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Abstract

We present a new algorithm for detecting anomalies in real-
valued multidimensional time series. Our algorithm uses an
exemplar-based model that is used to detect anomalies in
single dimensions of the time series and a function that pre-
dicts one dimension from a related one to detect anomalies
in multiple dimensions. The algorithm is shown to work on
a variety of different types of time series as well as to de-
tect a variety of different types of anomalies. We compare
our algorithm to other algorithms for both one-dimensional
and multidimensional time series and demonstrate that it
improves over the state-of-the-art.

1 Introduction

We introduce a novel method for detecting anomalies in
multidimensional time series. The method also works for
single-dimensional time series. Our method is general
enough to handle many of the various types of anomalies
that occur in real-valued time series especially in the con-
text of equipment condition monitoring. For example, we
are interested in collective anomalies [2] which occur when
a window of a one-dimensional time series is abnormal al-
though each individual value of the time series in the win-
dow may be within normal bounds. Another general class of
anomalies that we are interested in are contextual anoma-
lies which are anomalies that occur when one dimension
of a multidimensional time series is abnormal with respect
to another dimension (this usage differs from [2]). For ex-
ample, a contextual anomaly occurs if two normally corre-
lated dimensions become uncorrelated at one or more time
steps. In addition to the various types of anomalies, there
are also many very different types of time series. In this
paper we concentrate on real-valued time series as opposed
to discrete-valued such as a series of events or commands.
Within the realm of real-valued time series there are vari-
ous different types. A time series can be trajectory-like, i.e.
consisting of a smooth trajectory, it can be stochastic, i.e.
consisting of random values around some mean, or it can
be a hybrid of the two, i.e. random fluctuations around a
trajectory.

1.1 Overview of our method

The goal of our anomaly detection method is to handle all
of the above types of time series and anomalies. We will
give a brief high-level description of our method, and then
discuss some of the previous work on anomaly detection in
time series.

Our method consists of two main components. One com-
ponent of the method is a set of models for each single di-
mension of the multidimensional time series. These models
are learned from normal training data with no anomalies.
A model consists of a set of exemplars, each of which is a
feature vector that describes a prototypical window of the
time series. The second component of our model is a set of
nonlinear functions that predict a value of one dimension
of the time series using a window from a related dimension.
A set of such nonlinear functions is learned such that every
dimension that is related to another dimension appears in
at least one nonlinear function.

Together these components, which will be explained in
detail in Section 2, allow our anomaly detection algorithm
to detect a wide range of anomalies across a wide range of
multidimensional time series. The model of a single dimen-
sion enables collective anomalies involving just that dimen-
sion to be detected while the prediction functions enable
contextual anomalies involving two dimensions to be de-
tected.

1.2 Related Work

The body of past work in anomaly detection is too large
to fully review here. We focus below on past papers that
are most relevant to our current work. For a more complete
overview of previous work in anomaly detection we refer the
reader to [2].

Much of the past work on anomaly detection in time series
has focused on single-dimensional time series [10, 14, 6, 12].
For example, Shahabi et al. [14] introduced the TSA-tree
model (for trend and surprise abstractions), Dasgupta and
Forrest [6] described an immunology-inspired algorithm,
and Ma and Perkins [12] presented an SVM regression
method for anomaly detection. Keogh et. al [9] intro-
duced an anomaly detection method based on compression
and tested it as well as the TSA-tree [14], immunology-
inspired [6], and SVM regression [12] methods on a num-
ber of real-valued one-dimensional time series. They found
their compression-based algorithm performed well but that
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the other methods did poorly on many of the testing time
series they tried.

