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Abstract—Probabilistic Data Association (PDA) algorithm has
shown promising performance in symbol detection and inter-
ference cancellation in different communication schemes. This
paper proposes new algorithms that build on PDA and introduce
modifications in the way the symbol being detected is treated.
While PDA models this symbol as a discrete sample from a
constellation, PDA with symbol uncertainty (SU-PDA) views it
as a sum of a deterministic symbol and random noise, while the
Gaussian PDA (G-PDA) models it as a random variable with
either a single Gaussian or Gaussian mixture distribution. The
proposed algorithms are tested via computer simulations on both
simulated and experimentally measured channels. The perfor-
mance study reveals that the SU-PDA and G-PDA outperform the
conventional PDA with the performance gain ranging from few
dBs on measured channel with block fading up to and exceeding
10 dB on the simulated channel with fast fading.
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I. INTRODUCTION

Machine-to-machine (M2M) communication systems are

intended to enable machines to exchange short command and

control messages over wireless links. The main design goal

is to achieve fast and highly reliable transmission of short

messages over wireless channels with small and relatively

simple devices employing a small number of antennas (prefer-

ably one or two) [1]. One of the major application areas of

M2M modems are factories wherein the automated production

processes would benefit if machines communicated with each

other wirelessly.

We consider a single-input single-output (SISO) commu-

nication system with block transmission and detection as a

candidate for M2M modems. The type of messages and the

required low latency call for short block sizes (e.g. < 100
symbols).

A successful design of M2M modem with pseudo-random

phase precoding (PRPP) and Likelihood Ascent Search (LAS)

detection has been reported in [2]. This scheme performs

extremely well in practice when block size is at least 400

symbols. However, our goal is to reduce the block size without

losing much of the performance.

Maximum likelihood detection (MLD) is the optimal sym-

bol detection scheme. However, the complexity of the MLD

grows exponentially with the block size. Therefore, a variety of

suboptimal detection algorithms with polynomial complexity

∗ M. Pajovic completed this work while he was an intern at MERL.

have been developed. Among the most known are PDA [3],

QRD-M [4], LAS [5], Reactive Tabu Search (RTS) [6], and

algorithms based on graphical models [7].

The PDA algorithm was originally developed for target

tracking and has gained interest in the communications com-

munity. As such, the PDA has been applied for multiuser

detection in code division multiple access (CDMA) sys-

tems [8], [9]. The application of PDA for turbo equalization

is reported in [10]. The symbol detection in multiple input

multiple output (MIMO) systems using PDA algorithm is

presented in [11]. PDA has been combined with the decision

feedback equalization (DFE) for detection in MIMO system

over a frequency selective channel [12]. A bit-by-bit detection

of a higher order quadrature amplitude modulation (QAM)

using the PDA algorithm is given in [13]. A new symbol

ordering scheme for PDA detection suitable for flat fading

channel is proposed in [14].

This paper proposes new algorithms based on PDA which

outperform the conventional PDA for short block sizes (<

100 symbols) at lower bit error rates (BERs) of our interest

in the M2M communication system. Given the equivalence

between the SISO system with block transmission and large

MIMO [2], the proposed algorithms are equally applicable for

symbol detection in large MIMO.

Computer simulations have been conducted for both the

simulated and experimentally measured indoor channels.

These tests show that the proposed algorithms outperform

the conventional PDA with the gain ranging from few dBs

(i.e., one order of magnitude of BER) on the experimentally

measured channel with larger blocks, up to and exceeding 10

dB (i.e. more than two orders of magnitude of BER) on a

simulated fast fading channel with shorter blocks.

Throughout the paper, boldface uppercase letters denote

matrices and boldface lowercase letters denote vectors. An op-

erator (·)T denotes transpose and (·)H complex-conjugation,

i.e., Hermitian. Unless otherwise specified, all vectors are

assumed to be column vectors.

