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Energy-Efficient Collision-Free Trajectory Planning Using Alternating
Quadratic Programming

Yiming Zhao, Yebin Wang, Scott A. Bortoff and Daniel Nikovski

Abstract— This paper considers the planning of collision-
free and energy-optimal trajectories for linear systems with
decoupled dynamics for different degrees of freedom. A direct
transcription of such a problem generally results in a non-
convex problem due to the collision avoidance constraint. In this
paper we propose a novel Alternating Quadratic Programming
(AQP) algorithm to deal with the non-convex collision avoidance
constraint, and generate a suboptimal solution for the original
problem by alternatively solving a number of subproblems. It
is proved that the AQP algorithm is guaranteed to converge,
and the solution is locally optimal when the boundary of
the collision-free region satisfies certain properties. The speed
and energy-saving performance of the proposed method are
demonstrated by Numerical examples.

Index Terms— motion planning, trajectory generation, min-
imum energy, collision avoidance, Quadratic Programming.

I. INTRODUCTION

This paper focuses on the planning of energy-optimal
collision-free trajectories for a special type of linear systems
where the dynamics for different degrees-of-freedom (DOF)
are decoupled. Examples of such systems include 3D printer,
gate crane, and satellite (translational dynamics only), etc.
In order to address various constraints such as collision
avoidance, speed and control constraints, we explore the
numerical optimization approach, which is more tractable
for dealing with constraints than theoretical optimal control.

The collision-free trajectory planning problem is typically
solved by decomposing it into two levels. At the higher level,
only the geometric aspects of the path including the collision
avoidance constraint are considered, while the lower level
deals with the system dynamics and other constraints, and
either filters the path provided by the higher (geometric) level
planner into a collision-free trajectory [6], or assigns a speed
profile along the path to transform it into a trajectory [2],
[11], [10], [12], [13]. Such a decomposation approach is
usually computationally efficient. However, it may fail to find
a feasible trajectory if the geometric path is not properly
generated. Neither does it ensure the optimality of the
planned trajectory.

The collision-free trajectory planning problem has also
been solved in the full state space directly using Mixed-
Integer Linear Programming (MILP)[8], and Mixed-Integer
Quadratic Programming (MIQP)[7] for linear dynamical
systems with linear and quadratic cost functions. While these
methods can find the globally optimal solution, the problem
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scale and computation time grow substantially when the
topology of the collision-free region is complex.

In this paper, we explore a different direction to gen-
erate collision-free energy-optimal trajectories for a type
of linear systems. In particular, we take advantage of the
decoupled nature of system dynamics and the cost function
to generate an energy-efficient collision-free trajectory by
iteratively solving a number of convex subproblems. Such a
method is implemented as an algorithm called the Alternating
Quadratic Programming algorithm, since the subproblems are
formulated as Quadratic Programming (QP) problems and
solved alternatively. By solving each subproblem, the energy
efficiency of the system’s motion in the DOF corresponding
to this particular subproblem is improved, while ensuring
the feasibility of the trajectory, i.e., satisfying all constraints
including the system dynamics. It is proved that the proposed
method is guaranteed to converge. Furthermore, when the
boundary of the non-convex collision-free region satisfies
certain conditions, the AQP algorithm always generates a
locally optimal solution. This method is both computation-
ally efficient and reliable, hence is suitable for real-time
applications.

The organization of this paper is as follows: We first
present the system dynamics and constraints, and show
that the original non-convex cost function is convex in the
subspace defined by the system dynamics. Then we discretize
the energy-optimal collision-free trajectory generation prob-
lem minimizing the equivalent convex cost function, and
introduce the AQP algorithm in Section III. The convergence
of the AQP algorithm and the optimality of the solution
are analyzed. Finally, numerical examples are given in Sec-
tion IV to validate the effectiveness of the AQP algorithm.

II. CONVEXITY ANALYSIS AND PROBLEM
FORMULATION

A. System Dynamics

For simplicity, we consider a linear dynamical system with
two decoupled translational DOF as an example to introduce
the problem formulation and present the proposed method,
although the results can be extended to more general systems
with decoupled motions. In particular, the dynamics of the
system has the following form

ẋ = vx, (1)
ẏ = vy, (2)

v̇x = −dxvx + bxux, (3)
v̇y = −dyvy + byuy, (4)



where x, y ∈ R are the position of the system, vx, vy ∈ R
are the speed of the system along the x and y directions,
respectively. ux, uy are the control inputs, dx, dy > 0 are
friction coefficients, and bx, by > 0 are constants. The system
is required to start from position (x0, y0) at time t = 0 with
initial speed (vx0 , vy0), and move to (xf , yf ) at time t = tf
with final speed (vxf

, vyf
).