A very simple algorithm has proven to be surprisingly
effective for detecting anomalies in one-dimensional time
series. The algorithm, which we refer to as the Brute Force
Euclidean Distance (BFED) algorithm, compares each win-
dow of a testing time series to every window of a training
time series using Euclidean distance. The distance to the
nearest neighbor training window is the anomaly score for
each testing window. We use a step size of 1 for moving
the window. This algorithm is the basis for Keogh et al.’s
discord algorithm [10] which they showed was very accurate
at detecting anomalies over a wide range of real-valued time
series. Chandola et al. [3] also tested the BFED algorithm
(which they call WINC) against many alternative anomaly
detection algorithms and found the BFED algorithm to be
the most accurate overall. Keogh at al. [10] showed how to
greatly speed up this algorithm if only the most anomalous
window (the discord) is required. In our case, an anomaly
score for every testing window is required so the discord
algorithm cannot be applied. We will show that our algo-
rithm is able to handle an even wider variety of 1-d time
series than the BFED algorithm, while being computation-
ally more efficient and also working on multidimensional
time series.

There has been some work on detecting anomalies in mul-
tidimensional time series. Some of this previous work treats
the vector of values at a single time step in the time series
as a point in high-dimensional space [16, 15, 17]. Given this
representation, the anomaly detection problem becomes one
of detecting outliers in high-dimensional spaces. The sim-
ilarity based matching (SBM) algorithm [15, 17] is a good
example of this approach. The basic idea is to select a dic-
tionary of prototypical vectors from the multidimensional
training data. Then, given a test vector (formed from the
values at a single time step of the time series), the optimal
linear combination of dictionary vectors is found to recon-
struct the test vector. The size of the residual between the
reconstructed test vector and the actual test vector serves as
the anomaly score. Before applying this method, the multi-
dimensional time series is partitioned into sets of correlated
dimensions. Each partition is then treated independently,
i.e. separate dictionaries are learned for each partition. The
main drawback of such approaches is that they cannot de-
tect collective anomalies since such anomalies require look-
ing at a whole window of the time series at once.

Bay et. al [1] presented an algorithm based on vector
autoregressive (VAR) models. Their method first uses a
training time series to learn local VAR models for each win-
dow of the time series. The probability density of the VAR
parameters for each window are then estimated. Given a
testing time series, the VAR parameters for each window
are estimated and the probability of those parameters are
given by the learned probability density. A low probabil-
ity indicates an anomaly. One drawback of this model is
that it assumes the time series is well described by a vector
autoregressive process.

Cheng et. at [5] developed a graph-based anomaly detec-
tion algorithm in which each node in the graph corresponds
to a data point or window and each edge is weighted ac-

cording to the similarity between data points or windows.
Multidimensional time series are handled by first aligning
their graphs. The resulting algorithm is intended for very
different anomaly detection scenarios from our work in that
it only finds anomalies that occur in two variables simulta-
neously. In our scenarios, quite the opposite is true - multi-
dimensional anomalies are characterized by their difference
from other usually related variables.

Another method of detecting anomalies in multidimen-
sional time series is based on learning a set of invariants
[8, 4]. Invariants are linear relationships among two or more
dimensions of the multivariate time series. Once the set
of invariants are learned from training data, anomalies are
detected in testing data by checking that the learned in-
variants still hold for each window of the testing data. The
anomaly score for a time window is the number of invariants
that do not hold. The idea of invariants is similar to the
nonlinear prediction part of our model except we do not re-
strict ourselves to linear models and we use a very different
anomaly score.

2 Our time series model

Our method for anomaly detection first learns a model from
a d×n matrix representing a d-dimensional time series with
n time steps. Our model consists of two main parts: a set
of exemplars for each single dimension that efficiently rep-
resents the variety of different windows of the time series
in that dimension, and a set of nonlinear functions that
represent the relationships between related pairs of dimen-
sions. Restricting relationships to pairwise has been com-
monly used in past work ([8, 15, 17]) to avoid the curse of
dimensionality. Multidimensional methods that partition
the dimensions into related sets typically look for pairwise
similarities between dimensions [15]. In addition, this re-
striction still allows us to cover many of the relationships
that occur among sensors in practice. For example, tem-
parature and pressure sensors may be directly related.

