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Abstract

In this brief, we study the problem of rope sway dynamics control for elevator systems. We
choose to actuate the system with a force actuator pulling on the compensation sheave. Under
these conditions, we formulate this problem as a bilinear control problem and propose several
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elevator operation conditions. We present a stability analysis of the proposed controllers, and
illustrate their performance via numerical tests.
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Lyapunov-Based Control of the Sway Dynamics for Elevator Ropes
Mouhacine Benosman

Abstract— In this brief, we study the problem of rope sway
dynamics control for elevator systems. We choose to actuate
the system with a force actuator pulling on the compensation
sheave. Under these conditions, we formulate this problem
as a bilinear control problem and propose several nonlinear
controllers based on Lyapunov theory to stabilize the rope sway
dynamics, for different elevator operation conditions. We present
a stability analysis of the proposed controllers, and illustrate their
performance via numerical tests.

Index Terms— Disturbance rejection, elevator system,
Lyapunov control, nonlinear time-varying dynamics, rope sway
control.

I. INTRODUCTION

THE GROWING demand for high-rise buildings motivates
the recent interest in the problem of rope sway control,

which is very important to maintain a high safety level of ele-
vator systems. Indeed, even slight external disturbances on the
building, e.g., wind gust or earthquake, at such dimensions of
structures can lead to large rope sway within the elevator shaft.
Considering the length of the ropes and their heavy weight, it
is clear that the rope sway can damage the equipments that are
installed in the elevator shaft and can also cause damages to
the elevator shaft structure itself, not to mention the potential
danger caused for the elevator passengers. For these reasons,
it is very important to be able to control the rope dynamics
within the elevator shaft. Furthermore, due to cost constraints,
it is preferable to be able to do so with minimum actuation
capabilities. Several papers have been dedicated to the problem
of controlling elevator ropes [1]–[5]. Otsuki et al. [4] study
the rope sway control problem for high-rise building with an
actuator mounted on the top of the building, i.e., an actuated
capstan, this choice of the actuator placement led to a linear
time-varying model, to which an linear quadratic regulator
controller was applied to reduce the rope sway. A boundary
optimal control based on a partial differential equation (PDE)
model of a moving string was introduced in [5]. However,
this approach necessitates to be able to actuate the boundary
conditions of the string, which is of limited practical value
for elevator systems, due to the impracticality of mounting an
actuator at the boundary points, e.g., on the top of the elevator
car. In [3], a simple model of a cable attached to an actuator
at its free end was used to investigate the stiffening effect of
the control force on the cable. A numerical energy analysis
was used to tune an open-loop sinusoidal force applied to
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the cable, no feedback controller was proposed. An active
stiffness control of the transverse vibrations of elevator ropes
was presented in [1]. Kaczmarczyk [1] used a nonlinear modal
feedback to drive an actuator pulling on one end of the rope.
The control performance was investigated by numerical tests,
no stability analysis was reported. Zhu and Chen [2] used a
passive damper attached between the car and the rope to realize
a boundary control. Numerical analysis of the transverse
motion average energy was conducted to find the optimal value
of the damper coefficient, which reduced the rope sway, but no
analytic analysis of the controller performance was provided;
furthermore, as mentioned above, placing a passive or an active
controller on the top of elevator cars is of limited industrial
feasibility.

We choose in this brief to use an active actuator to pull on
one-side of the ropes, similar to [1]. This choice of actuator
placement is more feasible than other placement location and
is optimal in terms of installation and maintenance costs.
We then propose to investigate the problem of elevators’
rope sway mitigation as a nonlinear control problem, which
leads to a constructive design of the controllers and their
stability analysis. The main difference with [1] is that we use
Lyapunov theory to derive the nonlinear controllers with rig-
orous stability analysis and we explicitly consider the external
disturbances in the controller design and the stability analysis.
We show that with our choice of actuator placement, the model
of the elevator rope together with its actuator writes as a
bilinear model (in the control theory sense), and we use this
bilinear model to develop nonlinear Lyapunov-based feedback
controllers to stabilize the rope sway dynamics, for different
operating conditions of the elevator system. We present a
stability analysis of the closed-loop dynamics and show the
performances of these controllers via numerical tests.

This brief is organized as follows. We start this brief with
some notations in Section II. In Section III, we recall the model
of the system. Next, in Section IV, we present the main results
of this brief, namely the nonlinear Lyapunov-based controllers,
together with their stability analysis. Section V is dedicated to
some numerical results. Finally, we conclude this brief with a
brief summary of the results in Section VI.

II. NOTATIONS

Throughout this brief, R and R+ denote the set of real and
nonnegative real numbers, respectively. For x ∈ RN , we define
|x | =

√
x T x , we denote by Aij , i = 1, . . . , n, j = 1, . . . , m

the elements of the matrix A.