B. Cost Function and Constraints

We consider the minimization of a quadratic energy con-
sumption cost function:

J(vx, ux, vy, uy) = Jx(vx, ux) + Jy(vy, uy)

=
∫ tf

0

(
Rxu2

x + Kxvxux + Ryu2
y + Kyvyuy

)
dt

(5)

Such a cost function is commonly used in the literature
as an estimation of the energy consumption of mechatronic
systems, where the Rxu2

x and Ryu2
y terms inside the integral

of (5) correspond to the copper loss, and the Kxvxux and
Kyvyuy terms are the mechanical power. The constants Rx,
Ry , Kx, Ky are positive numbers. The summation of these
terms approximates the instantaneous power consumption of
the system.

The representation of obstacles is an important step for the
formulation of collision-free trajectory generation problem.
To facilitate problem formulation, regular shapes such as
polytopes, cylinders, and spheres are often used to describe
the obstacles [5], [9], [8], or alternatively, the feasible
(obstacle-free) region or volume for the system’s motion [3].
In this paper, we use the feasible region formulation, and
assume that the time-invariant obstacle-free region is repre-
sented by a closed set D ⊂ R2.

The motion of the system must satisfy:
1) dynamics constraints (1) to (4),
2) the boundary conditions x(0) = x0, x(tf ) = xf ,

vx(0) = vx0 , vx(tf ) = vxf
, y(0) = y0, y(tf ) = yf ,

vy(0) = vy0 , vy(tf ) = vyf
.

3) the speed constraints

vxmin ≤ vx(t) ≤ vxmax (6)
vymin ≤ vy(t) ≤ vymax , t ∈ [0, tf ] (7)

4) the control constraints

uxmin ≤ ux(t) ≤ uxmax (8)
uymin ≤ uy(t) ≤ uymax , t ∈ [0, tf ] (9)

5) and the collision-avoidance constraint

(x(t), y(t)) ∈ D, t ∈ [0, tf ], (10)

where it is assumed that (x0, y0) ∈ D and (xf , yf ) ∈
D. The inequalities above are taken componentwise. One
remarkable feature of the systems considered in this paper
is that both the energy consumption and the dynamics are
decoupled for different translational motions. As a result,
when the obstacle avoidance constraint (10) is not active,
the generation of trajectory in the two dimensional plane can
be accomplished by planning the motions along the x and

y directions separately. In this case, each separated motion
planning problem can be solved efficiently using numerical
optimization. In the presence of obstacles, however, the
two subproblems are coupled via the collision avoidance
constraint (10), which is non-convex. In the following, we
will develop a numerical optimization method to efficiently
handle such a case when (10) is active.

C. Convexification of the Cost Function
It is well-known that the convexity of the problem, which

includes the convexity of the cost function and the convexity
of the feasible region, is one of the main factors affecting the
convergence and the efficiency of numerical optimization.
It is obvious that the cost function (5) is non-convex in
vx, ux, vy and uy . Although the optimal control problem
for the minimization of (5) subject to constraints (1) to
(10) can be solved directly using numerical optimization,
the convergence is not ensured in general for such a non-
convex cost function. However, as will be shown below, more
insights can be obtained by analyzing the convexity of (5),
such that the problem can be solved with better numerical
efficiency and reliability.

It is noted that (5) can be written equivalently as a convex
function of vx, ux, vy , and uy considering (3) and (4). In
particular, multiplying both sides of (3) by vx, we have:

vxv̇x = −dxv2
x + bxuxvx,

Re-arranging the terms of the above expression and integrat-
ing both sides on [0, tf ], we have

∫ tf

0

Kxuxvx dt

=
∫ tf

0

Kx

bx

(
vxv̇x + dxv2

x

)
dt

=
Kx

bx

(∫ tf

0

vxv̇x dt +
∫ tf

0

dxv2
x dt

)

=
Kx

bx

(∫ tf

0

1
2

dv2
x +

∫ tf

0

dxv2
x dt

)

=
Kx

b

(
1
2
v2

x(tf )− 1
2
v2

x(0) + dx

∫ tf

0

v2
x dt

)

=
dxKx

bx

∫ tf

0

v2
x dt + Cx

where Cx is a constant determined by the boundary con-
ditions. Similarly, the mechanical power consumed by the
motion in the y direction can be written as

∫ tf

0

Kyuyvy dt =
dyKy

by

∫ tf

0

v2
y dt + Cy.