2.1 Statistical and smoothed trajectory
(SST) features

The BFED algorithm has proven to be very effective at
finding anomalies in one dimensional real-valued time se-
ries ([10, 3]. Part of our algorithm is similar to the BFED
algorithm in that it finds the distance of a testing window
to a model of the training time series. In the case of BFED
the model is just the set of all windows of the training time
series. The running time for the BFED algorithm (for a
single dimensional time series) is O(nmw) where n (m) is
the number of time steps in the training (testing) data and
w is the chosen window size.

We would like to retain the simplicity and accuracy of
the BFED algorithm while creating a much more efficient
algorithm for finding all anomalies. To do this we intro-
duce the idea of exemplar selection for learning a small set
of exemplars that are representative of all of the windows
in the training time series (using a window step size of 1).
In this context, an exemplar is a representation of a group

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 2



Figure 1: Example time series window (a) along with its
trajectory (b) and statistical (c) components.

of similar windows from the training time series. To detect
anomalies in a single dimensional time series, each window
of a testing time series only needs to be compared to the
small set of exemplars. This yields an anomaly detection al-
gorithm that is O(emw) where e is the number of exemplars
and is much smaller than n.

Instead of using the raw time series for each window, we
represent a window as a trajectory component that cap-
tures the shape of the time series within the window, and
a statistical component that captures the stochastic com-
ponent. The trajectory component is computed using a
simple fixed window running average of the raw time series
to yield a smoothed time series after subtracting the mean
of the window. Because of smoothing, half of the values
in the smoothed time series can be discarded without los-
ing important information. Thus, the trajectory component
has w/2 elements. Figure 1a shows a noisy sine wave time
series and the corresponding smoothed time series with half
the values discarded is shown in Figure 1b. The statistical
component is a small set of statistics computed over time
series values in the window which are mainly designed to
characterize the high frequency information in the raw time
series window. The statistics used for experiments in this
paper are mean, standard deviation, mean of the absolute
difference (|z(t) − z(t + 1)|), number of mean crossings di-
vided by window length, percentage of positive differences,
percentage of zero differences, and the average length of a
run of positive differences divided by window length. Here,
z(t) is the value of the raw time series at time t for one
dimension. Figure 1c shows the vector of statistics for an
example window. This choice of statistics has worked well
in practice, but other statistics would likely also work well.
The trajectory component is half the length of the win-
dow (w

2 time steps), and the statistical component is 7 real
numbers for a total of w

2 + 7 real values. We call this novel
representation Statistical and Smoothed Trajectory (SST)
features.

After computing SST features for every window of the
training time series, a set of exemplars is learned by ini-
tially assigning each SST feature as its own exemplar and
then iteratively combining the two nearest exemplars until
the minimum distance between nearest exemplars is above
a threshold. We use Euclidean distance to measure the dis-

tance between two exemplars:

dist(f1, f2) =

w/2∑
i=1

(f1.t(i)− f2.t(i))2

+ w
14

7∑
i=1

(f1.s(i)− f2.s(i))2) (1)

where f1 and f2 are two feature vectors, fj .t is the length w
2

trajectory component of fj , and fj .s is the length 7 statisti-
cal component of fj . The w

14 coefficient causes the statistical
and trajectory components to be weighted equally.

Two exemplars are combined by a weighted average of
the corresponding elements. The weight is the count of the
number of feature vectors that have already been averaged
into each exemplar divided by the total count. Each result-
ing exemplar is thus simply the overall average of the feature
vectors that went into it. The threshold that determines
when to stop combining exemplars is set to µ + 3σ where
µ is the mean of the Euclidean distances (dist(fi, fj)) be-
tween each initial SST feature vector and its nearest neigh-
bor among the initial SST feature vectors and σ is the sam-
ple standard deviation of these distances. The running time
of this exemplar selection algorithm is O(n2w) for a one-
dimensional time series (where n is the length of the train-
ing time series and w is the chosen window size).

After exemplar selection, each exemplar is associated
with a set of original SST features that were averaged to-
gether to form the exemplar. The standard deviation of
each element of the w

2 + 7 length feature vector is then
computed and stored with each exemplar. These standard
deviations are computed over the set of SST feature vectors
associated with a particular exemplar. An exemplar is thus
represented by w

2 + 7 mean elements and w
2 + 7 standard

deviation elements. In our experiments, the final exemplar
set is typically between 1% and 5% of the total number of
features (windows).

