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ABSTRACT

The recently introduced REVERB challenge includes a reverber-
ant speech recognition task. We focus on state-of-the-art ASR
techniques such as discriminative training and various feature trans-
formations including Gaussian mixture model, sub-space Gaussian
mixture model, and deep neural networks, in addition to the pro-
posed single channel dereverberation method with reverberation
time estimation and multi-channel beamforming that enhances di-
rect sound compared with the reflected sound. In addition, because
the best performing system is different from environment to envi-
ronment, we perform a system combination approach using different
feature and different types of systems to handle these various en-
vironments in the challenge. Moreover, we use our discriminative
training technique for system combination that improves system
combination by making systems complementary. Experiments show
the effectiveness of these approaches, reaching 6.76% and 18.60%
word error rate on the REVERB simulated and real test sets, which
are 68.8% and 61.5% relative improvements over the baseline.

Index Terms— Reverberation, Dereverberation, Discriminative
training, Feature transformation, System combination

1. INTRODUCTION

The REVERB challenge is a recently introduced task for reverberant
speech processing [1]. This paper focuses on the speech recognition
task, which provides a middle-size vocabulary continuous speech
recognition task in order to evaluate the automatic speech recogni-
tion (ASR) performance under reverberant environments.

In this scenario, speech enhancement before ASR processing is
important and affects the ASR performance. We have proposed a
single-channel dereverberation method with estimation of reverber-
ation time [2], which is the most important parameter for charac-
terizing the extent of reverberation. In addition, in order to exploit
the eight-channel data provided by the REVERB challenge, we use a
beamforming approach [3] with direction of arrival estimation [4, 5].

Recently, ASR performance has been significantly improved
owing to the discriminative training methods [6, 7] and various types
of feature transformations [8, 9, 10, 11, 12, 13]. We have showed
the effectiveness of discriminative training for noisy environments
[14, 15]. In previous evaluation campaigns for noise-robust ASR
such as the CHiME Challenge [16], it was necessary to handle many
types of non-stationary additive noises, but the variety in the room
acoustics (i.e., reverberation pattern) is very limited. However, it
is well known that room reverberation degrades the ASR perfor-
mance similarly to additive noise; thus, to address reverberation
seems as important as to address noise. For matched conditions

where training and evaluation conditions are close, discriminative
training is effective in general, therefore, it is necessary to validate
its effectiveness for different room types where training and evalu-
ation conditions are different. The REVERB challenge [1] includes
eight different reverberant environments: three rooms with near/far
microphone settings for simulated data and one room with near/far
microphone settings for real recorded data with stationary noise.
Because of the variety in the evaluation environments and because
of the mismatch between simulated training data and real test data,
discriminative training may be ineffective. Thus, the first aim of
this paper is to present the effectiveness of the state-of-the-art ASR
techniques for varying reverberant and noisy environments.

In addition to discriminative training, this paper deals with sev-
eral feature transformation approaches, which convert original fea-
tures to new features based on linear transformations (Linear Dis-
criminant Analysis (LDA) [8], Maximum Likelihood Linear Trans-
formation (MLLT) [9, 10]), and discriminative non-linear feature
transformation [12]. LDA uses long context by context expansion
(e.g., contiguous nine frames) to exploit feature dynamics, which re-
duces the influence of reverberation. The effect of context size on
the ASR performance will be validated. MLLT finds a linear trans-
formation of features to reduce state-conditional feature correlations.
To improve the recognition accuracy by adapting to unknown condi-
tions, model adaptation is effective. In this paper, Speaker Adaptive
Training (SAT) [11]) and basis feature-space Maximum Likelihood
Linear Regression (basis fMLLR) are used.

This paper also deals with Deep Neural Networks (DNN) [13]
that have recently attracted great attention. This modeling includes
feature transformation and acoustic modeling, and can optimize both
of them simultaneously [17]. We have shown the promising results
for noisy environments [15] and validate its effectiveness for rever-
berant environments.

These studies above are mainly focused on the single ASR sys-
tem. On the other hand, the use of multiple systems is another so-
lution to improve the ASR performance [18, 19, 20]. In scenarios
where the best performing system differs from environment to en-
vironment, combining their outputs can improve the performance.
In this paper, as mentioned above, various systems are constructed
and, in addition to this, we have proposed a discriminative train-
ing method in order to introduce complementarity of systems inten-
tionally based on the lattice-based discriminative training framework
[21, 22]. The results from various recognizers will be combined us-
ing recognizer output voting error reduction (ROVER) [18].