II. SYSTEM MODEL

A block diagram of the SISO communication system with

block transmission and detection is shown in Fig. 1 and

described in this section.

The information to be transmitted is represented with com-

plex symbols. The symbol transmitted at discrete time n is

xn ∈ X, where X is a finite dimensional symbol alphabet



Fig. 1. Block diagram of a SISO communication system with block trans-
mission and detection.

(i.e., constellation). Without loss of generality, we assume that

symbol xn can take any value from X with equal probability.

The consecutive symbols are grouped into blocks of size N

so that the transmitted block is x ∈ CN×1.

The data block x is processed by a precoder. The precoder

essentially spreads the energy of each symbol xn into N

signaling intervals, giving rise to time diversity in the case

of a fast fading channel. Formally, the precoder is described

by a precoding matrix P ∈ CN×N and its output is given by

p = Px. (1)

On the contrary, if the channel experiences very slow or block

fading, the precoding does not lead to diversity. Formally, in

this case we use the identity precoder, i.e., P = I.

The precoded block p is modulated onto a carrier and

transmitted over a wireless channel. The signal received on

the receiver antenna is filtered, demodulated, converted into

the baseband and sampled. The received baseband signal in

discrete time is y ∈ CN×1 and is related with the precoded

signal p through a linear model,

y =
√

SNR Hp+ v, (2)

where H ∈ CN×N models distortions caused by the wireless

channel. The signal-to-noise ratio is SNR and the additive

noise is circularly symmetric zero mean uncorrelated Gaussian

process, i.e., v∼CN(0, I).
The relation between the received signal y and transmitted

block x is obtained by substituting (1) into (2) such that

y = Gx+ v, (3)

where

G =
√

SNR HP (4)

is the effective channel matrix. Throughout this paper, we

assume the receiver perfectly knows the effective channel

matrix G and focus on symbol detection.

Although derived for a SISO communication system with

block detection, expression (3) models the input-output re-

lationship in other communication systems as well. Since

the algorithms proposed in this paper do not in particular

rely on the additional specifics of the SISO system, they are

equally applicable for symbol detection in other communica-

tion schemes driven by (3).

III. PROBABILISTIC DATA ASSOCIATION ALGORITHM

The conventional PDA algorithm is outlined in this section.

For the sake of easy exposition and without loss of generality,

model (3) is after multiplication with G−1 expressed as

z = x+w, (5)

where z = G−1y. Note that the noise w is circularly

symmetric Gaussian, i.e., w∼CN(0,R) with covariance R =
(

GHG
)−1

.

In essence, the PDA algorithm iteratively calculates the

posterior probability of each symbol xn, conditioned on the

received signal z,

pn(a) = P [xn = a | z] , a ∈ X, n = 1, 2, . . . , N. (6)

The algorithm operates as follows. Suppose it is at iteration

i and xn is the desired symbol. Then the received signal z

in (5) is expressed as

z = xnen +
∑

i6=n

xiei +w, (7)

where {ei}ni=1 is the standard basis (i.e., ei contains 1 in

entry i and zeros elsewhere). The main idea behind the PDA

algorithm is to treat the contribution from all symbols except

xn to the received signal as interference and approximate the

sum of the interference and noise with a Gaussian distribution.

That is, when detecting xn, the interference plus noise in (7)

w̃ =
∑

i6=n

xiei +w (8)

is approximately CN(µn,Σn)
1. The mean µn and covariance

matrix Σn are matched to the mean and covariance of w̃, i.e.,

µn = E[w̃|z] =
∑

i6=n

E[xi|z]ei, (9)

and

Σn = cov(w̃, w̃|z) =
∑

i6=n

var(xi|z)eieTi +R. (10)

In addition, the PDA assumes that the posteriors of all symbols

except xn computed thus far are the true posteriors. Thus, the

mean µn and covariance Σn of the approximating Gaussian

distribution are easily obtained by evaluating the mean E[xi|z]
and variance var(xi|z) of a discrete random variable with

known distribution.