Let Qx = dxKx/bx, and Qy = dyKy/by , which are
positive numbers. Then (5) can be rewritten as

∫ tf

0

(
Rxu2

x + Qxv2
x + Ryu2

y + Qyv2
y

)
dt + Cx + Cy

Since Cx and Cy are constants, it is equivalent to minimize
the following cost function instead of (5):

J̃(vx, ux, vy, uy)



= J̃x(vx, ux) + J̃y(vy, uy)

=
∫ tf

0

(
Rxu2

x + Qxv2
x + Ryu2

y + Qyv2
y

)
dt

which is convex in vx, ux, vy, uy . The definitions of J̃x and
J̃y are obvious from the above expression.

D. Problem Discretization

We discretize both the cost function and system dynamics
on a mesh in the time domain using the trapezoidal inte-
gration rule. Let the time grid (possibly non-uniform) be
{ti}N

i=0 ∈ [t0, tf ], with tN = tf . Also, let ∆i = ti − ti−1

for any i = 1, . . . , N . The state and control variables are
discretized on the mesh {ti}N

i=0 as follows: xi = x(ti),
vxi

= vx(ti), yi = y(ti), vyi
= vy(ti) for i = 0, . . . , N , and

uxi
= ux( ti+ti−1

2 ), uyi
= uy( ti+ti−1

2 ) for i = 1, . . . , N .
For notational convenience, let X = [x0, x1, . . . , xN ]T ,
Vx = [vx0 , vx1 , . . . , vxN

]T , Ux = [ux1 , ux2 , . . . , uxN
]T ,

Y = [y0, y1, . . . , yN ]T , Vy = [vy0 , vy1 , . . . , vyN
]T , Uy =

[uy1 , uy2 , . . . , uyN
]T , X = [V T

x , UT
x ]T , Y = [V T

y , UT
y ]T .

The cost function J̃ is discretized similarly using the
trapezoidal integration rule as

J̃(X ,Y) = J̃x(X ) + J̃y(Y)

=
N∑

i=1

∆i

(
RxU2

xi
+

Qx

2
V 2

xi−1
+

Qx

2
V 2

xi

)

+
N∑

i=1

∆i

(
RyU2

yi
+

Qy

2
V 2

yi−1
+

Qx

2
V 2

yi

) (11)

The system dynamics (1) to (4) are enforced between
neighboring grid points by the following linear equations
using the trapezoidal integration rule:

2(Xi −Xi−1) = ∆i(Vxi
+ Vxi−1) (12)

2(Yi − Yi−1) = ∆i(Vyi
+ Vyi−1) (13)

2(Vxi − Vxi−1) = ∆i

(−dx(Vxi + Vxi−1) + 2bxUxi

)
(14)

2(Vyi
− Vyi−1) = ∆i

(−dy(Vyi
+ Vyi−1) + 2byUyi

)
(15)

where (·)i denotes the ith component of a vector for i =
1, 2, . . . , N . The discretized speed and control constraints
are given by

vxmin ≤ Vx ≤ vxmax (16)
vymin ≤ Vy ≤ vymax (17)

uxmin ≤ Ux ≤ uxmax (18)
uymin ≤ Uy ≤ uymax (19)

The other constraints include the initial and final condi-
tions

[X1, XN+1] = [x0, xf ] (20)
[Y1, YN+1] = [y0, yf ] (21)
[Vx1 , VxN

] = [vx0 , vxf
] (22)

[Vy1 , VyN
] = [vy0 , vyf

] (23)

and the collision-avoidance constraint

(Xi, Yi) ∈ D, i = 1, . . . , N + 1. (24)

In order to reduce the number of decision variables, we
eliminate parameters Xi and Yi from the boundary condi-
tions (20), (21) and the collision-avoidance constraint (24)
using the (12) and (13), and obtain the following equivalent
conditions:

1
2

N∑

i=1

∆i

(
Vxi

+ Vxi−1

)
= xf − x0 (25)

1
2

N∑

i=1

∆i

(
Vyi + Vyi−1

)
= yf − y0 (26)

(
1
2

k∑

i=1

∆i

(
Vxi

+ Vxi−1

)
,
1
2

k∑

i=1

∆i

(
Vyi

+ Vyi−1

)
)

+(x0, y0) ∈ D, k = 1, . . . , N − 1.
(27)

