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Abstract
This paper proposes a novel real-time model-based state of charge (SOC) estimation method
for lithium-ion batteries. The proposed method includes: 1) an electrical circuit battery model
incorporating the hysteresis effect, 2) a fast upper-triangular and D-diagonal recursive least
square (FUDRLS)-based online parameter identification algorithm for the electrical battery
model, and 3) an iterated smooth variable structure filter (ISVSF) for SOC estimation. The
proposed method enables an accurate and robust condition monitoring for lithium-ion bat-
teries. Due to its low complexity, the proposed method is suitable for the real-time embedded
battery management system (BMS) application. Simulation and experiment are performed
to validate the proposed method for a polymer lithium-ion cell.
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state of charge (SOC) estimation method for lithium-ion 

batteries. The proposed method includes: 1) an electrical circuit 

battery model incorporating the hysteresis effect, 2) a fast 

upper-triangular and D-diagonal recursive least square 

(FUDRLS)-based online parameter identification algorithm for 

the electrical battery model, and 3) an iterated smooth variable 
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method enables an accurate and robust condition monitoring for 
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I. INTRODUCTION  

Lithium-ion batteries have gained more pervasive use in 
numerous applications from electronics to power tools owing 
to their high energy and power densities and long cycle life [1]. 
However, due to the low thermal stability and aging process, 
reliability and performance degradation are still the concerns 
when using lithium-ion batteries. Therefore, a battery 
management system (BMS) is required to monitor and control 
the conditions of batteries [2]. A key function of the BMS is to 
monitor the state of charge (SOC), state of health (SOH), 
instantaneous available power [i.e., state of power (SOP)], 
internal impedance, capacity, etc., during battery operation [3]. 
These parameters and states will offer the fault diagnostic and 
prognostic capability for the battery system [4]. It is well-
understood that the parameters and states can only be obtained 

online, typically, from model-based estimation methods due to 
the absence of sensors for direct measurements of these 
quantities. 

A variety of online battery SOC estimation methods have 
been developed, which, in general, can be classified into two 
categories: direct measurement methods (i.e., non-model-
based methods) and model-based approaches. The direct 
measurement methods include voltage translation and 
Coulomb counting [5]. They are simple and easy to implement. 
However, both methods have limitations. For example, the 
former requires the battery to rest for a long period and cut off 
from the external circuit to measure the open circuit voltage 
(OCV); and the latter suffers from unrecoverable problems 
that might be caused by factors such as inaccurate initial SOC 
and maximum capacity values, cumulative integration errors, 
and noise corruption. 

The recent effort on the SOC estimation has been focused 
on model-based methods with an improved accuracy. For 
example, extended Kalman filter (EKF) types of approaches 
[6], [7] have been proposed for real-time BMS applications. 
These methods provide accurate SOC estimations in general. 
However, they require an accurate electrical circuit battery 
model, whose parameters, e.g., resistances and capacitances, 
typically vary with the SOC, temperature, current, aging, etc., 
of the battery cell [8]. Therefore, additional online parameter 
estimation is usually needed to reduce the SOC estimation 
error. A joint EKF method has been proposed by combining 
SOC and parameter estimations in an EKF [9]. Some lithium-
ion batteries have a relatively high nonlinearity of OCV, 
which is called the hysteresis effect [10]. To account for the 
time-varying model parameters and hysteresis effect, a dual 
EKF [11] and a dual sigma-point Kalman filter (SPKF) [12] 
which outperforms the EKF have been proposed to estimate 
the parameters and states of a battery simultaneously. 
Nevertheless, the SOC estimation error can be large when the 
process noise and the measurement noise are uncorrelated 
with zero mean Gaussian white noise and their covariance 
values are not properly defined. Moreover, the joint/dual EKF 
and dual SPKF SOC estimation methods have a high 
computational complexity. Other observer design methods, 
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including a linear observer [13] and a sliding mode observer 
[14], [15], have been used for electrical circuit model-based 
SOC estimators with regression-based parameter estimation. 
The primary advantages of the observers with parameter 
update are their low computational complexity and the 
possibility to achieve robust convergence of the resultant 
estimation error dynamics. The observer-based approaches, 
however, perform moderately in terms of the estimation 
accuracy. Moreover, the sliding mode observer suffers a 
chattering problem [14].  

This paper proposes a real-time model-based SOC 
estimation algorithm for lithium-ion batteries. The battery 
model consists of a conventional electrical circuit model and a 
hysteresis model. The fast UD recursive least square 
(FUDRLS) [16] method is applied to estimate the parameters 
of the electrical circuit model. Based on the identified model 
parameters, an iterated smooth variable structure filter 
(ISVSF) is designed to perform the SOC estimation. The 
proposed algorithm leads to an accurate and robust SOC 
estimation for lithium-ion batteries and is suitable for real-
time embedded BMS due to its low complexity and easy 
implementation. The proposed method is validated by 
simulation and experimental results for a polymer lithium-ion 
battery cell. 