Having approximated the statistics of the interference plus

noise in (7), the distribution of the received signal z condi-

tioned on xn = a is complex Gaussian,

p
z|xn(z | a) = CN(z; aen + µn,Σn), a ∈ X. (11)

1To simplify the exposition, we assume that Gaussian distributions through-
out the paper are circularly symmetric. Algorithm development in the real
domain as well as the complex domain with non-circular symmetry is
analogous.



Therefore, the posterior pn of a symbol xn is updated via

Bayes’ rule

pn(a) =
p
z|xn(z | a)

∑

a′∈X
p
z|xn(z | a′) , a ∈ X, (12)

where the summation in the denominator is over alphabet X.

Note that in (12) we exploit the assumption that symbols have

uniform prior.

The PDA algorithm then continues and updates the posterior

of the next symbol following some prespecified/adaptive or-

dering scheme. After a certain number of iterations or until

convergence is established, it outputs the estimates of the

posteriors pn. Hard estimates x̂n of the corresponding symbols

are obtained using the maximum a posteriori probability

(MAP) rule,

x̂n = argmax
a∈X

pn(a). (13)

IV. PROPOSED ALGORITHMS

This section presents new algorithms based on PDA. The

common feature of the conventional PDA and the proposed

algorithms is that they use the same model (5) (or (3)) and infer

posterior distribution pn of transmitted symbol xn, conditioned

on received signal z (or y).

A. PDA with Symbol Uncertainty (SU-PDA)

Suppose we are detecting symbol xn. The main idea behind

the SU-PDA algorithm is to model xn as

xn = x̄n + x̃n, (14)

where x̄n is a deterministic, unknown variable from finite

alphabet X and x̃n is a zero mean random variable whose

variance is equal to the variance of xn conditioned on z and

evaluated from the current estimate of pn,

var(x̃n) = var(xn|z). (15)

Intuitively, x̃n captures the uncertainty in the current knowl-

edge about xn.

Substituting (14) into (7) yields

z = x̄nen + x̃nen +
∑

i6=n

xiei +w. (16)

The contribution to the received signal z from the symbols

other than xn is treated as interference, while x̃nen is viewed

as an additional noise term. Overall, the distribution of the

sum of the interference and noise

w̃ = x̃nen +
∑

i6=n

xiei +w (17)

is approximated with complex Gaussian distribution with the

mean µn and covariance Σn. As in the conventional PDA,

the current estimates of posteriors {pi}Ni=1 are used to eval-

uate the mean and covariance of the approximating Gaussian

distribution such that

µn = E[w̃|z] =
∑

i6=n

E[xi|z]ei, (18)

and

Σn = cov(w̃, w̃|z) =
N
∑

i=1

var(xi|z)eieTi +R. (19)

Note that the mean vector µn is the same as in the

conventional PDA (9). On the other hand, the summation in the

expression for covariance matrix (19) includes contributions

from all symbols, as opposed to the conventional PDA (10).

Given that interference plus noise w̃ is Gaussian distributed,

the probability distribution of the received signal z, parame-

terized by x̄n, is

pz(z; x̄n = a) = CN(z; aen + µn,Σn), a ∈ X. (20)

The SU-PDA updates posterior pn of xn by normalizing the

parameterized distributions with respect to parameter x. That

is,

pn(a) =
pz(z; x̄n = a)

∑

a′∈X
pz(z; x̄n = a′)

, a ∈ X, (21)

where the summation in the denominator is over the finite

alphabet X.

A pseudo-code description of how the SU-PDA algorithm

evaluates the posteriors of binary phase shift keying (BPSK)

modulated symbols is given in Algorithm 1. Note that the

conditional mean (18) and variance (19) of symbol xn taking

values from X = {+1,−1} are, respectively, 2p
(i)
n − 1 and

4p
(i)
n (1− p

(i)
n ), where p

(i)
n is the estimate of P [xn = 1 | z] at

iteration i.