Note that the collision avoidance constraint is not enforced
at the first and the last nodes since the initial and final condi-
tions are necessarily feasible. For notational convenience, let
the equality constraints (14), (22), and (25) be represented
by Fx(X ) = 0. Also, let equality constraints (15), (23), and
(26) be represented by Fy(Y) = 0. Similarly, let Cx(X ) ≤ 0
denotes the inequality constraints (16) and (18), and let
Cy(Y) ≤ 0 denotes the inequality constraints (17) and (19).
Then the energy-optimal motion planning problem can be
formulated as the following compact form

Problem 1 (Energy-optimal motion planning):

min J̃(X ,Y)
subject to Fx(X ) = 0, Cx(X ) ≤ 0, (28)

Fy(Y) = 0, Cy(Y) ≤ 0, (29)

D(X ,Y) ∈ DN−1, (30)

where D(X ,Y) ∈ DN−1 denotes the collision-avoidance
constraint (27) for nodes with indices 1, . . . , N − 1.

E. A Decoupling Method for Collision Avoidance Constraint

Problem 1 can be easily solved using numerical optimiza-
tion when D is convex, since the cost function is convex,
and the other constraints (28) and (29) are linear. Problem
1 is difficult only when D is non-convex, and the collision-
avoidance constraint is active in the optimal solution. Next
we propose a method to address this difficulty by taking
advantage of the decoupled constraints and cost function in
Problem 1.

Suppose that Xc and Yc satisfy D(Xc,Yc) ∈ D. Because
the motions in x and y directions are decoupled, we may fix
the motion in y, and plan the motion in the x direction to
minimize the cost function (11) while satisfying constraints
including the collision avoidance constraint.

For example, consider the motion of a system which starts
from (x0, y0) and moves to (xf , yf ). As shown in Fig. 1, the
trajectory of the system is represented by the dotted curve
connecting the initial and final positions marked by blue dots.
The green circles on the trajectory correspond to the position
of the system at each time instance in {ti}N

i=1. It is clear from
the figure that D is non-convex. By fixing the motion of the
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Fig. 1: Fixed motion in the y direction.

system in the y direction, the green circles can only move in
the x direction, and the range of the movement is determined
by D(X ,Yc) ⊂ DN−1 while ensuring that Xc is in this
range. Specifically, let (xci

, yci
) be the node of the current

motion (Xc,Yc) corresponding to time instance ti, then the
collision avoidance is ensured at node i as long as xi ∈
[XLi , XUi ], where [XLi , XUi ] is the largest interval such that
[XLi

, XUi
] × yci

⊂ D and xci
∈ [XLi

, XUi
]. Let Dx :

R2N+1 → RN−1 denotes the function mapping from X to
the vector of x coordinates of nodes with indices 1, . . . , N−
1, which is given by the left-hand-side of (27), and let XL =
[XL1 , . . . , XLN−1 ]

T , XU = [XU1 , . . . , XUN−1 ]
T . Since the

motion in the y direction is fixed, the energy consumption
J̃(Yc) remains constant. Therefore the best improvement of
energy efficiency with fixed y-motion is obtained by solving
the following convex sub-problem

Problem 2 (Energy-optimal motion in the x direction):

min J̃x(X )
subject to Fx(X ) = 0, Cx(X ) ≤ 0,

XL ≤ Dx(X ;x0) ≤ XU ,
Similarly, by fixing the motion in the x direction, we can

plan the motion in the y direction by solving the following
convex sub-problem

Problem 3 (Energy-optimal motion in the y direction):

min J̃y(Y)
subject to Fy(Y) = 0, Cy(Y) ≤ 0,

YL ≤ Dy(Y; y0) ≤ YU ,
Therefore, by solving Problem 2 and Problem 3 alternatively,
the optimality of the trajectory can be improved while
satisfying all constraints.

As shown in Fig. 1, when the red dotted line is used as the
initial trajectory, the planning result using this method would
certainly be different from the case when the optimization is
started from the black dotted line, i.e., the solution of this
method depends on the initial trajectory. However, given the
convexity of the sub-problems, this method is both reliable
and efficient. This is appealing for practical applications as
compared to the exhaustive search procedure required by the
MILP/MIQP method. As long as a reasonably good initial

trajectory is used, the proposed method can further improve
the initial trajectory for better energy performance with the
guarantee of feasibility. Because both the path geometry and
the speed along the path are planned simultaneously, this
method can also achieve better optimality than the two-layer
decomposition approach introduced in Section I.