2.2 Modeling related variables using non-
linear prediction

Figure 2: Two time series are considered to be related if the
values of one time series can be predicted from a window of
another time series.

A set of SST exemplars is a compact representation of a
one-dimensional time series that yields excellent results on
a variety of time series (see Section 4). However, to handle
multidimensional time series we need additional machinery.
This is the purpose of nonlinear prediction (NLP). The ba-
sic idea is to find pairs of dimensions (dimensions of the

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 3



multidimensional time series are just one-dimensional time
series) that are related in the sense that a window of one
dimension can be used to predict a value of another. This
idea is illustrated in Figure 2. The nonlinear function we
use for predicting time series z2 from z1 takes the form:

z2(t) = a0 +

L∑
i = 1

ai · z1(t+ pi)

+

L∑
i = 1

ai+L · z21(t+ pi)

+

L∑
i = 1

ai+2L · z31(t+ pi)

+

L∑
i = 1

ai+3L · z−1
1 (t+ pi) (2)

where L is the number of points of z1 to use for the predic-
tion and {pi} are the offsets that determine which points
of z1 to use to predict z2. Typically, L � w and the sam-
ple times are evenly spread over an interval. We use this
partial Laurent series because it is simple and works well in
practice although other nonlinear functions would work as
well. As an example, if L = 5 and pi = {−50,−25, 0, 25, 50}
then z2(t) is predicted from the points z1(t−50), z1(t−25),
z1(t), z1(t + 25), and z1(t + 50) (as well as their squares,
cubes and inverses).

There is one such equation (2) for each value of training
series z2(t) from t = −p1 + 1 to t = n − pL. Values of t
outside this range are not predicted since the corresponding
time steps of t used for prediction would be outside the
range [1, ..., n]. The linear system to be solved for a can be
written

z̃2 = Z1a (3)

where z̃2 is the vector of values of z2 to be predicted and
Z1 is the matrix whose ith row consists of the values of
z1, z

2
1 , z

3
1 , and z−1

1 used to predict the value of z̃2(i), and a
is the 4L+1 dimensional vector of coefficients from equation
2. The pseudoinverse of Z1 is used to compute the optimal
coefficients a. Once the optimal a is found, the goodness of
fit of the resulting nonlinear function is the L2 reconstruc-
tion error of predicting z2(t) from z1(t). Figures 3 and 4
show examples of nonlinear prediction between related and
unrelated time series.

Nonlinear prediction is used during model building to find
a set of related pairs of dimensions such that each dimension
that is related to another dimension is included in the set at
least once. Two dimensions are related if the reconstruction
error of NLP is low (below a threshold). There are many
sets of related pairs of dimensions that could be used. We
find one such set through a simple greedy algorithm that on
each iteration adds the most related pair (the pair with the
lowest L2 reconstruction error) to the set such that at least
one dimension of the pair is not already in the set. The
resulting set is called the NLP set. Pairs are added to the
NLP set until the distance between the most related pairs
is above a threshold.

For each pair of dimensions in the NLP set, we store the
coefficients of the nonlinear function learned on the training

Figure 3: Example of nonlinear prediction between two time
series that are nonlinearly related. NLP prediction closely
reconstructs the target output. (The x-axis is time and the
y-axis is the value of the time series.)

Figure 4: Example of nonlinear prediction between two time
series that are not related. NLP prediction does not recon-
struct the target output well. (The x-axis is time and the
y-axis is the value of the time series.)

set. These coefficients will be used to check that related
pairs of dimensions retain their relationship on the testing
time series. If not, an anomaly is indicated.

