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Fast Plane Extraction in Organized Point Clouds
Using Agglomerative Hierarchical Clustering

Chen Feng1, Yuichi Taguchi2, and Vineet R. Kamat1

Abstract— Real-time plane extraction in 3D point clouds
is crucial to many robotics applications. We present a novel
algorithm for reliably detecting multiple planes in real time in
organized point clouds obtained from devices such as Kinect
sensors. By uniformly dividing such a point cloud into non-
overlapping groups of points in the image space, we first
construct a graph whose node and edge represent a group of
points and their neighborhood respectively. We then perform
an agglomerative hierarchical clustering on this graph to sys-
tematically merge nodes belonging to the same plane until the
plane fitting mean squared error exceeds a threshold. Finally
we refine the extracted planes using pixel-wise region growing.
Our experiments demonstrate that the proposed algorithm can
reliably detect all major planes in the scene at a frame rate of
more than 35Hz for 640×480 point clouds, which to the best of
our knowledge is much faster than state-of-the-art algorithms.

I. INTRODUCTION

As low-cost depth cameras and 3D sensors have emerged
in the market, they have become a popular choice in various
robotics and computer vision applications. 3D point clouds
obtained by such sensors are generally noisy and redundant,
and do not provide semantics of the scene. For compact
and semantic modeling of 3D scenes, primitive fitting to the
3D point clouds has attracted a lot of research interests. In
particular, planes are one of the most important primitives,
since man-made structures mainly consist of planes.

In this paper, we present an efficient plane extraction
algorithm applicable to organized point clouds, such as
depth maps obtained by Kinect sensors. Our algorithm first
constructs a graph by dividing a point cloud into several
non-overlapped regions with a uniform size in the image
space. The algorithm then performs a bottom-up, agglomer-
ative hierarchical clustering (AHC) on the graph: It repeats
(1) finding the region that has the minimum plane fitting
mean squared error (MSE) and (2) merging it with one of
its neighbors such that the merge results in the minimum
plane fitting MSE. We show that the clustering process can
be done with the complexity log-linear in the number of
initial nodes, enabling real-time plane extraction. To refine
the boundaries of the clustered regions, the clustering process
is followed by pixel-wise region growing. In experiments, we
compare our algorithm with state-of-the-art algorithms. Our
algorithm achieves real-time performance (runs over 35 Hz)
for 640×480 pixel depth maps, while providing the accuracy
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Fig. 1. Plane extraction results generated using our algorithm with different
initial node sizes. Extracted planes are superimposed with different colors on
the RGB image (black means non-planar region). White dash lines show the
segmentation boundaries before the region-grow-based refinement. Initial
node size of 10 × 10 detects most of the planes in the scene (top-left),
whose 3D view is shown (bottom-left). Initial node size of 4 × 4 reveals
more segments in a smaller scale such as stairs and table leg (top-right),
while that of 20×20 focuses on major large planar structures such as floors
and walls (bottom-right).

comparable to the state-of-the-art algorithms. Some example
results are shown in Figure 1.

A. Contributions

This paper makes the following contributions:
• We present an efficient plane extraction algorithm based

on agglomerative clustering for organized point clouds.
• We analyze the complexity of the clustering algorithm

and show that it is log-linear in the number of initial
nodes.

• We demonstrate real-time performance with the accu-
racy comparable to state-of-the-art algorithms.

B. Related Work

Plane Extraction: Several different algorithms have
been proposed for plane extraction from 3D point clouds.
RANSAC-based methods [1] have been widely used. These
methods usually follow the paradigm of iteratively apply-
ing RANSAC algorithm on the data while removing in-
liers corresponding to the currently found plane instance.
Since RANSAC requires relatively long computation time
for random plane model selection and comparison, several
different variants were developed. Oehler et al. [2] performed
Hough transformation and connected component analysis
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Fig. 2. Algorithm overview. Each frame of an organized point cloud is processed from left to right. (a) shows the graph initialization with each node
colored by its normal; black dot and line showing graph node and edge; red ’x’, black ’o’, and red dot showing node rejected by depth discontinuity,
missing data, and too large plane fitting MSE, respectively. (b) and (c) show the two core operations of the AHC. Regions with random colors in (b) and
(c) show graph nodes merged at least once. Black lines in (c) show all edges coming out from the node A, in which the thick line shows the edge to the
node B that gives the minimum plane fitting MSE when merging the node A with one of its neighbors. Colored regions in (d) show the extracted coarse
planes, which are finally refined in (e) if required by the application.