Algorithm 1 SU-PDA detection of BPSK symbols

Require: received signal z

Ensure: p1, p2, . . . , pN
Initialize p

(0)
1 , . . . , p

(0)
N

for i = 1, 2, . . . , I do

for n = 1 to N do

µn =
∑

k 6=n(2p
(i−1)
k − 1)ek

Σn =
∑

k 4p
(i−1)
k (1− p

(i−1)
k )eke

T
k

p
(i)
n = CN(z;en+µ

n
,Σn)

CN(z;en+µ
n
,Σn)+CN(z;−en+µ

n
,Σn)

end for

end for

B. PDA with Gaussian Approximation (G-PDA)

G-PDA starts with model (5) and updates posterior pn. As

in the original PDA, the contribution of other symbols to the

received signal z is viewed as interference. The distribution of

the interference plus noise w̃ is approximated with complex

Gaussian distribution with the mean vector µn and covariance

matrix Σn, evaluated as in (9) and (10).

In the first step of the G-PDA algorithm, the expected value

of the interference is subtracted from the received signal.

Since the noise w has zero mean, the expected value of the

interference is µn and the obtained interference-free signal is

z̃ = z− µn. (22)



The interference-free signal z̃ is using (5) modeled as

z̃ = xnen + q, (23)

where q is the equivalent noise, given by

q =
∑

i6=n

xnen − µn +w. (24)

Note that q∼CN(0,Σn), where Σn is evaluated using (10).

In the second step of G-PDA, the signal z̃ in (23) is

processed with the minimum mean square error (MMSE) filter

in order to estimate symbol xn. The impulse response of the

MMSE filter is given in vector form by

wMMSE =
(

ene
T
n +Σn

)−1
en. (25)

The output from the MMSE filter is scaled and sufficient

statistic z̃o is given by

z̃o =
wH

MMSEz̃

eTn (ene
T
n +Σn)−1en

. (26)

Substituting (25) into (26) and using the matrix inversion

lemma for the inverse of the rank one update of a matrix yields

z̃o =
eTnΣ

−1
n

eTnΣ
−1
n en

z̃. (27)

Finally, substituting (23) into (27), yields a simple model

for z̃o

z̃o = xn + q̃, (28)

where q̃∼CN(0, σ2). The variance σ2 is evaluated as

σ2 =
1

eTnΣ
−1
n en

. (29)

In the final step, symbol xn is detected from z̃o using

model (28). It can be confirmed that if xn is modeled as

a uniform discrete random variable over alphabet X, the

conventional PDA algorithm is obtained. Instead, depending

on how the distribution of xn is modeled, we arrive to two

versions of G-PDA.

1) Modeling xn with a single Gaussian: In this version, we

model xn as a single Gaussian random variable whose mean

and variance match the mean and variance of xn. Since xn is

a point from a finite constellation, without loss of generality,

we have

p̃xn(x) = CN(x; 0, 1). (30)

Hence, given that both xn and q̃ in (28) are Gaussian

distributed scalars, the posterior of xn conditioned on z̃o (and

therefore on z because z̃o is a sufficient statistics) is also

Gaussian, i.e.,

p̃
xn|z̃o

(x | z̃o) = CN(x;µ′
n, σ

′2
n ), (31)

where the mean and variance are, respectively, given by

µ′
n =

z̃o

1 + σ2
and σ′2

n =
σ2

1 + σ2
. (32)

After substituting (27) and (29) into (32), the mean and

variance of the a posteriori Gaussian distribution are given by

µ′
n =

eTnΣ
−1
n (z− µn)

1 + eTnΣ
−1
n en

and σ′2
n =

1

1 + eTnΣ
−1
n en

. (33)