One limitation of the proposed method is that it requires
a trajectory to get started. The starting trajectory is used
only for determining the collision-avoidance constraint for
solving the first subproblem. For many systems such as
robotic manipulators, automobiles and aircraft, it is easy to
generate such a trajectory, which can even be made feasible
for most of the time. The two-layer decomposition approach
can also be applied to obtain the initial trajectory. For
more details about initial trajectory generation techniques,
interested reader may refer to Refs. [11], [4], [1].

III. A QUADRATIC PROGRAMMING ENERGY-EFFICIENT
MOTION PLANNING ALGORITHM

A. Quadratic Program Matrices

As shown in (11), the cost functions J̃x(X ) and J̃y(Y)
are quadratic in X and Y , respectively, and the constraints
in Problem 2 and Problem 3 are linear. Therefore, Problem 2
and Problem 3 are quadratic programs, which can be solved
efficiently using standard QP solvers. In particular, Problem 2
is formulated as below:

min J̃x = X T HxX
subject to AX ≤ bx, ExX = dx,

(31)

where
Hx =

[
1
2QxHxv 0

0 Rx∆

]
,

and Hxv = diag([∆1,∆1 + ∆2, . . . ,∆N−1 + ∆N ,∆N ]),
∆ = diag([∆1, . . . ,∆N ]).

A =




IN+1 0
−IN+1 0

0 IN

0 −IN

M1

...
MN−1

−M1

...
−MN−1




, bx =




vxmax1
(N+1)×1

−vxmin1
(N+1)×1

uxmax1
N×1

−uxmin1
N×1

XU − x0

−XL + x0




,

where Mk = 1
2 [∆1,∆1 + ∆2, . . . ,∆k−1 +

∆k,∆k,01×(2N−k)] for k = 1, . . . , N . Ex =
[Ex

T
1 ,Ex

T
2 ,MT

N ]T , dx = [01×N , vx0 , vxf
, xf − x0]T ,

and

Ex1 =




pxi
+ 2 pxi

− 2 · · · 0
...

. . . . . .
...

0 · · · pxi + 2 pxi − 2
2bx∆


 ,

Ex2 =
[

1 · · · 0
0 · · · 1 02×N

]
,



where pxi
= dx∆i. Similarly, Problem 3 can also be

formulated as a QP problem:

min J̃y = YT HyY
subject to AY ≤ by, EyY = dy.

(32)

The matrices in (32) are similar to those in (31), hence are
omitted for brevity.

B. An Energy-Efficient Collision Avoidance QP Algorithm

we propose the following algorithm for solving Problem 1
using the method introduced in the previous section:

Algorithm 1 (Alternating Quadratic Programming Trajec-
tory Optimization)

1) Choose a time grid {ti}N
i=0, and obtain a set of X0

and Y0 such that D(X0,Y0) ⊂ DN−1. Let i = 0, and
Yc = Y0.

2) Let i = i + 1. Determine XL and XU ∈ R(N−1) such
that Bx = {X |XL ≤ X ≤ XU} is the largest set
satisfying

a) Bx 3 Xi−1

b) D(X ,Yi−1) ⊂ D(N−1) for any X ∈ Bx

Solve the QP problem (31) for X ∗. Let Xi = X ∗, and
Xc = X ∗.

3) Determine YL and YU ∈ R(N−1) such that By =
{Y|YL ≤ Y ≤ YU} is the largest set satisfying

a) By 3 Yi−1,
b) D(Xc,Y) ⊂ D(N−1) for any Y ∈ By

Solve the QP problem (32) for Y∗. Let Yi = Y∗, and
Yc = Y∗.

4) Repeat steps 2 and 3 until the solution converges.
Retrieve the state and control time histories from X ∗
and Y∗.

Remark 3.1: The initial guesses X0 and Y0 chosen in step
1) of Algorithm 1 are used to establish the bounds XL and
XU in the second step, and they are required to satisfy
constraint (30) but not necessarily (28) and (29), because the
QP solver is reliably find the feasible solution satisfying (28)
and (29) when such a solution exists. However, as mentioned
previously, a good initial guess can facilitate the convergence
of the algorithm. Hence it is recommended to start the AQP
algorithm from a feasible trajectory.

C. Convergence and Optimality

Throughout this section, we assume that the QP solver
used in Algorithm 1 always returns the optimal (necessarily
feasible) solution when such a solution exists, which is a
valid assumption given the mature theory and solvers for
Quadratic Programming. The following two propositions
show that the AQP algorithm retains the feasibility of the
solution as long as it is started properly, and monotonically
improves the optimality.