on the point cloud first as pre-segmentation and then ap-
plied RANSAC to refine each of the resulting “surfels”
(2s per 640 × 480 points). Several algorithms [3]–[5] ap-
plied RANSAC on local regions of the point cloud (which
decreases the data size considered in each RANSAC run
so as to increase speed) and then grew the region from
the locally found plane instance to the whole point cloud
(0.2s [3] or 0.1s [4] per 640 × 480 points; 0.03s [5] per
320 × 240 points). Region-grow-based methods are another
popular choice. Hähnel et al. [6] and Poppinga et al. [7]
grew points by both point-plane distance threshold and MSE
threshold (0.2s per 25,344 points). Holz et al. [8] grew points
by their surface normal deviation (0.5s per 640×480 points),
which requires per-point normal estimation. A similar but
much slower variant is voxel grow [9]. Instead of growing
points, Geogiev et al. [10] first extracted line segments from
each scan line of the data and then grew the line segments
across scan lines (0.05s per 18,100 points in MATLAB).

There are other methods which do not belong to the two
groups. Holz et al. [11] first clustered the point cloud in
the normal space and further clustered each group by its
distance to the origin (0.14s per 640× 480 points). To avoid
per-point normal estimation, Enjarini et al. [12] designed
the gradient of depth feature for plane segmentation, which
could be rapidly computed. Graph-based segmentation using
self-adaptive threshold was also used [13], [14] (0.17s per
148,500 points [13]). Although our method also uses a
graph to represent data relation, our method differs from
the previous methods as follows: 1) no RGB information
is used; 2) no per-point normal estimation is required; and
more importantly, 3) dynamic edge weights are used instead
of static ones which fix the merging order as in [13].

Applications: Planes have been used in various appli-
cations in robotics, computer vision, and 3D modeling.
Compact and semantic modeling of scenes provided by
planes is useful in indoor and outdoor 3D reconstruction, vi-
sualization, and Building Information Modeling (BIM) [15].
Extracting a major plane is a common strategy for table-top
manipulation [11], because it helps segment objects placed

on the plane. Planes have been also used for SLAM [16]–[18]
and place recognition [19] systems as landmarks, because
planes are more robust to noise and more discriminative than
points. However, at least three planes whose normals span
R3 are required to compute the 6-degrees-of-freedom camera
pose. To avoid the degeneracy due to the insufficient number
of planes, Taguchi et al. [3] used both points and planes
as landmarks in their SLAM system. Salas-Moreno et al.’s
SLAM system that uses objects as landmarks [20] extracted
a ground plane and used it as a soft constraint to align the
poses of objects with respect to the ground plane. All of
the above works can benefit from fast and accurate plane
extraction, which we present in this paper.

II. ALGORITHM OVERVIEW

Figure 2 illustrates how our algorithm processes each
frame of an organized point cloud. We define an organized
point cloud to be a set of 2D indexed 3D points F =
{pi,j = (xi,j , yi,j , zi,j)

T}, i = 1, · · · ,M, j = 1, · · · ,N,
where the 2D indices (i, j) and (i ± 1, j ± 1) reflect the
3D proximity relationship between points pi,j and pi±1,j±1
if they lie on the same surface (we call this index space as
image space). Usually it can be obtained from a depth map
produced by devices such as a Kinect sensor, time-of-flight
camera, structured light scanning system, and even rotating
the scanning plane of a laser range finder.

