Lyapunov function (19),

and writing its derivative along (15)

V̇ (z) = −q̇TCq − q̇TβqU(x) + q̇TF (t) (22)

if we denote U(z) = Unom−1(z)+ v(z), where v(z) =
ksgn(q̇T β̃q)(Fmax + ǫ)|q̇|, k > 0, ǫ > 0, we obtain

V̇ (z) = −q̇TCq − q̇TβqUnom−1(x) − q̇Tβqv(x)
+q̇TF (t)

(23)



and by definition of Unom−1(z) we know that

−q̇TCq − q̇TβqUnom−1(z) < 0

thus, using Assumption 1, we can write

V̇ (z) ≤ −q̇Tβqv(z) + q̇TF (t)

≤ −kl−2|q̇T β̃q|(Fmax + ǫ)|q̇| + |q̇||F (t)|
≤ −kl−2|q̇T β̃q|(Fmax + ǫ)|q̇| + |q̇|Fmax
≤ −kl−2|q̇T β̃q||q̇|ǫ+ |q̇|Fmax(1 − kl−2|q̇T β̃q|)
≤ +|q̇|Fmax(1 − kl−2|q̇T β̃q|)

which proves the decrease of V (x) until reaching the

invariant set

S̃ = {(qT , q̇T )T ∈ R
2N , s.t. kl−2|q̇T β̃q| ≤ 1 }

Remark 3: The controllers (18), (21) are state feed-

backs based on q, q̇, these states can be easily

computed from the sway measurements at N given

positions y(1), ..., y(N), via equation (10). The sway

w(y, t) can be measured by laser displacement sensors

placed at the positions y(i), i = 1, 2, ...N , along

the rope, e.g.[11], subsequently q can be computed

by simple algebraic inversion of (10), and q̇ can be

obtained by direct numerical differentiation of q.

Remark 4: The controller (21) has a discontinuity

due to the sgn function. For practical implementation,

well known regularization can be used to smoothen

the controller, for example a sat function can be used

instead of the sgn function, and similar stability results

can be concluded (e.g. refer to [10]). Due to space

limitation, we do not present the regularized version

of the controller here, and defer it to a longer journal

version of this work.

V. NUMERICAL EXAMPLE

In this section we present some numerical results

obtained on the example presented in [1]. The case

of an elevator system with the mechanical parameters

summarized on Table I has been considered for the tests

presented hereafter. We write the controllers based on

the model (15), (16) with one mode, but we test them

a model with three modes (the fact is that one mode is

enough since when comparing the solution of the PDE

(7) to the discrete model (15) the higher modes shown

to be negligible, and a discrete model with one mode

showed a very good match with the PDE model, but

to make the simulation tests more realistic we chose to

Parameters Definitions Values

n Number of ropes 8[−]
me Mass of the car 3500[kg]
ρ Main rope linear mass density 2.11[kg/m]
l Rope maximum length 390[m]
H Building height 402.8[m]
cp Damping coefficient 0.0315[N.sec/m]

TABLE I

NUMERICAL VALUES OF THE MECHANICAL PARAMETERS

test the controllers on a three modes model2). First, to

validate Theorem 1, we present the results obtained by

applying the controller (18), to the model (15), (16),

with non-zero initial conditions q(0) = 20, q̇(0) = 0,

and zero external disturbances, i.e. f1(t) = f2(t) =
0, ∀t. In these first tests, to show the effect of the

controller (18) alone, without the ‘help’ of the system’s

natural damping, we fix the damping coefficient to zero,

i.e. cp = 0. Figures 2, 33 show the rope sway obtained

at half rope-length y = 195 m without control. It

reaches a maximum value of about 1.45 m. We show

next on Figures 4, 5 the rope sway obtained at the

same rope length but this time with the controller (18),

with umax = 1500 N . We see the expected effect

of the controller on the sway, which is reduced by

half in about 60 sec and vanishes asymptotically. The

corresponding control force is depicted on Figures 6, 7.

We see that, as expected from the theoretical analysis

of Theorem 1, the control force remains bounded by

umax and decreases with the decrease of the sway.

Next, we consider the model (15), (16) with no-

zero disturbance signals: f1(t) = 0.2sin(2π.0.08t),
and f2 being deduced from f1 via equation (3). We

underline that we have purposely selected the distur-

bance frequency to be equal to the first resonance

frequency of the rope, to simulate the ‘worst-case

scenario’. We first show on Figures 8, 9 the sway

signal in the uncontrolled case. Let us consider now

the controller (21) introduced in Theorem 2. We apply

(21), with the parameters umax = 1500 N,Fmax =
1.6 , ǫ = 0.1 , k = 106. The effect of the control on

the rope sway amplitude is depicted on Figures 10,

11. The rope sway is effectively reduced, and enters

2We also want to inform the reviewers that these controllers

have been actually validated on a full-size test-bed in Japan,

unfortunately, due to IP reasons we were not allowed to report the

experimental data here (This footnote is added for the reviewers

but will be deleted in the final version of the paper).
3The figures’ zoom is included for the reader to have a better

idea about the signals shape.
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Fig. 2. Rope sway at y = 195 m- No control with zero disturbance
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Fig. 3. Zoom of the rope sway at y = 195 m- No control with

zero disturbance
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Fig. 4. Rope sway at y = 195 m- with controller (18)
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Fig. 5. Zoom of the rope sway at y = 195 m- with controller

(18)
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Fig. 6. Output of controller (18)
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Fig. 7. Zoom of the output of controller (18)

the invariant set defined by the upper bound condition

kl−2|q̇β̃q| ≤ 1, as indicated in Theorem 2. In fact,

by checking the qq̇ plot presented on Figures 12, 13,

we see that the Lagrangian variables q, q̇ converge to

the point satisfying kl−2|q̇β̃q|max = 0.97, which is in

concordance with the invariant set convergence result of

Theorem 2. The control force is depicted on Figures 14,

15, which shows a high amplitude, due to the selected

high gain value for k.

VI. CONCLUSION

In this paper we have studied the problem of active

control of elevator rope sway dynamics occurring due

to external force disturbances acting on the elevator

system. We have considered the case of constant rope

length and have proposed nonlinear controllers based

on Lyapunov theory. We have presented the stability

analysis of these controllers and shown their efficiency

on a numerical example. The stabilization problems

related to time-varying rope lengths, i.e. moving car,

will be presented in a longer journal version of this

work.
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Fig. 8. Rope sway at y = 195 m- No control with non-zero

disturbance
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Fig. 9. Rope sway at y = 195 m- No control with non-zero

disturbance
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