Finally, the posterior pn(a) is updated by integrating Gaus-

sian distribution CN(µ′
n, σ

′2
n ) over region Z(a) in the complex

plane which is defined as the set of points which are closer in

the Euclidean sense to the constellation point x = a than to

any other constellation point from X. Formally, we have

pn(a) =

∫

Z(a)

p̃
xn|z̃o

(x | z̃o)dx, (34)

where

Z(a) = {z | ‖z − a‖ < ‖z − a′‖, a′ ∈ X}. (35)

For BPSK modulated symbols where X = {+1,−1},

Z(1) = {z ∈ R | z > 0} and thus the posterior pn(1) is

updated with the probability that a random variable distributed

according to (31) is positive. Hence,

pn(xn = 1) = P
[

N(µ′
n, σ

′2
n ) > 0

]

=
1

2
+

1

2
erf

(

µ′
n

√

2σ2′
n

)

,

(36)

where the error function is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt. (37)

A pseudo-code description of how the G-PDA algorithm

with a single Gaussian approximation updates and evaluates

the posteriors of BPSK symbols is given in Algorithm 2.

Algorithm 2 G-PDA with single Gaussian approximation

Require: received signal z

Ensure: p1, p2, . . . , pN
Initialize p

(0)
1 , . . . , p

(0)
N

for i = 1, 2, . . . , I do

for n = 1 to N do

µn =
∑

k 6=n(2p
(i−1)
k − 1)ek

Σn =
∑

k 6=n 4p
(i−1)
k (1− p

(i−1)
k )eke

T
k

µ′
n =

(

1 + eTnΣ
−1
n en

)−1
eTnΣ

−1
n (z− µn)

σ′2
n =

(

1 + eTnΣ
−1
n en

)−1

p
(i)
n = 0.5 + 0.5erf

(

µ′

n√
2σ2′

n

)

end for

end for

2) Modeling xn with a Gaussian Mixture: In this version

of the G-PDA, we assume the prior on xn is a Gaussian

mixture whose components have means taking values from the

alphabet X, the same variance σ2
0 and equal weights. Formally,

p̃xn(x) =
1

|X|
∑

a∈X

CN(x; a, σ2
0), (38)

where σ2
0 is a parameter that can be tuned. The posterior of xn

is using the Bayes’ rule determined to be a Gaussian mixture.



As an example, we consider the BPSK modulation where

X = {+1,−1}. The distribution of xn conditioned on z̃o (and

thus on z) is using the Bayes’ rule given by

p̃
xn|z(x|z) = w1CN(x;µ1, σ

′2) + w2CN(x;µ2, σ
′2), (39)

where

µ1,2 =
z̃oσ

2
0 ± σ2

σ2 + σ2
0

and σ′2 =
σ2σ2

0

σ2 + σ2
0

, (40)

while the weights are

w1,2 ∝ exp

(

− (z̃o ∓ 1)2

2(σ2 + σ2
0)

)

where w1 + w2 = 1. (41)

The version of the G-PDA with Gaussian mixture which does

not update the weights w1 and w2 i.e., keeps them equal is

referred to as G-PDA with partial update.

The posterior pn(a), a ∈ X is updated by integrating the

Gaussian mixture p̃
xn|z(x|z) as in (34) over region Z(a),

defined in (35). For the BPSK modulation, we obtain

pn(1) = 0.5

(

1 + w1erf

(

µ1√
2σ′2

)

+ w2erf

(

µ2√
2σ′2

))

.

(42)

A pseudo-code description of how the G-PDA algorithm

with a Gaussian mixture updates and evaluates the posteriors

of BPSK symbols is given in Algorithm 3.