3 Anomaly detection using our
model

As detailed in the previous sections, a model consisting of
a set of exemplars for each dimension of the d-dimensional
time series and a set of nonlinear functions that predict one
dimension from a related dimension is learned from a train-
ing time series. After the model is learned, anomalies are
found in a testing time series as follows. For each window of
the testing time series, d+ r anomaly scores are computed,
where r is the number of pairs of related dimensions found
during training. For each dimension, the SST feature of the
window is computed. Then the nearest neighbor exemplar
to the SST feature is found. The distance function used is

d(f, e) =

w/2∑
i=1

max(0,
|f.t(i)− e.t(i)|

e.σ(i)
− 3)

+ w
14

7∑
i=1

max(0,
|f.s(i)− e.s(i)|

e.ε(i)
− 3) (4)

where f is the SST feature vector for the current window
and dimension consisting of a trajectory vector, f.t and a
statistical vector f.s, e is an exemplar for the current di-
mension consisting of trajectory (e.t) and statistical (e.s)
vectors as well as the corresponding standard deviation vec-
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tors, e.σ for the trajectory component and e.ε for the sta-
tistical component. This distance corresponds to assigning
0 distance for each element of the trajectory or statistical
component that is less than 3 standard deviations from the
mean and otherwise assigning the absolute value of the dif-
ference divided by the standard deviation for each element
that is more than 3 standard deviations from the mean. In
equation 4 and in our experiments, the statistical compo-
nent is given equal weighting to the trajectory component,
although this weighting can be changed based on the appli-
cation.

Using the distance function in equation 4 yields the
anomaly score for a particular window and dimension.
Next, for each pair of dimensions in the NLP set, the win-
dow of one dimension is predicted from the other using
the corresponding nonlinear function learned from train-
ing data. The anomaly score is the L2 reconstruction error.
We do not combine these anomaly scores because keeping
them separate allows us to determine which dimensions any
anomalies occur in.

4 Experiments

To show the effectiveness of our anomaly detection method
on a wide variety of real-valued time series, we first look
at various one-dimensional time series and compare against
the top-performing BFED algorithm. Next, we present ex-
periments on a synthetic multidimensional time series that
has been designed to be very similar to real multidimen-
sional time series from sensors on industrial equipment. In
each experiment, the window size w was chosen manually
but we found our algorithm to be robust to the exact value
chosen. In the following experiments, nonlinear prediction
used 5 samples within each window.

4.1 One-dimensional time series

In the following one-dimensional examples our method uses
only the SST exemplar part of our model. It does not use
nonlinear prediction which only applies to time series with
two or more dimensions.

Our first one-dimensional example is a noisy sine time se-
ries containing 4 anomalies to illustrate a type of anomaly
that SST exemplars can detect but BFED cannot. A win-
dow of length 300 is used corresponding to approximately
one period of the sine wave. The first 3 anomalies in the
noisy sine testing time series contain smaller amplitude
noise than the training time series. The Gaussian noise
in the training time series has standard deviation .25. The
first anomaly in the testing time series has no noise in the
sine wave. This stands out as a clear anomaly in Figure 5
starting at time step 1500. Parts of the testing time series
are colored red to indicate the human annotated anomalies
in the data. The second anomaly has Gaussian noise with
standard deviation 0.1 and is also visible starting at time
step 3000. The third anomaly, starting at time step 6000 has
Gaussian noise 0.15 and is barely perceptible. The fourth
anomaly has larger amplitude noise than normal (0.75 stan-
dard deviation) and is clearly visible starting at time step
9000. Only our anomaly detection algorithm detects all 4

of these anomalies as shown in the second plot of Figure
5. The higher the anomaly score, the more anomalous the
time series is at that point. For the BFED algorithm, the
first 3 anomalies have lower anomaly scores than other re-
gions (the exact opposite of what we want). Only the fourth
anomaly with greater noise is detected. Our method learned
99 exemplars and took 116.54 seconds to compute anomaly
scores compared to 887.83 seconds for BFED. All timings
use unoptimized Matlab code on an Intel Core Duo 2 3.16
GHz processor.

Figure 5: Noisy sine example. Four anomalies were inserted
into this synthetic time series. Our algorithm detects all 4.
The BFED algorithm only detects the last anomaly.