III. ELEVATOR ROPE MODELING

In this section, we first introduce the infinite dimen-
sion model, i.e., PDE, of a moving hoist cable, with

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1856 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, NO. 5, SEPTEMBER 2014

Fig. 1. Schematic representation of an elevator shaft showing different
variables used in the model.

nonhomogenous boundary conditions. Second, to be able to
reduce the PDE model to an open dynamics engine (ODE)
model using a Galerkin reduction method, we introduce a
change of variables and rewrite the first PDE model in a new
coordinates, where the new PDE model has zero boundary
conditions. Let us first enumerate the assumptions under which
our model is valid: 1) the elevator ropes are modeled within the
framework of string theory; 2) the elevator car is modeled as
a point mass; 3) the vibration in the second lateral direction is
not included; and 4) the suspension of the car against its guide
rails is assumed to be rigid. Under the previous assumption,
following [6], the general PDE model of an elevator rope,
shown in Fig. 1, is given by

ρ

(
∂2

∂ t2 + v2(t)
∂2

∂y2 + 2v(t)
∂

∂y∂ t
+ a

∂

∂y

)
u(y, t)

− ∂

∂y
T (y, t)

∂u(y, t)
∂y

+ cp

(
∂

∂ t
+ v(t)

∂

∂y

)
u(y, t) = 0 (1)

where u(y, t) is the lateral displacement of the rope. ρ is the
mass of the rope per unit length. T is the tension in the rope,
which varies depending on which rope in the elevator system
we are modeling, i.e., main rope, compensation rope, and so
on. cp is the damping coefficient of the rope per unit length.
v = ∂l(t)/∂ t is the elevator rope velocity, where l : R → R is
a function (at least C2) modeling the time-varying rope length.
a = ∂2l(t)/∂ t2 is the elevator rope acceleration.

The PDE (1) is associated with the following two boundary
conditions:

u(0, t) = f1(t) u(l(t), t) = f2(t) (2)

where f1(t) is the time-varying disturbance acting on the rope
at the level of the machine room, due to external disturbances,
e.g., wind gust. f2(t) is the time-varying disturbance acting at
the level of the car, due to external disturbances. In this brief,
we assume that the two boundary disturbances acting on the
rope are related via the relation

f2(t) = f1(t) sin
(
π(H − l)

2H

)
, H ∈ R (3)

where H is the height of the building. This expression is an
approximation of the propagation of the boundary disturbance
f1 along the building structure, based on the length l, it leads to

f2 = f1 for a length zero (which is expected), and a decreasing
force along the building until it vanishes at l = H , f2 = 0
(which makes sense, since the effect of any disturbance f1, for
example, wind gusts, is expected to vanish at the bottom of
the building). However, other equations can be used to relate
f1 and f2 along the building structure, without affecting the
results of this brief. As we mentioned earlier, the tension of
the rope T (y) depends on the type of the rope that we are
dealing with. In the sequel, we concentrate on the main rope
of the elevator, the remaining ropes are modeled using the
same steps by simply changing the rope tension expression.

For the case of the main rope, the tension is given by

T (y, t) = (me +ρ(l(t)− y))(g −a(t))+0.5Mcsg +U(t) (4)

where g is the standard gravity constant, me and Mcs are the
mass of the car and the compensating sheave, respectively, and
U(t) is the control tension due to the actuator attached to the
compensation sheave (the same actuator placement has been
considered in [1]). Next, we reduce the PDE model (1) to a
more tractable model for control, using a projection Galerkin
method or assumed mode approach, see [7].

To be able to apply the assumed mode approach, let us first
apply the following one-to-one change of coordinates to (1):1

u(y, t) = w(y, t) + l(t) − y
l(t)

f1(t) + y
l(t)

f2(t). (5)

One can easily observe that this change of coordinates implies
trivial boundary conditions.

After some algebraic and integral manipulations, the
PDE model (1) writes in the new coordinates as

ρ
∂2w

∂ t2 +2v(t)ρ
∂2w

∂y∂ t
+

(
ρv2−T (y, t)

)∂2w

∂y2 +G(t)
∂w

∂y
+cp

∂w

∂ t

= y
(
−ρs1(t)−cps2(t)

)
−ρ f (2)

1 + s4(t) (6)

where G(t) = ρa(t) − ∂T /∂y + cpv(t), and the si variables
are defined as

s1(t) = ll(2)−2l̇2

l3 f1(t)+2 l̇
l2 ḟ1+ (l3 f (2)

2 −f2l2l(2)+2ll̇2 f2−2l2 l̇ ḟ2)

l4 − f (2)
1
l

s2(t) = l̇
l2 f1 − ḟ1

l + ḟ2
l − f2

l̇
l2

s3(t) = f2− f1
l

s4(t) = −2v(t)ρs2(t) − G(t)s3(t) − cp ḟ1(t)
(7)

associated with the two-point boundary conditions

w(0, t) = 0, w(l(t), t) = 0. (8)

Now, instead of dealing with the PDE (1) with nonzero
boundary conditions, we can use the equivalent model, given
by (6) associated with trivial boundary conditions (8).