A. Line Segment Extraction as an Analogy

Before moving into the details of our algorithm, we
briefly discuss a line segment extraction algorithm called line
regression, as summarized in [21] and implemented in April
Robotics Toolkit [22]. It is widely used for extracting line
features from 2D point sequences obtained from a laser range
finder, and inspired us to generalize its idea to 3D case for
fast plane extraction. As illustrated in Figure 3, every W
consecutive points (W = 3 in this figure) in the sequence
are grouped into nodes1, forming a double linked list. Then

1We use “node” and “segment” interchangeably to represent a set of data
points.



ab efg ij

ab c d ef g h ij

a b c d e f g h i j

Build double linked list

AHC

Extract line segments

2D point sequences

Fig. 3. Line regression algorithm. Blue dots show the 2D points. Circles
labeled with letters show the nodes in a linked list. Brackets show the groups
of points represented by the nodes. Thick line indicates that merging node
g with its left neighbor ef gives a smaller line fitting MSE than merging
it with its right neighbor h.

AHC is performed on this linked list by repeating (1) finding
the node g with the minimum line fitting MSE and (2)
merging this node g with either its left or right neighbor that
gives the minimum merging MSE. If the minimum merging
MSE is larger than a predefined threshold, which can usually
be decided by the noise characteristics of the sensor, then
the merging is canceled and the node g can be extracted
as a line segment. When using a binary heap to find the
minimum MSE node, log-linear time complexity O(n log n)
can be achieved for this algorithm, where n is the number
of points in the sequence. Note that by applying the idea of
integral images, as used in [11], [23], merging two nodes and
calculating the resulting line fitting MSE become constant
time operations.

B. Differences When Generalizing to 3D

Inspired by the use of point’s neighborhood information
given by the point’s order of the sequence, we wish to
generalize the 2D line regression to 3D plane extraction in an
organized point cloud, where the neighborhood information
is stored in the 2D indices. However, this generalization is
nontrivial, because of the following two major differences.

Non-Overlapping Nodes: As opposed to the line regres-
sion, initial nodes (and thus any two nodes during/after merg-
ing) should have no identical points, i.e., for any two nodes
Bs,Bt ⊂ F , Bs ∩ Bt = ∅. This requirement is due to the
fact that after several merging steps, the 3D points belonging
to a certain node Bs will form an irregular shape instead of
maintaining its initial rectangular shape in the image space,
as shown in Figure 2(b). Thus, if allowing different nodes
to have identical points, it is difficult to efficiently handle
the overlapping points when merging two nodes, even with
the help of integral images. While in the line regression,
merging two neighboring line segments will still result in
a line segment represented by a start and end index in the
point sequence, which makes overlapping nodes feasible. It
is important to notice that the overlapping nodes enable the
line regression algorithm to automatically split line segments

Algorithm 1 Fast Plane Extraction
1: function FASTPLANEEXTRACTION(F)
2: G← INITGRAPH(F)
3: (B,Π)← AHCLUSTER(G)
4: (C,Π′)← REFINE(B,Π)
5: return (C,Π′)

at their boundaries; since nodes containing points at different
line segments tend to have larger line fitting MSE than others
(e.g., nodes c, d, and h in Figure 3), their merging attempts
will be delayed and finally rejected. The non-overlapping
requirement in our algorithm results in losing that advantage
of automatically detecting boundaries of planes. We will
describe how to overcome the disadvantage by removing bad
nodes in the initialization step in Section III-A. We will also
describe a pixel-wise region growing algorithm to refine the
boundaries of planes in Section IV.

Number of Merging Attempts: In the line regression,
merging a node with its neighbor is a constant time operation
with at most two merging attempts, either to its left or
right neighbor. In our case, the number of merging attempts
is larger, since nodes are initially connected to at most 4
neighbors to form a graph, and after several merging steps,
they can be connected to a larger number of neighbors. In
Section III-B, we will experimentally analyze the average
number of merging attempts in our algorithm and show that
it stays small in practice; therefore, the merging step can
be done in a constant time, resulting in the complexity of
O(n log n) similar to the line regression.