In summary, there are two objectives in this paper. First, we
validate the effectiveness of feature transformation and discrimina-
tive training for reverberant environments including various types of
acoustic modelings such as Gaussian Mixture Model (GMM), sub-
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Fig. 1. Schematic diagram of the proposed system. (CSP: cross spectrum phase analysis, DS: delay-and-sum beamformer, derev.: proposed
dereverberation method, NLMS: normalized least-mean-squares algorithm, gray blocks are complementary systems for each system type)

space Gaussian mixture model (SGMM), and DNN after speech en-
hancement and discriminative feature transformation. Second, to ad-
dress the variety of reverberant environments, system combination
approach is introduced. These systems are constructed using Kaldi
toolkit [23].

2. SYSTEM OVERVIEW

Figure 1 shows a schematic diagram of the proposed system, which
consists of three components. The first component is based on a
speech enhancement step, described in Section 3. It consists of
1) a multi-channel delay-and-sum beamformer with direction of ar-
rival estimation that enhances the direct sound compared with the
reflected sound, 2) a single-channel dereverberation technique with
reverberation time estimation that eliminates late reverberation, and
3) the normalized least-mean squares (NLMS) algorithm that elim-
inates short-term distortions. The second component is based on a
feature transformation step, including several feature-level transfor-
mations (LDA, MLLT, and basis fMLLR) and discriminative feature
transformation (Section 4.2). This step uses two types of features
(Mel-Frequency Cepstral Coefficients (MFCC) and Perceptual Lin-
ear Prediction (PLP)). By using two different types of features, it is
expected that complementary hypotheses can be obtained for system
combination. The third component is based on the ASR decoding
step that uses a discriminatively trained acoustic model with mar-
gin control (boosted maximum mutual information (boosted MMI),
presented in Sections 4.1 for GMM and SGMM and 4.3 for DNN).
Three types of systems (GMM, SGMM, and DNN) are constructed.
In addition to the speaker adaptive training (SAT) model, we also
constructed a GMM model without SAT, because we verified on
the development set that its outputs are different from those of a
GMM with SAT. Moreover, we propose a dual system combination
approach, which uses a pair of systems discriminatively trained by
our proposed method (Section 4.4). Various system outputs are com-
bined using ROVER.

3. SPEECH ENHANCEMENT PART

3.1. Delay-and-sum beamformer after the direction of arrival
estimation using CSP method

To enhance the direct sound from the source, a frequency domain
delay-and-sum beamformer is applied [3]. The enhanced spectrum

ỹt is obtained as a sum of the observed short-time Fourier transform
(STFT) spectrum of the m-th microphone xt(m) as

ỹt =
∑
m

xt(m)⊙ exp(−ȷωτ1,m), (1)

where t is the index of the current frame, ⊙ is an element-wise
multiplication, and ω is a set of angular frequencies. The arrival
time delay of the m-th microphone from the first microphone τ1,m
is related to the direction of arrival and is estimated by the cross-
spectrum phase (CSP) analysis, which uses a cross-power spectrum
between two microphones [4] as

τ1,m = argmaxS−1

[
xt(1)⊙ xt(m)∗

|xt(1)||xt(m)|

]
, (2)

where S is the STFT operation and * denotes the complex conjugate.
To improve the performance of the original CSP method, we used a
peak-hold process [24] and noise component suppression, which sets
the cross power spectrum to zero when the estimated SNR is below
0 dB [5]. Using three or more microphones reduces noise influence
by synchronously adding pair-wise CSP coefficients [25].

3.2. Single-channel dereverberation with estimation of rever-
beration time

As a single-channel dereverberation method, we employ the algo-
rithm proposed in [2]. When the reverberation time Tr is much
longer than the frame size, an observed power spectrum |x|2 is mod-
eled as a weighted sum of the source’s power spectrum |ŷ|2 to be
estimated with a stationary noise power spectrum |n|2 as

|xt|2 =

t∑
µ=0

wµ|ŷt−µ|2 + |n|2, (3)

where µ and w are the delay frame and the weight coefficient, re-
spectively. The source’s power spectrum |ŷ|2 is related to |x|2 as

|ŷt−µ|2 = η(Tr)|xt−µ|2 − |n|2, (4)

where η is the ratio of direct sound components to the sum of the di-
rect and reflected sound components, which is a decreasing function



of Tr because for longer Tr , the energy of the reflected sound com-
ponents increases. Assuming that w0 is unity, Eq. (5) can be derived
from above relations:

|ŷt|2 = |xt|2 −
t∑

µ=1

wµ

[
η(Tr)|xt−µ|2 − |n|2

]
− |n|2. (5)