1This change of coordinates is needed to write to original PDE model as
an equivalent PDE with homogenous boundary conditions. This change of
coordinates is well known in boundary value problems [8], but to the best of
our knowledge, it has not been proposed in previous work on elevator ropes
modeling.
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Following the assumed-mode technique, the solution of
(6) and (8) writes as:

w(y, t) =
j=N∑

j=1

q j (t)φ j (y, t), N ∈ N (9)

where N is the number of bases (modes), included in
the discretization, φ j , j = 1, . . . , N are the discretiza-
tion bases, and q j , j = 1, . . . , N are the discretiza-
tion coordinates. To simplify the analytic manipulation of
the equations, the base functions are chosen to satisfy the
following normalization constraints:

∫ l(t)
0 φ2

j (y, t)dy = 1,
∫ l(t)

0 φi (y, t)φ j (y, t)dy = 0, ∀i ̸= j. To further sim-
plify the base functions, we define the normalized variable,
(see [2], [6]) ξ(t) = y(t)/l(t) and the normalized base
functions φ j (y, t) = ψ j (ξ)/

√
l(t), j = 1, . . . , N. In these

new coordinates, the previous normalization constraints write
as:

∫ 1
0 ψ

2
j (ξ)dξ = 1,

∫ 1
0 ψi (ξ)ψ j (ξ)dξ = 0, ∀i ̸=

j . After discretization (see [6]) of the PDE-based model
(6), (8), we can write the reduced ODE-model based on
N-modes as

Mq̈ + Cq̇ + (K + βU)q = F(t), q ∈ RN , F ∈ RN (10)

where

Mij = ρδi j

Ci j = ρl−1l̇
(

2
∫ 1

0
(1 − ξ)ψi (ξ)ψ

′
j (ξ)dξ − δi j

)
+ cpδi j

Ki j = 1
4
ρl−2l̇2δi j − ρl−2l̇2

∫ 1

0
(1 − ξ)2ψ

′
i (ξ)ψ

′
j (ξ)dξ

+ρl−1(g − a(t))
∫ 1

0
(1 − ξ)ψ

′
i (ξ)ψ

′
j (ξ)dξ+mel−2

×(g − a(t))
∫ 1

0
ψ

′
i (ξ)ψ

′
j (ξ)dξ + ρ(l−2l̇2 − l−1l̈)

×
(

0.5δi j −
∫ 1

0
(1 − ξ)ψi (ξ)ψ

′
j (ξ)dξ

)

−cpl̇l−1
(∫ 1

0
ψi (ξ)ψ

′
j (ξ)ξdξ+0.5δi j

)
+0.5Mcsgl−2

×
∫ 1

0
ψ

′
i (ξ)ψ

′
j (ξ)dξ

βii = l−2
∫ 1

0
ψ

′2
i dξ = l−2β̃ii

βi j = β̃i j = 0 ∀ i ̸= j

Fi (t) = −l
√

l
(
ρs1(t) + cps2(t)

) ∫ 1

0
ψi (ξ)ξdξ

+
√

l
(

s4(t) − ρ f (2)
1 (t)

) ∫ 1

0
ψi (ξ)dξ

δi j =
{

0, i ̸= j
1, i = j

(11)

where si , i = 1, 2, 3, 4 are given in (7).
If we use the classical definition of the state vector

x = (q, q̇)T , then it is easy to see that the obtained ODE model
is a bilinear model in the state x and the control vector U .

IV. MAIN RESULT: LYAPUNOV-BASED CONTROLLERS

In this section, we present several Lyapunov-based feedback
controllers, each one tailored for a specific practical situation,
and designed to stabilize the rope sway dynamics.

The first controller deals with the case where the building,
hosting a static elevator, e.g., night operation of commercial
buildings, sustains a brief (impulse-like) external disturbance.
For example, an earthquake impulse with a sufficient force to
make the top of the building oscillate, or a strong wind gust
that happens over a short period, exciting the building structure
and implying residual vibrations of the building even after
the wind gust interruption. In these cases, the elevator ropes
will vibrate, starting from nonzero initial conditions, due to
the impulse-like external disturbances (i.e., happening over a
short time interval), and this case corresponds to the model
(10), (11) with nonzero initial conditions and zero external
disturbances.