II. REAL-TIME BATTERY MODEL 

It is well-understood that an accurate battery model is 
important to obtain a precise estimation of the states and 
parameters in a model-based SOC estimation method. In 
addition, a balance between the accuracy and the complexity 
of the battery model should be considered for real-time 
condition monitoring in embedded systems. In general, 
electrical circuit battery models are suitable for embedded 
system applications due to the low complexity and the ability 
of predicting the current-voltage (I-V) dynamics [17] of 
battery cells. The hysteresis effect [10] is a fundamental 
phenomenon of batteries which shows an equilibrium 
difference between battery charging and discharging. The 
equilibrium difference depends on the history of battery usage. 
For some lithium-ion batteries (e.g., LiFePo4) having 
relatively strong hysteresis, the SOC estimation accuracy will 
deteriorate if the battery model does not incorporate the 
hysteresis effect. It was also demonstrated that the first-order 
resistor-capacitor (RC) model with a hysteresis provided a 
good balance between model accuracy and complexity [18]. 
Therefore, this paper considers a real-time battery model 
comprising a first-order RC electrical circuit with a hysteresis 
voltage, as shown in Fig. 1. 

In Fig 1, VOC (i.e., the open-circuit voltage OCV) 
includes two parts. The first part, denoted by Voc(SOC), 

represents the equilibrium OCV, which is used to bridge the 
SOC to the cell open-circuit voltage. The second part Vh is the 
hysteresis voltage to capture the nonlinearity of the OCV. The 
RC circuit models the I-V characteristics and the transient 
response of the battery cell. Particularly, the series resistance, 
Rs, is used to characterize the charge/discharge energy losses 
of the cell; the charge transfer resistance, Rc, and the double 
layer capacitance, Cd, are used to characterize the short-term 
diffusion voltage, Vd, of the cell; and Vcell represents the 
terminal voltage of the cell. Defining H(iB)=exp(-ρ|iB(k)|Ts), a 
discrete-time state-space version of the real-time battery 
model is expressed as follows:    

 

max

max

1 0 0
( 1) ( )

( 1) ( 1) 0 exp( ) 0 ( )

( 1) ( )
0 0

/ 0

( )
(1 exp( )) 0

0 ( 1) ( ( ))

s

d d

c d

h h

s

Bs

c

hc d

B

SOC k SOC k
T

x k V k V k
R C

V k V k
H

T C

i kT
R

VR C

H sign i k

h

é ù
+é ù é ùê ú

-ê ú ê úê ú+ = + = ×ê ú ê úê ú×
ê ú ê ú+ ê úë û ë û

ê úë û

é ù-
ê ú

é ù-ê ú+ - × ê úê ú× ë ûê ú
-ê úë û

(1) 

( ) ( ) ( ) ( ) ( ) ( )cell oc d s B hy k V k V SOC V k R i k V k= = - - × +       (2) 

0 1 2 3

2 3

4 5

( ) exp( )ocV SOC a a SOC a a SOC

a SOC a SOC

= - + +

- +
                (3) 

where k is the time index; )(kx  is the state vector; )(ky is the 

measured output; η is the Coulomb efficiency (assuming η = 
1); Ts is the sampling period; iB(k) is the instantaneous current 
of the battery at the time k; Vhmax is the maximum hysteresis 
voltage which may be a function of SOC; ρ is the hysteresis 
parameter, which represents the convergence rate; a0~a5 are 
the coefficients of the OCV curve. The state space model (1) 
can be written in a concise form as follows: 

     ( 1) ( ( ), ( ))Bx k f x k i k+ =                          (4) 

where f is a smooth vector field denoting the right-hand side of 
(1). 

Fig. 2 shows the two OCV curves as functions of SOC 
extracted for a polymer lithium-ion battery cell. Voccharge and 
Vocdischarge represent the major upper and lower hysteresis 
loops, respectively. Voc(SOC) is considered as an average 
voltage (i.e., Vocaverage) of the charge and discharge open 
circuit voltage curves. VOC representing the trajectory of the 
instantaneous open circuit voltage whose boundary consists of 
the major loops. By subtracting Vh(k) from VOC, the Voc(SOC) 
which has a one-to-one mapping to SOC will be extracted [19]. 