Algorithm 3 G-PDA with a Gaussian mixture

Require: received signal z, variance σ2
0

Ensure: p1, p2, . . . , pN
Initialize p

(0)
1 , . . . , p

(0)
N

for i = 1, 2, . . . , I do

for n = 1 to N do

µn =
∑

k 6=n(2p
(i−1)
k − 1)ek

Σn =
∑

k 6=n 4p
(i−1)
k (1− p

(i−1)
k )eke

T
k

z̃o =
(

eTnΣ
−1
n en

)−1
eTnΣ

−1
n (z− µn)

σ2 =
(

eTnΣ
−1
n en

)−1
; µ1,2 =

z̃oσ
2

0
±σ2

σ2+σ2

0

; σ′2 =
σ2σ2

0

σ2+σ2

0

w1,2 ∝ exp
(

− (z̃o∓1)2

2(σ2+σ2

0
)

)

, where w1 + w2 = 1

p
(i)
n = 0.5

(

1 + w1erf
(

µ1√
2σ′2

)

+ w2erf
(

µ2√
2σ′2

))

end for

end for

Once the posterior pn of a symbol xn is updated, the SU-

PDA and G-PDA update the posterior of the next symbol

from some ordering scheme and after a certain number of

iterations or after it has converged, the algorithm outputs the

final estimates of the posteriors and hard estimates of the

transmitted symbols obtained using the MAP rule (13).

V. VALIDATION RESULTS

This section presents the performance results of the SU-

PDA and G-PDA algorithms. The first part of this section

presents simulation results on fast fading channel. The second

part presents the results obtained from simulating the proposed

algorithms using the channel impulse responses measured in

an indoor commercial setting.
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A. Simulation on Fast Fading Channel

The BER performance of the communication system which

uses the proposed algorithms for symbol detection is evaluated

using the Monte-Carlo simulations.

Equally likely quadrature phase shift keying (QPSK) sym-

bols are grouped into blocks of size N and precoded with the

discrete Fourier transform (DFT) precoder, whose

[P]n,m =
1√
N

e−j 2π

N
(n−1)(m−1), n,m = 1, 2, . . . , N. (43)

The obtained symbols are transmitted over a channel mod-

eled as a linear time-varying filter which has five taps. The

coefficients corresponding to a single tap exhibit fast fading

such that fdts = 1, where fd is the Doppler and ts is the

symbol duration.

We assume the receiver perfectly tracks the channel and

detects the transmitted symbols using the proposed algorithms.

For reference, we also consider the MMSE receiver and the

conventional PDA algorithm.

The BER performance of the described communication

system employing the MMSE, PDA, SU-PDA, G-PDA with

single Gaussian approximation, G-PDA with Gaussian mixture

and G-PDA with partial update detection is shown in Fig. 2

for N = 16 and Fig. 3 for N = 32. The BER performance

versus SNR for block size N = 64 and MMSE, original PDA

and SU-PDA receivers is shown in Fig. 4.

As can be seen from the presented performance plots, the

conventional PDA suffers from the error floor. On the contrary,

the symbol detectors based on the PDA modifications do

not exhibit an error floor in the region of considered SNR’s

and the performance improvement is significant at SNR’s

corresponding to the BER’s of our interest. On the other hand,

at relatively lower SNR’s the original PDA has slightly better

performance and the crossover point appears between 11-14

dB and moves towards higher SNR’s as N increases.
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channel with fast fading, ten iterations. G-PDA with partial update is G-PDA
with Gaussian mixture and no update on mixture weights.
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Fig. 4. Block size N = 64, QPSK modulation, DFT precoder, five-tap
channel with fast fading, ten iterations.

The comparison between different PDA modifications re-

veals that all versions of the G-PDA outperform the SU-PDA

for N = 16 and N = 32. Among the G-PDA versions, the one

which uses the Gaussian mixture approximation of distribution

of the symbol being detected has a slightly better performance

than the one with a single Gaussian approximation.

B. Simulation on Experimentally Measured Channel

The BER performance of the PDA algorithm and proposed

modifications SU-PDA and G-PDA when used to detect the

symbols received from the real, experimentally measured

channel is presented in this part.