Reverberation is divided into two stages: early reverberation and
late reverberation. The threshold between them, after arrival of the
direct sound, is denoted by D (in frames). Early reverberation is
complex but can be ignored because the ASR performance is mainly
degraded by the late reverberation. The proposed method focuses
on the late reverberation where the sound-energy density decays ex-
ponentially with time according to Polack’s statistical model [26].
Hence, w is determined as

wµ =

{
0 (1 ≤ µ ≤ D) ,

αs
η(Tr)

e−2∆φµ (D < µ) ,
(6)

where φ is the frame shift and αs is the subtraction parameter to be
set. The upper condition and lower condition are corresponding to
early and late reverberation, respectively. Assuming η is constant,
Eq. (5) is a process similar to spectral subtraction [27]. If the sub-
tracted power spectrum |ŷ|2 is less than β|x|2, it is substituted by
β|x|2, where β is a flooring parameter. We define the floored ratio r
as the ratio of the number of floored time-frequency bins to the total
number of bins.

Two observations are exploited to estimate Tr from floored ra-
tios r. First, when some arbitrary reverberation times (Ta) are as-
sumed, r increases monotonically with Ta. This is modeled as linear
with the inclination ∆r . Second, r increases with Tr at the same Ta.
Since the actual η(Tr) decreases with Tr , the power spectrum after
dereverberation assuming constant η is more likely to be floored for
a longer Tr because the second term of Eqn. (5) is larger than that of
actual one in the condition with longer Tr . Therefore, Tr has a pos-
itive correlation with ∆r and this can be modeled as Tr = a∆r − b
with two constants a and b. The estimation process of Tr is summa-
rized as follows: Calculate r and the inclination ∆r by least-squares
regression for some values of Ta, and estimate Tr .

4. ASR PART

4.1. MMI discriminative training of acoustic model

MMI discriminative training is a supervised training algorithm that
maximizes the mutual information between correct labels and recog-
nition hypotheses. This paper focuses on boosted MMI (bMMI)
[28], where a boosting factor b ≥ 0 is used to introduce a weight
depending on phoneme accuracies. The objective function is given
as

FbMMI(λ) =
∑
r

log
pλ (xr|Hsr )

κ pL(sr)∑
s pλ (xr|Hs)

κ pL(s)e−bA(s,sr)
, (7)

where xr is the r-th utterance’s feature sequence. The acoustic
model parameters λ are optimized by the extended Baum-Welch al-
gorithm. Hsr and Hs are the HMM sequences of the correct label
sr and a hypothesis s, respectively; pλ is the acoustic model like-
lihood, κ is the acoustic scale, and pL is the language model likeli-
hood; A(s, sr) is the phoneme accuracy of s for sr . In this paper, we
compare the performances of bMMI training of GMM and SGMM
to those of Maximum Likelihood (ML) training.

4.2. Discriminative feature transforms

The extension of discriminative training to feature transformation is
referred to as feature-space discriminative training [12]. It estimates
an I×J matrix M that projects rich high-dimensional features down
to low-dimensional transformed features, as follows:

yt = xt +Mht, (8)

where xt are the original I-dimensional features at frame t, yt are
the transformed I-dimensional features, and ht are J-dimensional
auxiliary features with J ≫ I . Usually, Gaussian posteriors of uni-
versal background model is used for ht. The matrices M are op-
timized by maximizing the objective function Ff-bMMI (M), which
can be obtained by simply replacing xr by the r-th utterance’s trans-
formed feature sequence yr in Eq. (7):

Ff-bMMI (M) =
∑
r

log
pλ (yr|Hsr )

κ pL(sr)∑
s pλ (yr|Hs)

κ pL(s)e−bA(s,sr)
. (9)

In this study, we validate the effectiveness of feature-space boosted
MMI (f-bMMI).