The remainder of the one-dimensional examples are all
available from [11]. The next example is the Space Shuttle
Marotta Valve time series [7]. This data set consists of three
different time series labeled TEK14, TEK16 and TEK17.
We use approximately the last half of TEK14 and the first
half of TEK16 (which do not contain any anomalies) as the
training time series. The training time series has 5901 time
steps. The remainder of TEK14 and TEK16 as well as all
of TEK17 were concatenated and used as a testing time
series which contained 9099 time steps. A window length
of 256 was used. The anomaly scores from our method and
the BFED method are shown below the testing time series
in Figure 6. Both methods detect all three anomalies on
this test set. Our method uses 109 exemplars and takes
107.9 seconds to compute anomaly scores for every window
of the testing time series as compared to 808.6 seconds for
the BFED algorithm.

Next, we examine two electrocardiogram (ECG) exam-
ples. The first ECG, labeled qtdbsel102, has a fairly clear
anomaly marked in red in Figure 7. Half of the time series
(not containing any anomalies) was used for training and
the other half for testing. The training and testing time se-
ries each contain 22500 time steps. A window size of 160 was
used. In this example, our method and the BFED method
get very similar results, clearly detecting the anomaly. Our
method uses 254 exemplars and takes 526.6 seconds to com-
pute anomaly scores compared to 7663.6 seconds for BFED.

Figure 6: Marotta valve example (TEK)
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Figure 7: ECG example (qtdbsel102)

Figure 8: ECG example (qtdbsele0606)

The second ECG example (qtdbsele0606) shown in Figure
8 has a very subtle anomaly, but here again our method as
well the BFED algorithm do a good job of detecting the
anomaly. In this case, only the first 700 time steps were
used for training, and the remaining 14300 time steps were
used for testing (only some of which is pictured). The win-
dow size was 70. Our method learned 42 exemplars and
takes 53.5 seconds to compute anomaly scores compared to
124.9 seconds for BFED.

Finally, we look at the power demand data set. This time
series has power consumption for a Dutch research facility
for the year 1997 (one power measurement every 15 minutes
for 365 days). About half of the data (19866 time steps),
not containing anomalies was used for training and the other
half (15174 time steps) for testing. A normal week in the
time series shows five consecutive peaks corresponding to
the 5 weekdays, followed by a 2 day period of much lower
usage corresponding to the weekends. A window size of 700
was selected to approximately equal the number of time
steps in a week. Both our method and the BFED method
find weeks with national holidays as anomalies. Part of
the testing time series (containing two anomalous weeks)
along with anomaly scores from our method and the BFED
method are shown in Figure 9. Only part of the testing
time series is shown for clarity since the entire time series is
quite long. Our method uses 249 exemplars and takes 470.4
seconds to compute all anomaly scores while the BFED al-
gorithm takes 3378.6 seconds.

These one dimensional examples demonstrate that our
method works over an even wider range of time series than
the top-performing BFED algorithm. On all of these ex-
amples, our method detects 100% of the anomalies with 0
false positive windows. The BFED algorithm also has 0
false positives but fails to detect 3 anomalies in the noisy
sine wave time series. Our method achieves this level of ac-
curacy while being much more computationally efficient at
test time than the brute force Euclidean distance method
as our timing numbers indicate.

Figure 9: Power demand example (powerdata)

4.2 Multidimensional time series

Next, we show some experiments on detecting anomalies
in multidimensional time series. We have created a 32-
dimensional synthetic time series that is similar to real sen-
sor data we have received from a power generator plant.
The use of synthetic data allows us to insert known anoma-
lies for precise testing.