The channel transfer function is experimentally measured

in an indoor environment. The realizations of the channel

impulse response at 2.4 GHz band and of 5 MHz bandwidth

are calculated from the channel transfer functions. One such

realization corresponding to the non-line of sight (NLOS)

Fig. 5. One realization of a measured channel impulse response.

channel with transmitter-receiver range of 50 m is shown

in Fig. 5. For simulation results presented in this section

we had access to total of ∼ 700 measured power delay

profile (PDP) realizations, and we obtained additional channel

impulse responses by employing random phase rotations to

the measured PDP tap coefficients.

The obtained realizations of the channel impulse response

are used in computer simulations of the M2M communication

system. Equally likely QPSK symbols are generated, grouped

into blocks of size N and precoded. The blocks of symbols are

transmitted through a channel with the impulse response being

one of the experimentally obtained channel impulse responses.

A response is normalized to 1 such that the channel gain

is 1 and hence the evaluated BER performance corresponds

to the received SNR. Since the considered block sizes are

relatively short, we assume the channel is time-invariant during

the transmission of a single block.

The BER versus received SNR performance of the receivers

based on the MMSE, PDA, SU-PDA, G-PDA with a single

Gaussian, G-PDA with a Gaussian mixture and G-PDA with

partial update (i.e. weights in the mixture are not updated) and

σ2
0 = 1, is shown in Fig. 6 for block size N = 16 and in Fig. 7

for block size N = 32.

Two types of precoders are considered in this study: the

DFT precoder and identity precoder. Since the channel is

assumed invariant during the transmission of a block, pre-

coding does not help in achieving the diversity. In addition,

it destroys the diversity offered by the multi-tap (frequency

selective) channel. On the other hand, if precoding is skipped

(formally, identity precoder is used), the PDA algorithm and

its modifications extract the diversity offered by the channel.

This can be seen from the performance plots.

The SU-PDA and G-PDA behave worse than the original

PDA at relatively small SNR. However, the proposed algo-

rithms start outperforming the PDA at around 12 dB and

the performance gain increases as SNR increases. Thus, at
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Fig. 6. Block size N = 16, QPSK modulation, measured channel, ten
iterations. Remark: all algorithms yield the same performance with DFT
precoder. All other plots correspond to identity precoder.
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Fig. 7. Block size N = 32, QPSK modulation, measured channel, ten
iterations. Remark: all algorithms yield the same performance with DFT
precoder. All other plots correspond to identity precoder.

SNR of 16dB and above, the SU-PDA and G-PDA attain

at least one order of magnitude lower BER compared to the

original PDA. More importantly, this happens at SNR’s which

correspond to BER’s of the interest for M2M modem. Among

the PDA modifications, the G-PDA with Gaussian mixture

approximation behaves slightly better than the SU-PDA.

VI. CONCLUSIONS

PDA algorithm has shown promising performance in sym-

bol detection and interference cancellation in a variety of

communication techniques. One such application is symbol

detection in a SISO system with block transmission and

detection. This technique is envisioned to provide fast and

highly reliable transmission of short messages over wireless

channels. These requirements constitute design goal for the

M2M communication system.

This paper proposes new algorithms based on PDA which

outperform the conventional PDA algorithm for short blocks

(< 100 symbols) and at SNR’s corresponding to BER’s

required for M2M communications. The proposed algorithms

differ from the original PDA in the way they treat the symbol

being estimated. As such, the PDA-SU models such a symbol

as a sum of a discrete deterministic variable and zero mean

noise which captures the uncertainty in our knowledge about

that symbol. On the other hand, the G-PDA models this

symbol as a random variable distributed either as a single

Gaussian or Gaussian mixture.

The proposed algorithms have been tested via computer sim-

ulations using both simulated and real channel. The simulated

channel is multi-tap with fast fading, while for real channel

we use the channel impulse responses that were experimentally

measured. The tests on both channel types have shown that the

proposed algorithms outperform the conventional PDA.
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