4.3. Discriminative training of DNN

In a DNN-HMM hybrid system, sequential discriminative training
according to the (b)MMI criterion (7) has been proposed [29] in ad-
dition to usual cross-entropy (CE) training. The DNN provides pos-
terior probabilities for the HMM state j. The acoustic likelihood pθ
is replaced by a pseudo likelihood as

pθ (x
r|j) = pθ (j|xr)

p0 (j)
, (10)

where p0 (j) is the prior probability of state j calculated from a
forced alignment of the training data. For each HMM state, the
model θ includes a softmax activation function:

pθ(j|xr) =
exp aj(x

r)∑
j′ exp aj′(xr)

, (11)

where aj is the activation of the j-th unit in the output layer. These
activations are trained discriminatively according to the bMMI cri-
terion. The bMMI objective function is the same as Eq. (7), simply
replacing λ by θ: FbMMI (θ).

4.4. A generalized framework for constructing complementary
system for dual system combination

We describe a discriminative method that constructs complementary
systems for appropriate system combination [21, 22]. Complemen-
tary systems are constructed by discriminatively training a model
starting from an initial model. The proposed discriminative train-
ing method for complementary systems is extended from a discrim-
inative training principle. Assuming Q base systems have already
been constructed, the discriminative training objective function F is
generalized to the following proposed objective function Fc, which
subtracts from the original objective function involving the correct
labels sr , the objective functions involving the 1-best hypotheses
(lattice) sq,1 of the q-th base systems:

Fc(φ) = (1 + αc)F(φ)− αc

Q

Q∑
q=1

F(φ), (12)



where φ is the set of model parameters of a complementary system to
be optimized (that is λ, M, and θ) and αc is a scaling factor. The dis-
criminative criterion F is selected as bMMI or f-bMMI. If αc equals
zero, this objective function matches the original F . The first term
in Eq. (12) promotes good performance according to the discrimi-
native training criterion, whereas the second term makes the target
system generate hypotheses that have a different tendency from the
original base models. This procedure is commonly used to obtain
the objective functions of Sections 4.1, 4.2, and 4.3.

5. EXPERIMENTS

5.1. Task description

We validated the effectiveness of our proposed approaches for rever-
berated speech on the REVERB challenge [1] data, which features a
medium-vocabulary task in reverberant environments, whose utter-
ances are taken from the Wall Street Journal database (WSJ0). This
database includes two types of data: “SIMDATA” created by con-
volving clean speech with six types of room impulse responses at a
distance of 0.5 m (near) or 2 m (far) from the microphones in three
rooms (Room 1, 2, and 3), and “REALDATA” created by recording
real-world speech at a distance of 0.5 m (near) or 2 m (far) from the
microphones in one room (Room 1) with stationary noise such as air
conditioner noise. Eight microphones were arranged on the circle
whose radius is 0.1 m. The training data set (tr) contains 7,861 ut-
terances by 92 speakers, the evaluation data set (eva) contains 2,176
utterances by 28 speakers for SIMDATA and 372 utterances by 10
speakers for REALDATA, and the development set (dev) contains
1,484 utterances by 20 speakers for SIMDATA and 179 utterances by
five speakers for REALDATA. Acoustic models were trained using
tr and some of the parameters (e.g., language model weights) were
tuned based on the WERs of dev. The vocabulary size is 5 k and a
tri-gram language model is used. All experiments in this paper were
“utterance-based batch processing”, i.e., allowing multiple decoding
passes per utterance (such as for calculating the fMLLR matrix), but
decoding each test utterance separately, without taking into account
information from other test utterances, or speaker identities.

5.2. Speech enhancement

The REVERB challenge provides one, two, and eight channel data.
We used one and eight channel data. For single channel data, the
proposed dereverberation technique with reverberation time estima-
tion was used. Parameters for dereverberation technique were set as
D = 9, α = 5, β = 0.05, a = 0.005, and b = 0.6. For eight chan-
nel data, before dereverberation, delay-and-sum beamforming with
direction of arrival estimation was performed. After dereverberation,
the NLMS algorithm with 200 taps was used to eliminate short-term
distortions. Totally 8C2(= 28) pairs of microphones were used for
beamforming and direction of arrival estimation.

5.3. Feature extraction and transformation and acoustic model
adaptation

We describe the settings of acoustic feature and feature transforma-
tion, which are detailed in [14, 15]. The baseline acoustic features
are MFCC and PLP (0-12 order MFCCs/PLPs + ∆ + ∆∆). Af-
ter concatenating static MFCCs in nine contiguous frames, a total
of 117-dimensional features are compressed into 40 dimensions by
an LDA with classes corresponding to tri-phone HMM states (2,500
states). In addition to this, to decrease correlations between features,
MLLT is used.