Theorem 1: Consider the rope dynamics (10), (11), with
nonzero initial conditions, with no external disturbances, i.e.,
f1(t) = f2(t) = 0,∀t , and with constant length l, then the
feedback control

Unom−1(x) = Max

⎛

⎝0, umax
q̇T β̃q

√
1 + (q̇T β̃q)2

⎞

⎠ (12)

where x = (qT , q̇T )T renders the closed-loop equilibrium
point (0, 0) globally asymptotically stable, with |Unom−1| ≤
umax; furthermore, |Unom−1| decreases with the decrease of
q̇T β̃q .

Proof: We define the control Lyapunov function as

V (z) = 1
2

q̇T (t)Mq̇(t) + 1
2

qT (t)K q(t) (13)

where x = (qT , q̇T )T .
First, we compute the derivative of the Lyapunov func-

tion along the dynamics (10), without disturbances, i.e.,
F(t) = 0, ∀t

V̇ (z) = q̇T (−Cq̇ − K q − βUq) + qT K q̇

= −q̇T Cq̇ − q̇TβqU. (14)

To ensure the negative definiteness of V̇ (x), we define the
first controller (12). Using the continuity of (12) at q̇T β̃q = 0
and LaSalle theorem, see [9], we can conclude that the states
of the closed-loop dynamics converge to the set S = {z =
(qT , q̇T )T ∈ R2N , s.t. q̇ = 0 }. Next, we analyze the closed-
loop dynamics. Since the boundedness of V implies bounded-
ness of q̇, q and by (10), boundedness of q̈. Boundedness of
q̇, q̈ implies the uniform continuity of q, q̇, which again by
(10), implies the uniform continuity of q̈. Next, since q̇ → 0,
using Barbalat’s Lemma, see [9], we conclude that q̈ → 0, and
by invertibility of the stiffness matrix K + βU , we conclude
that q → 0. Finally, the fact that V is a radially unbounded
function ensures that the equilibrium point (q, q̇) = (0, 0)
is globally asymptotically stable. Furthermore, the fact that
|Unom−1| ≤ umax, and the decrease of |Unom−1| with the
decrease of q̇T β̃q is deduced from (12).
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Remark 1: By examining the Lyapunov derivative (14), we
can see that instead of the C0 controller (12), we could use a
smooth controller of the form

Unom−1(x) = umax
q̇T β̃q

√
1 + (q̇T β̃q)2

.

However, the advantage of the switching controller (12) is the
fact that it necessitates less control energy, since when the
condition q̇T β̃q ≤ 0 is satisfied, it does not apply any extra
control and only uses the system’s natural damping.
Next, we present a controller which deals with the case of sta-
tic elevator in a building under sustained external disturbances,
e.g., sustained wind forces. In practical applications, we sel-
dom have access to direct measurements of the disturbance
signal F(t); to overcome this problem, we use the so-called
Lyapunov reconstruction technique, see [10], to augment the
nominal controller Unom−1 with an additional feedback term,
which is based only on an upper bound of the disturbance
signal F(t) (i.e., does not require the exact measurements of
F(t)) and ensures the stabilization of the sway to a small
amplitude, which can be tuned by the choice of the feedback
gains.

First, let us state the following assumption.
Assumption 1: The time-varying disturbance functions

f1, f2 are such that, the function F(t) is bounded, i.e.,
∃Fmax, s.t. |F(t)| ≤ Fmax, ∀t .

Theorem 2: Consider the rope dynamics (10), (11), under
nonzero external disturbances, i.e., f1(t) ̸= 0, f2(t) ̸= 0, and
with constant length l, then under Assumption 1, the feedback
control

U(x) = Unom−1(x) + k(q̇T β̃q)(Fmax + ϵ)|q̇|, k > 0, ϵ > 0

(15)

where x = (qT , q̇T )T , ensures that the solutions of (10), (11),
and (15) converge to the invariant set S̃ = {(qT , q̇T )T ∈
R2N, s.t. kl−2(q̇T β̃q)2 ≤ 1 }.