Proposition 1: Let Xi and Yi be the x and y motion
planning results given by the ith iteration of Algorithm 1.
Suppose (X0,Y0) is feasible for Problem 1, i.e., (X0,Y0)
satisfy all constraints in Problem 1, then (Xi,Yi) are feasible
for all i ≥ 1.

Proposition 2: Let Xi and Yi be the x and y motion
planning results by the ith iteration of Algorithm 1, then
J̃(Xi,Yi) decreases monotonically as i increases. Further-
more, the sequence {J̃(Xi,Yi)} converges as i →∞.

In general, the convergence of the cost function as shown
in Proposition 2 does not guarantee the convergence of
solution (Xi,Yi). However, due to the strict convexity of
the cost function and the decoupled dynamics considered in
this paper, Algorithm 1 indeed converges as shown by the
following theorem.

Theorem 3.1: The sequence (Xi,Yi) as given by Algo-
rithm 1 solving Problem 1 converges as i →∞.

Theorem 3.2: Suppose Algorithm 1 converges to a fea-
sible solution (X ∗,Y∗). Assuming that the boundary of
the collision-free region D is composed of piecewise linear
segments which are parallel to either the x or the y axis.
Then (X ∗,Y∗) is a locally optimal solution to Problem 1.

The proofs of results in this section are omitted. According
to Theorem 3.2, the proposed AQP algorithm generates an
optimal solution when the boundary of the collision-free
region is a concatenation of zigzag lines parallel to the x
or y axis. In the 3-dimensional case, the boundary should
be compose of pieces of rectangles perpendicular to the x,
y, and z axes to ensure the local optimality of the solution.
For a general collision-free region, the AQP algorithm always
converges, and the solution is not necessarily locally optimal.
However, we can approximate the boundary of the collision-
free region using zigzag lines and obtain a locally optimal
solution for a problem with almost the same feasible region,
hence achieve good optimality for the original problem.

IV. EXAMPLES

In this section, we use two numerical examples to demon-
strate the proposed AQP algorithm. We limit the motion of
the system in tunnels composed of connected squares, as
shown in Fig. 2 and Fig. 3. In these two examples, the speed
constraints −160 ≤ vx, vy ≤ 160 and control constraints
−5 ≤ ux, uy ≤ 5 are enforced. The red dashed lines in
these figures are the inial trajectories which are used to
start Algorithm 1. These initial trajectories are generated by
first calculating the minimum time trajectories connecting
the corner points marked by red stars in these figures with
zero inial and final speed, then relaxing the travel time by a
certain factor greater than 1 to help with energy-saving. The
energy-efficient trajectory generated by AQP algorithms are
shown as blue curves in these figures. The energy-efficient
trajectories are much smoother than the initial trajectories,
and satisfy the collision avoidance constraint.

The speed and control profiles for the trajectory shown in
Fig. 3 are given in Figs. 4 and 5, respectively. The speed and
control constraints are clearly satisfied by the results.

Table I compares the energy consumption of trajectories
shown in Figs. 2 and 3. The proposed energy-efficient motion
planing algorithm is capable of substantially reducing the
energy consumptions of motions in both the x and y direc-
tions. In order to better ensure collision avoidance between
grid points, a grid refinement scheme is also implemented,
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Fig. 5: Control profile comparison, case 2.

TABLE I: Energy consumption comparison.

Jx Jy J Energy saving TCPU (s)
case 1 heuristic 237.8 138.1 375.9 – –

AQP 190.0 92.7 282.7 24.8% 1.25
case 2 heuristic 73.1 76.1 149.2 – –

AQP 42.4 53.6 96.0 35.6% 0.36

which adaptively refines the time grid when collision occurs
between neighboring grid points. Details about the grid
refinement process are omitted in this paper due to limited
space. The computation time depends on the grid size N .
For case 1, N = 211 when the algorithm terminates. For the
second case, the final grid size is N = 120. For both cases
the AQP algorithm stops after four iterations including three
local grid refinements.

V. CONCLUSION

In this paper we propose an Alternating Quadratic Pro-
gramming (AQP) method for the energy-efficient collision
avoidance trajectory generation of systems with decoupled
linear dynamics. This method is highly efficient and reliable,
hence, is suitable for real-time motion planning applications.
The method can also be extended to cooperative collision-
free trajectory planning involving multiple agents.
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