For acoustic model adaptation, instead of ordinary fMLLR
transformation, which did not improve the performance because en-
vironments are various even for the same speaker and using speaker
IDs at test time is prohibited, we used basis fMLLR [30], which
can perform adaptation in short utterances. Moreover, to address the
large variations among speakers, SAT [11] is typically used: in SAT,
acoustic model training is conducted after having transformed the
training speech into a canonical space so as to reduce the variances
across speakers. Note that for the training set, speaker IDs are as-
sumed to be known. In this study, we validate the effectiveness of
feature transformation (LDA, MLLT) and speaker adaptation (basis
fMLLR and SAT).

5.4. Discriminative methods

In discriminative feature transformation (Section 4.2), 400 Gaus-
sians were used and offset features were calculated for each of the 40
MFCC dimensions with context expansion (9 frames). The number
of dimensions of the feature vector ht was 400 × 40 × 9. Fea-
tures with the top 2 GMM posteriors were selected and all other
features were ignored. The Boosting factor of bMMI and f-bMMI
was 0.1. For constructing complementary systems, the additional
boosting factor was 0.3 and αc is 0.75.

5.5. Experimental procedure

The experimental procedure based on the above setup can be sum-
marized as follows: First, a clean acoustic model was trained. The
number of mono-phones was 44, including silence (“sil”). In the tri-
phone model, the number of states was 2,500 and the total number of
Gaussians was 15,000. Second, using their alignments and tri-phone
tree structures, reverberated acoustic models were trained using the
reverberated dataset. Finally, using this ML model, we validated the
effectiveness of the discriminative training and feature transforma-
tion. For the DNN, we used a CPU version of neural network train-
ing implemented in Kaldi [23] with 2 hidden layers and 2,000,000
parameters. The initial learning rate of cross-entropy training was
0.02 and was decreased to 0.004 at the end of training. The training
targets for the DNN were determined by forced alignment on rever-
berant speech using a GMM model with SAT. The parameters used
in our experiments were set as those in the WSJ tutorial (s6) attached
to the Kaldi toolkit, although some settings were modified.

5.6. ASR acoustic models

We prepared three types of ASR acoustic model systems for the chal-
lenge: GMM, SGMM [31], and DNN. To improve the performance
of respective systems, discriminative methods were used. Feature-
space boosted MMI was employed for GMM systems, and boosted
MMI for SGMMs and DNNs [29]. Two systems were constructed
for each of these systems. Moreover, these systems were trained both
for MFCC and PLP features; thus, totally sixteen systems were pre-
pared. Minimum Bayes risk decoding [32], which slightly improved
the performance, was commonly used after decoding.

5.7. Black box optimization

Bayesian optimization using Gaussian processes [33] was applied to
various speech recognition problems including neural network [34]
and HMM topology optimization [35]. In this paper, we also apply
this technique to the selection of combined systems and the parame-
ter optimization for ROVER. The objective function of the optimiza-
tion was WER.



Table 1. WER [%] by room and microphone distance on the REVERB Challenge (dev) using single channel data. (MFCC)
SIMDATA REALDATA

Room 1 Room 2 Room 3 Avg Room 1 Avg
Feature Type near far near far near far near far

Kaldi baseline MFCC ML 10.96 12.56 15.70 34.21 19.61 39.24 22.05 48.53 47.37 47.95
derev. 12.41 14.68 14.03 27.16 16.39 33.85 19.75 47.04 44.57 45.81
GMM +LDA+MLLT ML 9.46 11.01 11.51 22.04 13.08 28.09 15.87 39.99 40.67 40.33

+basis fMLLR 7.77 10.00 9.76 19.28 11.05 24.90 13.79 33.00 35.54 34.27
bMMI 7.13 9.61 9.12 16.19 10.46 21.98 12.42 30.69 35.20 32.95

f-bMMI 6.27 8.73 8.28 14.89 9.37 19.54 11.18 28.32 31.31 29.82
f-bMMIc 7.06 9.05 8.58 14.96 10.16 20.43 11.71 29.01 31.72 30.37