Proof: Using the same Lyapunov function (13), and
writing its derivative along (10)

V̇ (x) = −q̇T Cq − q̇TβqU(x) + q̇T F(t) (16)

if we denote U(x) = Unom−1(x) + v(x), where
v(x) = k(q̇T β̃q)(Fmax + ϵ)|q̇|, k > 0, ϵ > 0, we obtain

V̇ (x)=−q̇T Cq̇−q̇TβqUnom−1(x)−q̇Tβqv(x)+q̇T F(t) (17)

and by the definition of Unom−1(x), we know that

−q̇T Cq̇ − q̇TβqUnom−1(x) < 0

thus, using Assumption 1, we can write

V̇ (x) ≤ −q̇Tβqv(x) + q̇T F(t)

≤ −kl−2(q̇T β̃q)2(Fmax + ϵ)|q̇| + |q̇||F(t)|
≤ −kl−2(q̇T β̃q)2(Fmax + ϵ)|q̇| + |q̇|Fmax

≤ −kl−2(q̇T β̃q)2|q̇|ϵ + |q̇|Fmax(1 − kl−2(q̇T β̃q)2)

≤ +|q̇|Fmax(1 − kl−2(q̇T β̃q)2)

which proves the decrease of V (x) until reaching the invariant
set

S̃ = {(qT , q̇T )T ∈ R2N , s.t. kl−2(q̇T β̃q)2 ≤ 1 }.

Remark 2: It can be deduced from the proof of Theorem 2,
using similar reasoning as in the proof of Theorem 1, that
controller (15) implies q → 0 in the case of zero external
disturbances, i.e., the case treated in Theorem 1. However,
the controller (15) has an extra term, i.e., the Lyapunov
reconstruction term v(x), needed to compensate for the effect
of F(t). This term implies extra control effort, which is not
necessary in the case of zero external disturbances. Thus, to
avoid using unnecessary control effort in real application, one
can switch between the two controllers, based on the detection
of a sustained external force (case of Theorem 2), or an
impulse-like disturbance force (case of Theorem 1).

In the previous theorems, we have consider the case of
static elevators, e.g., night operation of commercial buildings.
We analyze now the case of moving elevators, i.e., with time-
varying rope length l(t). This case encompass the situations
where the elevator is in motion and an external disturbance
starts acting on the building. In such situations, the controller
goal is to minimize the effect of this disturbance on the rope
sway amplitude, to avoid damaging the elevator shaft and
ensures the passengers security while the elevator is moving.
Similar to the case of static elevators, we study two scenarios:
1) impulse-like and 2) sustained external disturbances.

To deal with the analysis of this case, we need to add the
following assumption.

Assumption 2: The time-varying length function l : R+ →
R+ is C2, and satisfies: l(t) ∈ [lmin, lmax], l̇(t) ∈ [0, l̇max],
l̈(t) ∈ [0, l̈max], ∀t ∈ R+, where lmin, lmax, l̇max, l̈max are
given constants.
We can now state the following theorem.

Theorem 3: Consider the rope dynamics (10), (11), with
nonzero initial conditions, with no external disturbances, i.e.,
f1(t) = f2(t) = 0,∀t , and with time-varying length l
satisfying Assumption 2, then the feedback control

Unom−2(x) = umax
q̇T β̃q|q|2

√
1 + (q̇T β̃q)2

(18)

where x = (qT, q̇T )T implies that q(t) → 0, f or t → 0;
furthermore, |Unom−2| decreases with the decrease of |q|2.

Proof: We define the time-varying control Lyapunov
function as

V (x, t) = 1
2

q̇T (t)Mq̇(t) + 1
2

qT (t)K (t)q(t) (19)

where x = (qT , q̇T )T .
First, we compute the derivative of the Lyapunov func-

tion along the dynamics (10), without disturbances, i.e.,
F(t) = 0, ∀t

V̇ (x, t) = q̇T (−Cq̇ − K q − βUq) + qT K q̇ + qT K̇ (t)q

= −q̇T Cq̇ − q̇TβqU + qT K̇ (t)q. (20)



BENOSMAN: LYAPUNOV-BASED CONTROL 1859

Next, based on Assumption 2, we can write

∃c > 0, s.t. K̇ (t) ≤ cIn×n ∀t

which leads to

V̇ (x, t) ≤ −q̇TβqU + 1
2

c|q|2 (21)

using U defined in (18), we have

V̇ (x, t) ≤ −umaxl−2 (q̇T β̃q)2|q|2
√

1 + (q̇T β̃q)2
+ 1

2
c|q|2

≤
⎛

⎝1
2

c − umaxl−2 (q̇T β̃q)2
√

1 + (q̇T β̃q)2

⎞

⎠ |q|2 (22)

this shows that V̇ (x, t) decreases along (10), as long as (q, q̇)

satisfies 1/2c − umaxl−2(q̇T β̃q)2/
√

1 + (q̇T β̃q)2 < 0, and
when (q, q̇) enters the set {(qT , q̇T )T ∈ R2N, s.t. 1/2c −
umaxl−2(q̇T β̃q)2/

√
1 + (q̇T β̃q)2 ≥ 0}, it stays in it, which

makes V (x, t) bounded.
Next, from (22), we can write

V̇ (x, t) ≤ 1
2 qT cq (23)

thus

+∞ > V (x(0), 0) − V (x(t), t) ≥ −1
2

∫ t

0
qT cqdt

⇒
∫ t

0
qT cqdt is bounded. (24)

Since the boundedness of V implies boundedness of q̇,
we conclude about the uniform continuity of q and
finally using Barbalat’s Lemma, see [9], we conclude that
limt→+∞ q(t) = 0. The fact that |Unom−2| decreases with
the decrease of |q|2 is concluded from the upper bound

|Unom−2(t)| ≤ umax|q|2.