III. FAST COARSE SEGMENTATION

Our fast plane extraction algorithm consists of three major
steps, as shown in Figure 2 and Algorithm 1: The algorithm
first initializes a graph and then performs AHC for extracting
coarse planes, which are finally refined. If the application
only requires rough segmentation of planar regions, e.g.,
detecting objects in a point cloud, then the final refinement
step may be skipped, which could increase the frame rate to
more than 50Hz for 640× 480 points.

First we clarify our notations. F denotes a complete frame
of an organized point cloud of M rows and N columns.
B, C represent coarse and refined segmentation respectively,
i.e., each element Bk/Cl of B/C is a segment—a set of 3D
points pi,j . Meanwhile Π,Π′ are sets of plane equations
corresponding to B, C, respectively. Also note that each node
v of a graph G is a set of 3D points and each undirected
edge uv denotes the neighborhood of segments u, v in the
image space.

A. Graph Initialization

As mentioned in Section II-B, our algorithm has a require-
ment of non-overlapping node initialization, represented in
lines 3 to 5 of Algorithm 2. This step uniformly divides the
point cloud into a set of initial nodes of the size H × W
in the image space. The requirement causes our algorithm
to lose the advantage of automatically detecting boundaries



Algorithm 2 Graph Initialization

1: function INITGRAPH(F)
2: G← (V ← ∅, E ← ∅)
3: for i← 1, dMH e do . initialize nodes
4: for j ← 1, d NWe do
5: vi,j ← {pk,l} ⊂ F , k = (i − 1)H +

1, · · · ,min(iH,M), l = (j−1)W+ 1, · · · ,min(jW,N)
6: if REJECTNODE(vi,j) then
7: vi,j ← ∅
8: V ← V ∪ {vi,j}
9: for each vi,j ∈ V do . initialize edges

10: if ¬ REJECTEDGE(vi,j−1, vi,j , vi,j+1) then
11: E ← E ∪ {vi,j−1vi,j , vi,jvi,j+1}
12: if ¬ REJECTEDGE(vi−1,j , vi,j , vi+1,j) then
13: E ← E ∪ {vi−1,jvi,j , vi,jvi+1,j}
14: return G

15: function REJECTNODE(v)
16: if v contains missing data point then return true
17: else if any point pi,j ∈ v is depth-discontinuous with

any of its 4 neighbor points then return true
18: else if MSE(v) > TMSE then return true
19: else return false

20: function REJECTEDGE(va, vb, vc)
21: if va = ∅ ∨ vb = ∅ ∨ vc = ∅ then return true
22: else if included angle of plane fitting normal of va

and vc is greater than TANG then return true
23: else return false

24: function MSE(v)
25: if v = ∅ then return +∞
26: else return the plane fitting MSE for all pi,j ∈ v

of planes. To properly segment planes using AHC under
this restriction, we remove the following types of nodes and
corresponding edges from the graph, which are illustrated
using an example in Figure 4:

1) Nodes Having High MSE: Non-planar regions lead
to high plane fitting MSE, which we simply remove.

2) Nodes Containing Missing Data: Because of the
limitation of the sensor, some regions of the scene
might not be sensed correctly, leading to missing data
(e.g., the glass window behind the shutter).

3) Nodes Containing Depth Discontinuities: These
nodes contain two sets of points lying on two surfaces
that are not close in 3D but are close in the image
space (usually one surface partially occludes the other,
e.g., the monitor occludes the wall behind). If principle
component analysis (PCA) is performed on points
belonging to this node for plane fitting, the fitted plane
will be nearly parallel to the line-of-sight direction and
thus still have a small MSE. Merging this “outlier”
node with its neighbor node will have bad effect on
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Fig. 4. Examples of bad initial nodes. ’o’ shows nodes with missing data
point; ’x’ shows nodes with depth discontinuity; black dot shows nodes with
too large plane fitting MSE; and ’B’ shows nodes located at the boundary
region between two connected planes.

the plane fitting result because of the well-known issue
of over-weighting outliers in least-squares methods.