Approximately half of the training data (which has 8400
total time steps) is shown in Figure 10. There are 32 total
dimensions which can be grouped into 8 sets of 4 related
dimensions. The first 8 dimensions (z01 through z08) were
created independently. These time series are similar to real
time series from pressure, temperature and vibration sen-
sors. Each individual time series simulates a machine going
through 4 phases: off/standby, start-up, stable, and shut-
down. For some dimensions, the start-up and shut-down
phases are the same as the stable phase. All phases are
synchronized in each dimension, meaning they occur at the
same time for each dimension. This simulates multiple sen-
sors connected to a single large piece of machinery that is
going through start-up and shut-down cycles. Three cycles
are shown in Figure 10, but six cycles were used for train-
ing. After the first 8 dimensions, the remaining dimensions
are either linear or nonlinear functions (plus noise) of one
of the first 8. Dimensions z09, z17, and z25 are all related
to dimension z01. Similarly, dimensions z10, z18, and z26
are all related to dimension z02 and so on. The first related
dimension in each set is related linearly to the first dimen-
sion in the set. The remaining two are related nonlinearly.
The nonlinear functions used are log, sigmoid, exponential,
quadratic, cubic, multiplicative inverse, absolute value, sine
and cosine. As an example, z19 is related to z03 according
to

z19(t) = e−4·z03(t)+2 + 0.025 ∗N(0, 1) (5)

where N(0, 1) is 0 mean, unit variance Gaussian noise.
We trained our algorithm on this multidimensional train-

ing set which yields 32 sets of SST exemplars (one set for
each dimension) as well as a set of 24 nonlinear functions
between related pairs of dimensions. Nonlinear prediction
found 24 different relationships among the 8 sets of 4 related
dimensions. For each set of 4 related dimensions (for exam-
ple z01, z09, z17 and z25), three nonlinear functions were
learned. In this case, z09 → z01, z01 → z17, and z01 → z25.

We tested our algorithm on this synthetic time series (us-
ing a window size of 200) as well as two other algorithms
from the literature. The first is the BFED algorithm ap-
plied to each dimension indepedently. The other is our own
implementation of the similarity-based matching (SBM) al-
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Figure 10: Synthetic multidimensional data used to train a
model.

Figure 11: Anomaly 1 in testing data.

Figure 12: Anomaly 2 in testing data.

gorithm [17] which is designed for multidimensional time
series, but suffers from only looking at a single time step
(instead of a window) to produce each anomaly score. Inci-
dentally, we also tried the invariant-based algorithm of [8]
and the compression-based algorithm of [9] but could not
get these to work reasonably well on this testing set.

The testing time series contains 8700 time steps and was
generated using the same model as the training time series.
Ten anomalies were inserted into some dimensions of the
testing time series. The first anomaly is shown in Figure
11. It consists of a series of 3 spikes during a stable phase
of z01. These spikes occur only in z01 and not in any of
the related dimensions, and can therefore be detected ei-
ther by examining only z01 itself or by comparing z01 with
a related dimension. Our method does both. The anomaly
scores computed from the SST model of z01 are plotted in
the second graph in Figure 11, and the anomaly scores com-
puted from nonlinear prediction from z09 to z01 are plotted
in the third graph in the figure. The results for BFED and
for SBM are plotted in the fourth and fifth graphs, respec-
tively, and also show detections of this anomaly.

The second anomaly, shown in Figure 12, consists of a
region of increasing and then decreasing noise amplitude
in the related dimensions z03, z11, z19, and z27 (only z03 is
shown). Because the dimensions related to z03 retain their
relationships, this anomaly cannot be detected by compar-
ing z03 to any of its related dimensions. Thus, our method
only detects the anomaly using the SST model for dimen-
sion z03 (shown in the 2nd graph). Similarly, BFED also
detects this anomaly. The SBM method, however, does not
detect this anomaly since it relies on comparison to related
dimensions.

The third anomaly consists of an anomalous shut-down
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Figure 13: Anomaly 3 in testing data.

Figure 14: Anomaly 4 in testing data.

phase inserted into the middle of a stable phase of z18. The
only way to detect this anomaly is by comparing it to one
of its related dimensions and seeing that it does not have
a shut-down phase at the same time. Figure 13 shows part
of z18 as well as the related z02 so that the anomaly can
be seen. The anomaly scores for our method based on the
SST model for z18 show no anomaly (as expected), but the
anomaly scores based on nonlinear prediction of z18 from
z02 show a clear anomaly at the appropriate time. The
BFED algorithm (which does not compare related dimen-
sions) does not find this anomaly. The SBM algorithm does
find the anomaly as expected.