Let us examine now the case of nonzero disturbances, i.e.,
F(t) ̸= 0 over a nonzero time interval.

Theorem 4: Consider the rope dynamics (10), (11), under
nonzero external disturbances, i.e., f1(t) ̸= 0, f2(t) ̸= 0
satisfying Assumption 1, and with time-varying length l
satisfying Assumption 2, then the feedback control

U(x) = umaxq̇T β̃q
√

1 + (q̇T β̃q)2
+ k1(q̇T β̃q)(Fmax + ϵ)|q̇|

+k2(q̇T β̃q)|q|2, k1 > 0, k2 > 0, ϵ > 0 (25)

where x = (qT , q̇T )T ensures that the state vector x converges
to the ω-limit set S1 = {(qT , q̇T )T ∈ R2N , such that
c/2 − k2l−2(q̇T β̃q)2 → 0} or the invariant set {(qT , q̇T )T ∈
R2N , s.t. l−2(q̇T β̃q)2 ≤ 1/k1} if (c/2k2) > (1/k1), and
converges to the ω-limit set S2 = {(qT , q̇T )T ∈ R2N , s.t. 1 −
k1l−2(q̇T β̃q)2 → 0} or the invariant set {(qT , q̇T )T ∈
R2N , s.t. l−2(q̇T β̃q)2 ≤ (c/2k2)} if (c/2k2) ≤ (1/k1), where
c is such that K̇ (t) < cIn×n, ∀t .

Proof: Let us consider again the time-varying Lyapunov
function (19). Its derivative along the dynamics (10), with
nonzero disturbance F(t), writes as

V̇ (x, t)= q̇T (−Cq̇−K q−βUq)+qT K q̇+qT K̇ (t)q+q̇T F(t)

= −q̇T Cq̇ − q̇TβqU + qT K̇ (t)q + q̇T F(t) (26)

under Assumption (2), we can write

V̇ (x, t) ≤ −q̇TβqU + q̇T F(t) + 1
2

cq2

which under Assumption 1 gives

≤ −q̇TβqU + |q̇|Fmax + 1
2

cq2.

Substituting U by the controller (25) leads to

≤ −k1l−2(q̇T β̃q|)2ϵ|q̇| + |q̇|Fmax(1 − k1l−2(q̇T β̃q)2)

+ |q2|( c
2

− k2l−2(q̇T β̃q)2)

≤ |q̇|Fmax(1 − k1l−2(q̇T β̃q)2) + |q2|
(c

2
− k2l−2(q̇T β̃q)2

)
.

Case 1: (c/2k2) > (1/k1). In this case, as long as
(q̇T β̃q)2 > (c/2k2) > (1/k1), then V̇ < 0, which makes
x decreasing until it enters the invariant set {(qT , q̇T )T ∈
R2N , such that l−2(q̇T β̃q)2 ≤ (c/2k2)}, which makes V (x, t)
bounded. Here, we have to distinguish two cases as follows.

1) The trajectories keep decreasing until they reach the
invariant set

{(qT , q̇T )T ∈ R2N , s.t. l−2(q̇T β̃q)2 ≤ (1/k1)}.
2) The trajectories are stuck in the domain, where

(q̇T β̃q)2 ≤ (c/2k2l−2) and (q̇T β̃q)2 > (1/k1l−2).
Since in this set we have |q̇|Fmax(1 − k1l−2(q̇T β̃q)2) ≤
0, we can write

V̇ (x, t) ≤ |q2|( c
2

− k2l−2(q̇T β̃q)2)

which together with the boundedness of V gives

+ ∞ > V (x(0), 0) − V (x(t), t)

≥ −
∫ t

0
q2(t)(

c
2

− k2l−2(q̇(t)T β̃q(t))2)dt

⇒
∫ t

0
q2(t)(

c
2

− k2l−2(q̇(t)T β̃q(t))2)dt is bounded.