4) Nodes at Boundary Between Two Planes: These
nodes contain two sets of points close to each other
in 3D but lying on two difference planes (e.g., the
corner of the room), which will decrease the plane
fitting accuracy if they are merged to one of the planes.

The functions REJECTNODE and REJECTEDGE in Al-
gorithm 2 are designed to reduce the influence of these
four types of bad initial nodes. The REJECTNODE function
removes the first three types of bad nodes (and thus the points
inside) from the graph, while the REJECTEDGE function is
for mitigating influence of the fourth type of bad nodes.

It is interesting to note that the gain in this non-overlapping
“disadvantage” is the avoidance of per-point normal estima-
tion. Our initialization step can be seen as treating all points
inside a node as if they have a common plane normal. This
is an important reason for our speed improvement compared
to other state-of-the-art methods which often spend a large
portion of time in the normal estimation for each point.

B. Agglomerative Hierarchical Clustering

As shown in Algorithm 3, the AHC in our algorithm is
almost the same as that in the line regression, except that it
is operated on a graph instead of a double linked list. We
first build a min-heap data structure for efficiently finding the
node with the minimum plane fitting MSE. We then repeat
finding a node v that currently has the minimum plane fitting
MSE among all nodes in the graph and merging it with one of
its neighbor nodes ubest that results in the minimum merging
MSE (recall that each node in the graph is a set of points; so
the merging MSE is the plane fitting MSE of the union of
the two sets umerge). If this minimum merging MSE exceeds
some predefined threshold TMSE (not necessarily a fixed
parameter as explained later in Section III-C), then a plane
segment v is found and extracted from the graph; otherwise
the merged node umerge is added back to the graph by edge
contraction between v and ubest.

As mentioned in Section II-B, our algorithm requires a
larger number of merging attempts than the line regres-
sion. However, it turns out to be still quite efficient and
the clustering process can be done in O(n log n) time in



Algorithm 3 Agglomerative Hierarchical Clustering
1: function AHCLUSTER(G = (V,E))
2: Q←BUILDMINMSEHEAP(V )
3: B ← ∅,Π← ∅
4: while Q 6= ∅ do
5: v ←POPMIN(Q)
6: if v /∈ V then . v was merged previously
7: continue
8: ubest ← ∅, umerge ← ∅
9: for each u ∈ N(v) , {u|uv ∈ E} do

10: utest ← u ∪ v . merge attempt
11: if MSE(utest) < MSE(umerge) then
12: ubest ← u, umerge ← utest

13: if MSE(umerge) > TMSE then . merge fail
14: if |v| > TNUM then . extract node v
15: B ← B ∪ {v},Π← Π∪PLANE(v)
16: E ← E \ E(v) , {uv|u ∈ N(v)}
17: V ← V \ {v} . reject small node
18: else . merge success
19: INSERT(Q, umerge)
20: E ← E ∪ {umergew|w ∈ N(v) ∪N(ubest) \
{v, ubest}} \ E(ubest) \ E(v) . edge contraction

21: V ← V ∪ {umerge} \ {v, ubest}
22: return (B,Π)

23: function PLANE(v)
24: return plane equation fitted from points in v by PCA

practice. Figure 5 experimentally shows the average number
of merging attempts during AHC per frame. As can be
seen, irrespective of the initial node size (and thus the
initial number of nodes), this number stays small. This may
be explained by the fact that the graph constructed from
Algorithm 2 is a planar graph. From graph theory one knows
that the average node degree of a planar graph is strictly less
than 6. Since our initial graph is planar and merging nodes
by edge contraction does not change its planarity, during the
whole process of AHC the average node degree is always
less than 6. Also, the plane fitting MSE of a large segment is
larger than that of a smaller segment, if errors are drawn from
the same Gaussian distribution. Thus the AHC process tends
to balance the size of all the segments, because it always tries
to grow the size of the node with the minimum plane fitting
MSE and then switches to other smaller nodes. Therefore,
it will not stick to growing a large node (which implies
large node degree since it has large boundary), otherwise the
average number of merging tests will be much larger. Based
on this observation, lines 6 to 21 in Algorithm 3 can be done
in a constant time irrespective of the initial number of nodes.
The O(n log n) complexity only arises from maintaining the
min-heap structure.