+SAT ML 8.87 11.21 9.71 19.89 10.95 24.04 14.11 36.06 36.23 36.15
bMMI 6.56 8.51 7.76 16.24 9.03 19.88 11.33 34.19 37.53 35.86

f-bMMI 5.88 7.60 7.25 14.59 8.09 17.51 10.15 31.63 34.72 33.18
f-bMMIc 6.07 7.82 7.22 14.89 8.43 17.51 10.32 32.38 35.27 33.83

SGMM ML 6.47 9.07 8.18 17.11 9.55 20.40 11.80 33.13 34.93 34.03
bMMI 5.53 7.23 7.00 14.44 7.76 17.48 9.91 31.50 33.36 32.43
bMMIc 5.68 7.28 7.02 14.44 7.94 17.68 10.01 30.94 33.08 32.01

DNN CE 6.71 8.85 8.70 15.58 9.15 19.07 11.34 30.88 35.82 33.35
bMMI 5.29 7.06 6.95 13.09 7.57 15.53 9.25 28.45 32.67 30.56
bMMIc 5.14 6.74 6.51 12.37 7.27 15.50 8.92 28.32 33.49 30.91

Table 2. WER [%] on the REVERB Challenge (dev) using eight channel data. (MFCC)
SIMDATA REALDATA

Room 1 Room 2 Room 3 Avg Room 1 Avg
Feature Type near far near far near far near far

CSP+BF+derev. MFCC ML 10.79 12.19 11.02 16.71 11.47 20.43 13.77 40.36 42.83 41.60
+NLMS 11.11 12.27 11.81 17.40 12.34 21.46 14.40 38.37 40.74 39.56
GMM +LDA+MLLT ML 8.38 10.30 9.91 14.94 10.19 17.28 11.83 34.06 37.18 35.62

+basis fMLLR 7.74 9.22 8.80 13.33 9.05 15.28 10.57 27.39 30.14 28.77
bMMI 6.64 8.21 7.25 11.39 7.10 11.50 8.68 24.89 27.96 26.43

f-bMMI 6.19 7.40 7.39 10.13 6.58 10.24 7.99 22.58 26.25 24.42
f-bMMIc 6.39 7.33 7.44 9.86 6.70 10.44 8.03 22.71 27.41 25.06

+SAT ML 7.25 9.32 8.70 12.79 8.33 13.80 10.03 28.88 32.88 30.88
bMMI 5.24 7.10 6.56 9.93 5.98 10.98 7.63 26.58 30.83 28.71

f-bMMI 5.01 6.76 5.96 9.07 5.84 9.40 7.01 24.27 29.60 26.94
f-bMMIc 5.16 6.93 6.11 9.49 5.96 9.67 7.22 24.27 29.73 27.00

SGMM ML 5.65 7.62 7.47 10.97 7.00 11.45 8.36 25.27 30.35 27.81
bMMI 4.57 6.05 6.19 9.27 6.01 9.89 7.00 24.70 30.01 27.36
bMMIc 4.72 6.10 6.09 9.56 6.18 10.01 7.11 24.39 30.01 27.20

DNN CE 6.49 7.45 7.84 11.44 7.25 11.97 8.74 25.27 29.32 27.30
bMMI 5.56 6.27 6.24 9.29 5.71 10.44 7.25 23.27 28.84 26.06
bMMIc 5.26 6.05 6.21 9.10 5.61 10.06 7.05 22.65 28.50 25.58

6. RESULTS AND DISCUSSION

6.1. Baseline and speech enhancement techniques

Tables 1 and 2 show the WERs on the development set (dev) for vari-
ous rooms and distances between microphones and speakers. Table 1
is based on single channel one and Table 2 is based on 8 channel one.
“Kaldi baseline” in Table 1 shows the WER using acoustic model
trained on reverberant speech without speech enhancement. “derev.”
is a proposed dereverberation method with reverberation time esti-
mation. Although, for some cases in room 1 whose reverberation
time is fairly short, the performances were degraded. However, for
other cases and in average, the performances were improved. For
eight channel input (Table 2), because the direction of arrival esti-
mation was stable, beamforming with “derev.” improved the per-

formance significantly. “NLMS” improved the WER by 2.04% on
REALDATA, but degraded the WER by 0.63% for SIMDATA. How-
ever, because this decrease in performance was fairly low, we used
NLMS below.