Now, due to the boundedness of V , we conclude about the
boundedness of q, q̇; furthermore, using Assumption 2 and
the system equations (10), we conclude about the boundedness
of q̈. Boundedness of q̇ and q̈ implies that q2(t)((c/2) −
k2l−2(q̇(t)T β̃q(t))2) is uniform continuous. Finally, using
Barbalat’s Lemma, we conclude that limt→∞ q2(t)((c/2) −
k2l−2(q̇(t)T β̃q(t))2) = 0. Next, by examining the system
equations (10), we can conclude that limt→∞ q2(t) = 0
cannot be a solution of (10), since there is no assumption
on F(t) converging to zero when t → 0. Thus, we finally
conclude that in this second case, the solution q, q̇ satisfies
limt→∞(c/2) − k2l−2(q̇(t)T β̃q(t))2 = 0.

Case 2: (c/2k2) ≤ (1/k1): Following the same rea-
soning as in case 1, we can conclude that the solution
q, q̇ either converges to the invariant set {(qT , q̇T )T ∈
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TABLE I

NUMERICAL VALUES OF THE MECHANICAL PARAMETERS

Fig. 2. Rope sway at y = 195 m in the case of nonzero initial conditions and zero external disturbance. (a) Rope sway at y = 195 m: no control (thin line)
and with control (12) (bold line). (b) Zoom of the rope sway at y = 195 m: no control (thin line) and with control (12) (bold line).

Fig. 3. Output of controller (12) in the case of nonzero initial conditions and zero external disturbance. (a) Output of controller (12). (b) Output of
controller (12) zoomed-in view.

R2N , s.t. l−2(q̇T β̃q)2 ≤ (c/2k2)} or satisfies limt→∞ 1 −
k1l−2(q̇T β̃q)2 = 0.

Remark 3: Similarly to Remark 2, we can point out here
that the controller (25) can deal with the case treated by
the controller (18); however, it does necessitate more control
power. We can make the same observation regarding the
controllers (18), (25) proposed for the case of time-varying
length versus the controllers (15) and (18) for the case of
constant length. It is easy to see from the proofs of Theorems 3
and 4 that the controllers (18) and (25) stabilize the rope
sway in the case of constant rope length, as well. They
require, however, an extra control term [due to the time varying
matrix K (t)], which is not needed in the case of constant
rope length. Thus, depending on the practical application,
i.e., stationary versus moving elevators and actuator power
availability, one can choose one controller versus the other,
or consider switching between the different controllers.

Remark 4: The controllers (12), (15), (18), and (25) are
state feedbacks based on q, q̇, these states can be easily
computed from the sway measurements at N given positions
y(1), . . . , y(N), via (9). The sway w(y, t) can be measured
by laser displacement sensors placed at the positions y(i),
i = 1, 2, . . . , N , along the rope, see [4]; subsequently, q can
be computed by simple algebraic inversion of (9), and q̇ can
be obtained by direct numerical differentiation of q .

V. NUMERICAL EXAMPLE

In this section, we present some numerical results obtained
on the system presented in [1]. The case of an elevator system
with the mechanical parameters summarized in Table I has
been considered for the tests presented hereafter. We underline
that in the following we write the controllers based on the
model (10), (11) with one mode, but we test them a model
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Fig. 4. Rope sway at y = 195 m in the case of nonzero external disturbance. (a) Rope sway at y = 195 m without control. (b) Zoomed-in-view of rope
sway at y = 195 m without control. (c) Rope sway at y = 195 m with control (15). (d) Zoomed-in view of the rope sway at y = 195 m with control (15).

Fig. 5. Output of controller (15) in the case of nonzero external disturbance. (a) Output of controller (15). (b) Output of controller (15) zoomed-in view.

with three modes. The fact is that one mode is enough since
when comparing the solution of the PDE (6) with the discrete
model (10), the higher modes shown to be negligible, and a
discrete model with one mode showed a very good match with
the PDE model, but to make the simulation tests more realistic,
we chose to test the controllers on a three-mode model.
Furthermore, to make the simulation tests more challenging,
we added a random white noise to the states fed back to the
controller (equivalent to about ±1 cm of error on the rope
sway measurement from which the states are computed, see
Remark 4), and we filtered the control signal with a first-order
filter with a cut frequency of 10 hz and a delay term of five
sampling times, to simulate actuator dynamics and delays to
signal transmission and computation time.

First, to validate Theorem 1, we present the results obtained
by applying the controller (12), to the model (10), (11), with

Fig. 6. Time-varying rope length.

nonzero initial conditions q(0) = 20, q̇(0) = 0, and zero
external disturbances, i.e., f1(t) = f2(t) = 0, ∀t . In these
first tests, to show the effect of the controller (12) alone,
without the help of the system’s natural damping, we fix the
damping coefficient to zero, i.e., cp = 0. Fig. 2(a) and (b)
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Fig. 7. Rope sway at y = 195 m in the case of nonzero initial conditions, without external disturbance and time-varying rope length. (a) Rope sway at
y = 195 m: no control (thin line) and with control (18) (bold line). (b) Zoomed-in-view of rope sway at y = 195 m: no control (thin line) and with control
(18) (bold line).