A similar anomaly occurs in z28 in which a stable phase
continues longer than in related dimensions such as z04.
See Figure 14. Again our method detects the anomaly by
looking at the anomaly scores from nonlinear prediction of
z28 from z04 (but not from the SST model of z28 alone).
The BFED algorithm does not detect this anomaly while
the SBM method does.

The fifth anomaly occurs in dimension z06 when the spac-
ing between spikes in the time series significantly increases
as shown in Figure 15. The same increase in the spike spac-
ing also occurs in the related dimensions (z14, z22, z30). In
this case, all of the methods are able to detect the anomaly.
The SBM method is successful here because it finds an un-
intended correlation between z06 and z07 which allows it to
find the anomaly by comparing these dimensions.

Anomaly 6 consists of an increase in the frequency of the
noisy sine wave in dimension z21 which does not occur in
related dimensions. This anomaly is detected by all three
methods (but is not pictured due to a lack of space).

Figure 15: Anomaly 5 in testing data.

Figure 16: Anomaly 7 in testing data.

Anomaly 7 occurs when a standby phase of z29 continues
longer than in related dimensions such as z05. This can only
be detected by comparing z29 to one of its related dimen-
sions. As shown in Figure 16 our method (using nonlinear
prediction but not SST features) finds this anomaly as does
the SBM method, but BFED does not.

Anomaly 8, occurs in z02 when a start-up phase is abnor-
mally stretched. This anomaly is not present in any of the
related dimensions. All three methods detect this anomaly
which is not shown due to lack of space.

The ninth anomaly occurs in z08, z16, z24, and z32 (only
z08 is shown in Figure 17) when the random noise that
makes up a stable phase changes to a very different noise
model. The dimensions maintain their relationships. Our
method is the only one that detects this anomaly (using
the SST model for each dimension). The BFED algorithm
could theoretically detect this anomaly since it only requires
looking at a single dimension at a time, but fails in this case.
The SBM algorithm also fails to detect this anomaly.

The tenth anomaly is not shown due to lack of space, but
all three methods successfully detect it. It occurs when part
of z15 suddenly becomes 0 for a period of time.

Computing receiver operating characteristic (ROC)
curves for anomaly detection on multidimensional time se-
ries is not straightforward. This is because there are mul-
tiple anomaly score vectors and each can have a different
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threshold. Thus, there is not a single threshold to change
to trade-off between correct detections and false positives.
However, in the multidimensional time series experiment
just presented, it is simple to automatically choose a thresh-
old for each anomaly score vector such that there are no
false positives. For the BFED algorithm, a detection rate
of 12/19 is obtained with no false positives. For the SBM al-
gorithm, a detection rate of 11/19 is obtained with no false
positives. For our algorithm, a detection rate of 18/19 is
obtained with no false positives. Alternatively, a detection
rate of 19/19 is possible with only a single window contain-
ing a false positive. The lone false positive window occurs
in the anomaly score vector from nonlinear prediction of z28
from z04.

Figure 17: Anomaly 9 in testing data.

In summary, our algorithm detects all of the anomalies us-
ing a combination of SST features and nonlinear prediction.
The BFED algorithm detect most of the collective anoma-
lies involving only a single dimension (although it misses
one set), but fails to detect the anomalies that are solely
contextual anomalies. In contrast, the SBM algorithm de-
tects all of the contextual anomalies that require comparing
two related dimensions but misses the collective anomalies.

5 Conclusions

We have presented a novel algorithm for detecting anomalies
in real-valued multidimensional time series. The algorithm
is based on two key ideas: learning a set of SST exemplars to
model each dimension of the time series, and learning a set
of nonlinear functions that predict one dimension from a re-
lated dimension. Together these ideas allow us to efficiently
detect a range of anomalies in many different types of time
series. Our experiments show that our method outperforms
other top-performing algorithms on both one-dimensional
and multidimensional time series.
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