The first-order differential equation to model the hysteresis 
voltage Vh has been proposed as [19]: 
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Fig. 1. The first-order RC model with a hysteresis. 



where υ is a self-discharge multiplier for hysteresis expression, 
SD is a self-discharge rate. This hysteresis model describes the 
dependency of the hysteresis voltage Vh on the current rate, 
current direction, self-discharge, and hysteresis boundaries. 
For example, when a long-period charge current, or a short but 
very large charge current is applied, the hysteresis voltage will 
converge to Vhmax [19]. In other words, VOC will converge to 
the upper major loop. In the opposite case, VOC will converge 
to the lower major loop. Vhmax can be calculated by the 
difference between the Voccharge and the Vocaverage. The state, 
Vh(k), in (1) is the discrete-time version of (5) using exact 
calculation [20]. The self-discharge effect is ignored in order 
to reduce the complexity of the battery model.   

The parameter ρ is chosen to minimize the error between 
the simulation and experimental results of VOC versus SOC 
curves. The parameters ρ and Vhmax may depend on the SOC 
and the battery temperature [10], [19]. The coefficients a0~a5 
can be extracted by pulsed current tests [17].  In this paper, the 
temperature dependency is ignored by testing the battery 
under the ambient temperature.  

III. THE PROPOSED METHOD 

An adaptive ISVSF is proposed to estimate the battery 
SOC by using the state space model (1)-(2). The ISVSF, 
which is a modified version of the SVSF [21], speeds up the 
convergence of the SVSF by iteratively refining the state 
estimated around the current point at each time instant. The 
internal parameters Rs, Rc, and Cd of the state space model (1)-
(2) are updated by the FUDRLS online parameter 
identification algorithm, which results in a more accurate SOC 
estimation [16].  

The SVSF was introduced in 2007 [21] as a new predictor-
corrector method based on the variable structure theory and 
the sliding mode concept for state and parameter estimation 
[21]. A switching gain is implemented to keep the estimated 
states to stay within a bounded domain, which is an invariant 
set containing the true states. The SVSF is relatively stable 
and robust to model uncertainties and noise, given that the 
uncertainties are upper-bounded. The basic concept of the 
SVSF-bases state estimation is shown in Fig. 3, where the 
solid line is the trajectory of a system state. The estimated 

state trajectory is forced towards the actual state trajectory 
until it reaches a subspace around the actual state trajectory, 
referred to as the existence subspace. Once the estimated state 
trajectory enters the existence subspace, it is pushed to remain 
within the existence subspace and switch along the actual 
system state trajectory [21]. The SVSF has been applied to 
estimate battery parameters and SOC and verified by using 
simulation results only [22]. 

In this paper, an ISVSF is designed based on the state 
space model (1)-(2) to perform the state estimation for battery 
cells. The dynamics of the proposed ISVSF are given by: 
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The measurement error ey,k+1|k may be calculated as follows: 

                      kkkkky xCye |11|1,
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The SVSF gain, K, is calculated as: 
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where ey,k|k is a posteriori measurement error in the previous 
step; Ψ is the smoothing boundary layer width; γ (0< γ<1) is 
the SVSF convergence rate;  denotes the Schur product. The 
value of C should be positive (i.e., C > 0) to ensure the 
numerical stability. The SVSF gain is used to correct the state 

estimate, kkx |1
ˆ + as follows: 
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Fig. 3. The SVSF-based state estimation concept [21]. 



 

TABLE I: BATTERY MODEL PARAMETERS 

Rs 0.08 Rc 0.03 

Cd 3000 ρ 2.47·10-3 

Vhmax 0.03 a0 -0.852 

a1 63.867 a2 3.692 

a3 0.559 a4 0.51 

a5 0.508   
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where  1|1
ˆ ++ kkx  is the corrected (or posteriori) state estimate in 

the current time step. 
In order to speed up the convergence rate of the SVSF, 

the iterated SVSF is applied. It consists of two procedures: 
prediction and update.  The formulae of the ISVSF in the 
prediction procedure are the same as the original SVSF. If 
ey,k+1|k+1 is larger than a prespecified error tolerance level, it 
will go to the update procedure, which is implemented 
iteratively as follows: 
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The iteration process stops when the estimation error 
becomes less than the prespecified tolerance level ς or the 
value of i reaches the predefined maximum iteration number 
Nmax. In the latter case, the estimated state 

)(

|1
ˆ

i

kkx + corresponding to the minimum error is set to be 1|1
ˆ ++ kkx . 

Once the estimated state 1|1
ˆ ++ kkx  converges, the iteration 

process will stop. It should be pointed out that the values of ς 
and Nmax will affect the performance of the ISVSF. 

IV. VALIDATION 

Simulation and experimental studies are carried out to 
validate the proposed SOC estimation algorithm for a polymer 
lithium-ion battery cell subject to various pulsed current 
operations. The nominal capacity, nominal voltage, and cutoff 
voltage of the battery cell are 5 Ah, 3.7 V, and 2.5 V, 
respectively. The proposed method is implemented in 
MATLAB on a computer. In the simulation study, the real-
time battery model is given by (1)-(2), where the model 
parameters are listed in Table I. For the experimental study the 
experimental data of the cell voltage and current are collected 
from a battery tester under the ambient temperature. The 
measured data are then used by the proposed method for SOC 
estimation of the battery cell. 