Fig. 8. Output of controller (18) in the case of nonzero initial conditions, without external disturbance and time-varying rope length. (a) Output of controller
(18). (b) Output of controller (18) zoomed-in view.

Fig. 9. Rope sway at y = 195 m with external disturbance and time-varying rope length: no control (thin line) and with control (bold line). (a) Rope sway
at y = 195 m: no control (thin line) and with control (25) (bold line). (b) Zoomed-in-view of rope sway at y = 195 m: no control (thin line) and with control
(25) (bold line).

(thin line) shows the rope sway obtained at half rope length
y = 195 m without control. It reaches a maximum value of
about 1.45 m. We show on Fig. 2(a) and (b) (bold line) the
rope sway obtained at the same rope length but this time with
the controller (12), with umax = 1500 N . We see the expected
effect of the controller on the sway, which is reduced by half
in about 60 s and vanishes asymptotically. The corresponding
control force is shown in Fig. 3(a) and (b). We see that,
as expected from the theoretical analysis of Theorem 1, the
control force remains bounded by umax and decreases with the
decrease of the sway. The zoom of the control signal reported
in Fig. 3(b) shows that the control is C0 continuous.

Let us consider now the controller (15) introduced in
Theorem 2. We consider the model (10), (11) with nonzero
disturbance signals: f1(t) = 0.2 sin(2π.0.08t), and f2 being
deduced form f1 via (3). We have purposely selected the dis-
turbance frequency to be equal to the first resonance frequency
of the rope, to simulate the worst case scenario. We apply (15),
with the parameters umax = 1500 N, Fmax = 1.6, ϵ = 0.1, and
k = 106. The effect of the control on the rope sway amplitude
is shown in Fig. 4. The rope sway is effectively reduced. The
control force is shown in Fig. 5, which shows some noise
(because of the feedback noise) and a high amplitude, due to
the selected high gain value for k. We underline here that, in
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Fig. 10. Output of controller (25) in the case of nonzero external disturbance and time-varying rope length. (a) Output of controller (25). (b) Output of
controller (25) zoomed-in view.

this type of applications, due to the large masses involved, the
actuators used to pull on the car are shakers with very large
force load, which can easily reproduce such desired control
force (e.g., electrohydraulic force shakers can generate a force
of 37e4 N [11]).

To end this section, we finally report the results obtained
in the case of a moving car, i.e., time-varying rope length.
We first start with the validation of Theorem 3. The controller
(18) has been implemented with umax = 1500 N , starting the
simulation with nonzero initial condition q(0) = 4, q̇(0) = 1,
and with zero external disturbances f1(t) = f2(t) = 0.
We also fixed the damping coefficient cp to zero, to see the
damping effect of the controller alone. Following [2], the
tested time-varying rope length is shown in Fig. 6. The sway
signal is shown in Fig. 7, where both the controlled and the
uncontrolled sway signals are reported. The corresponding
control signal is shown in Fig. 8. These numerical results
are in concordance with the asymptotic convergence results
of Theorem 3.

Eventually, we report the numerical results corresponding to
Theorem 4. We tested controller (25), with the gains: umax =
150, Fmax = 1, k1 = 3000, k2 = 15, and ϵ = 0.1. Fig. 9
shows the sway without control versus the sway with control
at half-rope length. The effect of the controller (25) is clear,
i.e., the maximum sway in transient phase is reduced from
0.8 to about 0.3 m, and the steady-state sway is reduced by
half. The corresponding continuous control signal is shown in
Fig. 10.

VI. CONCLUSION

In this brief, we have studied the problem of active control
of elevator rope sway dynamics occurring due to external force
disturbances acting on the elevator system. We have selected
one actuation configuration, namely a force actuator placed at
the bottom of the elevator shaft pulling on the compensation

sheave. For the selected actuation configuration, we have
proposed several nonlinear controllers based on Lyapunov
theory. The proposed controllers deal with several elevator
system operating conditions. We have presented the stability
analysis of these controllers and shown their efficiency using
numerical tests. The numerical results reported here show
a very good performance of the proposed controllers when
applied to a force actuator pulling on the ropes via the
compensation sheave. However, other actuation methods might
be feasible; therefore, one future research direction is to
compare on the same test case the performance and feasi-
bility of different controllers designed for different actuation
configurations.
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