C. Implementation Details

There are several implementation details to improve the
speed and accuracy for this fast coarse segmentation:

Fig. 5. Average number of merging tests per frame during 2102 frames
of 640× 480 Kinect point clouds. Three initial node sizes are tested.

1) A disjoint set data structure is used for tracking the
point membership of each initial node vi,j .

2) As in the line regression, all nodes maintain the first
and second order statistics of all the belonging points,
i.e.,∑

xi,j ,
∑

yi,j ,
∑

zi,j ,
∑

x2i,j ,
∑

y2i,j ,
∑

z2i,j ,∑
xi,jyi,j ,

∑
yi,jzi,j ,

∑
zi,jxi,j ,

such that merging two nodes and calculating its plane
equation and MSE through PCA is a constant time
operation.

3) The function for determining the depth discontinuity
in REJECTNODE of Algorithm 2 depends on sensor
noise characteristics. For Kinect sensors, we use the
following function as suggested in [23] and Point
Cloud Library (PCL)2:

f(pa,pb) =

{
1 |za − zb| > 2α(|za|+ 0.5)

0 otherwise
(1)

The unit of z here (and throughout the paper) is
millimeter and the parameter α we used was between
0.01 and 0.02.

4) The threshold TMSE for extracting segments is also
sensor dependent. For Kinect, we use the following
equation adapted from [24]

TMSE = (σz2 + ε)2, (2)

where we used σ = 1.6 × 10−6 and ε between 3 and
8. Similarly, TANG can also be changed depending on
depth.

5) The initial node should be close to a square shape in
the image space, i.e., W ≈ H. If a strip-like shape is
used, either W� H (e.g., W = 20,H = 2) or H�W,
the PCA on the initial node will result in wrong plane
normal direction which is usually almost perpendicular
to the line-of-sight direction. Consequently the follow-
ing AHC will fail to segment planes correctly.

IV. SEGMENTATION REFINEMENT

For many applications, the coarse plane segmentation ob-
tained in the previous section might not be enough, especially

2http://www.pointclouds.org/



Algorithm 4 Segmentation Refinement
1: function REFINE(B,Π)
2: Q← ∅ . initialize queue for boundary points
3: R ← ∅ . points to be refined
4: G′ ← (V ′ ← ∅, E′ ← ∅) . graph for final merge
5: for each Bk ∈ B do . 1. erode each segment
6: Rk ← ∅,R ← R∪Rk

7: for each initial node vi,j ⊂ Bk do
8: if vi−1,j ∪ vi+1,j ∪ vi,j−1 ∪ vi,j+1 6⊂ Bk then
9: Bk ← Bk \ vi,j . erode border node

10: for each point ps,t on the boundary of Bk do
11: ENQUEUE(Q, (ps,t, k))
12: if Bk 6= ∅ then
13: V ′ ← V ′ ∪ {Bk}
14: while Q 6= ∅ do . 2. region grow from boundary
15: (ps,t, k)← DEQUEUE(Q)
16: for pi,j ∈ {ps−1,t,ps+1,t,ps,t−1,ps,t+1} do
17: if pi,j ∈ (Bk ∪ Rk)∨ DIST(pi,j ,Πk)2 >

9·MSE(Bk) then continue
18: if ∃l,pi,j ∈ Rl then
19: E′ ← E′ ∪ {BkBl} . connect nodes
20: if DIST(pi,j ,Πk)<DIST(pi,j ,Πl) then
21: Rl ← Rl \{pi,j},Rk ← Rk ∪{pi,j}
22: ENQUEUE(Q, (pi,j , k))
23: else
24: Rk ← Rk ∪ {pi,j}
25: ENQUEUE(Q, (pi,j , k))
26: for each Rk ∈ R do
27: Bk ← Bk ∪Rk . update each coarse segment
28: (C,Π′)←AHCLUSTER(G′) . 3. final merge
29: return (C,Π′)

if the applications use the boundaries of planes or require
higher accuracy of the estimated plane equations. Thus we
perform refinement on the coarse segmentation B.