A. Simulation Restults 

The proposed ISVSF-based SOC estimation algorithm is 
first validated by using the simulated data obtained from the 
developed real-time battery model. Comparisons with the 
existing methods, such as the traditional EKF and SVSF [22], 
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TABLE II: SIMULATION TIME AND RMES REUSTLS FOR THE SOC 

ESTIMATION ALGORITHMS 

Method EKF SVSF ISVSF 

Simulation time (seconds) 1.4752 0.8474 1.1783 

SOC (RMSE) 0.1405 0.1325 0.1213 

Vh (RMSE) 0.0668 0.0477 0.0466 

Vd (RMSE) 0.0627 0.0441 0.0443 

 

are performed using simulation results to show the superiority 
of the proposed ISVSF algorithm. The true initial SOC of the 
battery cell is set to be 0.5. However, the SOC estimation 
algorithms start from a wrong initial SOC of 0.6. In the EKF 
design, the system noise covariance matrix and the 
measurement noise covariance matrix are defined as 0.016 and 
0.025, respectively. In the SVSF, the values of γ and Ψ are 
chosen to be 0.1 and 1. For the ISVSF, the values for γ and Ψ 
are the same as those in the SVSF; and ς and Nmax are set to be 
0.003 and 10, respectively. The battery model is subject to a 
pulsed current cycle shown in Fig. 4(d). Fig. 4(a)-(c) compares 
the true values of the states SOC, Vh, and Vd of the simulated 
battery cell and their estimated values obtained from different 
state estimation algorithms. Table II compares the 
performance of the state estimation algorithms in terms of 
accuracy using the root mean square error (RMSE) and 
computational cost  using the simulation time on a Intel® 
Core™2 Duo CPU T6600@2.2GHz, 64-bit OS. The results 
show that the proposed ISVSF has the best estimation 
accuracy among the three estimation methods and a moderate 
computational cost. Furthermore, the parameters of the ISVSF 
are easier to tune compared with the EKF.  

B. Experiemental Results 

The proposed SOC estimation algorithm is further 
investigated using the measured data of a lithium-ion battery 
cell. The true SOC reference is obtained using the Coulomb 
counting method. In the SVSF and ISVSF, the values of γ and 

Ψ are set to be 0.1 and 1, respectively. In addition, the values 
of ς and Nmax are set to be 0.01 and 10, respectively. The 
parameters of the OCV-SOC function of the battery cell are 
obtained under the ambient temperature. The initial SOC and 
maximum capacity are set to be 0.5 and 5 Ah, respectively, for 
the state space model (1). The true initial SOC and maximum 
capacity used in the Coulomb counting method are 0.31 and 
4.732 Ah, respectively. To obtain the true initial SOC, the 
battery cell is first fully charged and rests for one hour, and 
then discharged using a small current (e.g., 0.2 A) to the 
desired initial SOC value. The true maximum capacity used in 
the Coulomb counting method is extracted offline from a full 
discharge test with a small current (e.g., 0.2 A) at the ambient 
temperature before testing the battery. The FUDRLS is first 
executed for 20 seconds and the ISVSF is executed with a 
constant sampling period (e.g., Ts = 1 second) to keep track of 
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Fig. 5. Estimated SOC from the proposed ISVSF with FUDRLS algorithm 

on the experimental data:  (a) SOC and (b) the a pulsed current cycle 

applied to the battery 
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the fast time varying electrical parameters and SOC. The 
battery cell was operated by a dynamic high pulsed current 
cycle (IB = 10 C) shown in Fig. 5(b). Fig. 5(a) compares the 
estimated SOC obtained from the proposed ISVSF algorithm 
with that obtained from the Coulomb counting method. The 
SOC estimated by the ISVSF matches that obtained from 
Coulomb counting after a certain period due to the wrong 
initial SOC used in the proposed method. The error is less than 
2% after 1000 seconds. The result clearly shows that the 
proposed algorithm is robust to the error of initial SOC by 
using the proposed real-time battery model, online parameter 
identification, and ISVSF state estimation algorithm together. 

V. CONCLUSION 

This paper has proposed a novel model-based SOC 
estimation algorithm. The proposed method has been 
implemented in MATLAB and validated by simulation and 
experimental results for a lithium-ion battery cell. The 
proposed model can be applied to any types of lithium-ion 
batteries, especially, the batteries having hysteresis effect. 
Due to low complexity and high accuracy, the proposed 
method can be used in real-time embedded battery 
management systems for various applications, such as EVs 
and PHEVs. 
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