Three types of artifacts are expected in the coarse segmen-
tation, as shown in Figure 6:
• Sawtooth: Usually at the boundary between two con-

nected planes.
• Unused Data Points: Usually at the boundary of oc-

clusion or missing data node.
• Over-Segmentation: Usually between two object’s oc-

clusion boundary.
Sawtooth artifacts cause small amount of outliers to be
included in estimation, whereas unused data points and over-
segmentation cause less inliers to be used. All of the artifacts
produce inaccurate plane boundaries and slightly decrease
the accuracy of the estimated plane equation.

Our solution to them is described in Algorithm 4. Since
sawtooth artifacts are almost always observed at the bound-
ary regions of B, erosion of boundary regions of each
segment can effectively eliminate them (lines 5 to 13). Then
pixel-wise region growing is started from all new boundary
points to assign all unused data points to its closest plane that

Fig. 6. Top row shows several artifacts in coarse segmentations. Top-
left: Sawtooth (e.g., purple and yellow segments). Top-right: Unused data
points (e.g., between lamp and wall) and over-segmentation (e.g., purple and
red segments). Bottom row shows the corresponding refined segmentations.

is extracted previously (lines 14 to 27). During the region
growing the 4-connected neighborhoods are discovered for
each segment Bk, which form a new graph G′. Finally
applying AHC again on this very small graph (usually less
than 30 nodes) fixes the over-segmentation artifact (line 28).

V. EXPERIMENTS AND DISCUSSION

To comprehensively evaluate our algorithm’s performance
in terms of robustness, time, and accuracy, we conducted
three sets of experiments described in the following subsec-
tions. We implemented our algorithm in C/C++. For PCA,
we used the efficient 3× 3 matrix eigenvalue decomposition
routine described in [25]3. All experiments were conducted
on an ordinary laptop with Intel Core i7-2760QM CPU
of 2.4GHz and RAM of 8GB. No multi-threading or any
other parallelism such as OpenMP or GPU was used in our
implementation.

A. Simulated Data

Similar to the influence of noise simulation in [10], we
tested our algorithm’s robustness on a simulated depth map
with 20 different levels of uniformly distributed noise of
magnitude E = 10l, l = 0, . . . , 20 (noise unit: mm; ground
truth depth ranges from 1396mm to 3704mm). After the
noise is added to the depth map, we converted it to an
organized point cloud and fed into our algorithm (W = H =
20,TMSE = 502). As shown in Figure 7, our algorithm can
reliably detect all of the 4 planes for l = 0, . . . , 14, and starts
to over-segment after that. Yet even when E = 200 mm our
algorithm was able to detect major planes in the scene.

B. Real-World Kinect Data

To measure the processing speed of our algorithm, 2102
frames of 640 × 480 pixel real-world Kinect data were
collected in an indoor scene, partly shown in Figures 1 and
6. Then they were processed with our algorithm using 12
different initial node sizes (TNUM = 800, α = 0.02, ε =

3Implementation available for download at http://www.mpi-
hd.mpg.de/personalhomes/globes/3x3/
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Fig. 7. Plane extraction results on simulated data.

Fig. 8. Average processing time over 2102 frames of 640 × 480 pixel
Kinect data using different initial node sizes.

8mm,TANG increases linearly from 15◦ at z = 500mm to
90◦ at z = 4000mm). As shown in Figure 8, with initial
node size of 10 × 10, even with refinement, our algorithm
took only 27.3± 6.9ms in average to process a frame of
640×480 pixel Kinect data, achieving more than 35Hz frame
rate. To the best of our knowledge, this is much faster than
other state-of-the-art algorithms.

C. SegComp Datasets

We evaluated the accuracy of our algorithm using the Seg-
Comp datasets [26]. Both the ABW (W = H = 4,TMSE =
1,TANG = 60◦,TNUM = 160, α = 0.1) and PERCEPTRON
(W = H = 8,TMSE = 2.1,TANG = 45◦,TNUM = 240, α =
0.03) datasets of planar scenes were experimented. Typi-
cal segmentation results of ABW and PERCEPTRON test
datasets are shown in Figure 9. The detailed benchmark
results using the evaluation tool provided by SegComp
are shown in Table V-C. As can be seen, our algorithm’s
performance is comparable to the state-of-the-art in terms of
segmentation accuracy as well as plane orientation estima-
tion, especially considering the fact that our frame rate is
much higher.

VI. CONCLUSIONS

We presented a novel fast plane extraction algorithm for
organized point clouds, achieving more than 35Hz frame
rate on 640 × 480 point clouds while providing accurate
segmentation. In the future we wish to extend the algorithm

to non-organized point clouds as well as to fast extraction of
other primitives such as spheres and cylinders.
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(2.4± 1.2)◦ for PERCEPTRON-TEST (bottom). Again, white dash lines are the segmentation boundary before the region-grow-based refinement.

TABLE I
BENCHMARKING RESULTS ON THE SEGCOMP DATASETS. THE RESULTS OTHER THAN OURS WERE OBTAINED FROM [2], [8], [27].

Approach Regions in Correctly Orientation Over- Under- Missed Noise
ground truth detected deviation (◦) segmented segmented (not detected) (non-existent)

SegComp ABW data set (30 test images) by Hoover et al. [26], assuming 80% pixel overlap as in [27]
USF [27] 15.2 12.7 (83.5%) 1.6 0.2 0.1 2.1 1.2
WSU [27] 15.2 9.7 (63.8%) 1.6 0.5 0.2 4.5 2.2
UB [27] 15.2 12.8 (84.2%) 1.3 0.5 0.1 1.7 2.1
UE [27] 15.2 13.4 (88.1%) 1.6 0.4 0.2 1.1 0.8
OU [27] 15.2 9.8 (64.4%) – 0.2 0.4 4.4 3.2
PPU [27] 15.2 6.8 (44.7%) – 0.1 2.1 3.4 2.0
UA [27] 15.2 4.9 (32.2%) – 0.3 2.2 3.6 3.2

UFPR [27] 15.2 13.0 (85.5%) 1.5 0.5 0.1 1.6 1.4
Oehler et al. [2] 15.2 11.1 (73.0%) 1.4 0.2 0.7 2.2 0.8
Holz et al. [8] 15.2 12.2 (80.1%) 1.9 1.8 0.1 0.9 1.3

Ours 15.2 12.8 (84.2%) 1.7 0.1 0.0 2.4 0.7
SegComp PERCEPTRON data set (30 test images) by Hoover et al. [26], assuming 80% pixel overlap as in [27]

USF [27] 14.6 8.9 (60.9%) 2.7 0.4 0.0 5.3 3.6
WSU [27] 14.6 5.9 (40.4%) 3.3 0.5 0.6 6.7 4.8
UB [27] 14.6 9.6 (65.7%) 3.1 0.6 0.1 4.2 2.8
UE [27] 14.6 10.0 (68.4%) 2.6 0.2 0.3 3.8 2.1

UFPR [27] 14.6 11.0 (75.3%) 2.5 0.3 0.1 3.0 2.5
Oehler et al. [2] 14.6 7.4 (50.1%) 5.2 0.3 0.4 6.2 3.9
Holz et al. [8] 14.6 11.0 (75.3%) 2.6 0.4 0.2 2.7 0.3

Ours 14.6 8.9 (60.9%) 2.4 0.2 0.2 5.1 2.1

[19] E. Fernández-Moral, W. Mayol-Cuevas, V. Arévalo, and J. González-
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