The results above used MFCC features. Experimental results us-
ing PLP features are shown in Table 3. In average, the ASR perfor-
mance using PLP features was slightly lower than that using MFCC
features; however, their error tendencies were fairly different, which
was a good property for system combination.

6.2. Feature transformation and discriminative training

LDA and MLLT feature transformations significantly improved the
performance. Table 4 shows the effect of LDA context size on the
performance. Performance on SIMDATA could not be increased by



Table 3. WER [%] on the REVERB Challenge (dev). (PLP)
SIM REAL

Feature Avg Avg
1ch Kaldi baseline PLP ML 22.96 48.90

derev. 19.84 44.15
GMM +LDA+MLLT ML 15.63 40.36

+basis fMLLR 13.70 34.21
bMMI 12.78 33.43

f-bMMI 11.91 30.67
f-bMMIc 12.20 31.67

+SAT ML 13.55 36.25
bMMI 11.05 35.63

f-bMMI 10.14 33.29
f-bMMIc 12.20 31.67

SGMM ML 11.90 32.95
bMMI 10.25 33.10
bMMIc 10.30 33.14

DNN CE 11.30 31.87
bMMI 9.44 30.19
bMMIc 9.40 30.13

8ch CSP+BF PLP ML 13.98 42.21+derev.
NLMS 14.97 41.15
GMM +LDA+MLLT ML 12.13 35.11

+basis fMLLR 10.73 29.21
bMMI 8.94 26.84

f-bMMI 8.10 25.72
f-bMMIc 8.26 26.30

+SAT ML 10.17 30.85
bMMI 8.06 28.45

f-bMMI 7.32 26.78
f-bMMIc 7.61 27.59

SGMM ML 8.43 26.99
bMMI 7.13 26.67
bMMIc 7.19 27.21

DNN CE 8.75 27.33
bMMI 7.25 26.06
bMMIc 6.74 26.37

context sizes longer than 4. On REALDATA, performance could be
improved in several cases by adding more right context, but gener-
ally not by left context. In the end, because these results are rather
mixed, we kept the context size at the default setting, L = R = 4.

Tables 1 and 2 show that discriminative training was effective
for reverberant environments. The performances of f-bMMI training
were higher than those of bMMI training in all cases. Because the
performances of our complementary systems are only slightly lower
than those of the base systems, they appear to be very well suited to
system combination.

Table 5 shows the effect of the iteration numbers of bMMI and
f-bMMI on the development set performance. For f-bMMI, in one
iteration, f-bMMI for the matrix M was coupled with bMMI for the
acoustic models. Results shows that best performance is achieved at
four iterations.

6.3. Subspace GMM and deep neural network

Tables 1 and 2 show that the performance of SGMM acoustic mod-
els for SIMDATA was higher than that of GMMs, however, for RE-
ALDATA the performance was lower than that of GMMs. Because

Table 4. Effect of LDA context size (left (L) and right (R)) on the
REVERB Challenge (dev) using eight channel data.

SIMDATA REALDATA
L \ R 4 5 6 7 4 5 6 7

4 11.83 12.20 12.10 12.57 35.62 34.31 34.10 36.22
5 12.14 12.32 12.46 12.72 34.71 35.34 34.44 33.31
6 12.57 12.33 12.56 12.87 35.49 35.29 34.19 35.11
7 12.83 12.94 13.43 13.49 35.13 35.90 35.67 36.00

Table 5. Effect of iteration number of discriminative training (bMMI
and f-bMMI with SAT) on the REVERB Challenge (dev) using eight
channel data.

bMMI
MFCC PLP

iter 1 2 3 4 1 2 3 4
SIM 8.70 8.41 8.18 7.63 9.02 8.64 8.47 8.06

REAL 29.21 28.34 28.16 28.71 29.74 29.26 28.91 28.45
f-bMMI

MFCC PLP
iter 1 2 3 4 1 2 3 4
SIM 8.07 7.56 7.30 7.01 8.47 7.93 7.57 7.32

REAL 27.70 27.29 27.16 26.94 29.36 27.86 27.15 26.78
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Fig. 2. Average WER [%] of black box optimization of the system
selection and parameter setting for ROVER in terms of the number
of iterations.

REALDATA were noisier than SIMDATA, the estimation of speaker
vector can be unstable.

DNN acoustic models achieved the best performance for SIM-
DATA. Although the best system for REALDATA was GMM without
SAT, DNN was the second best. On average over SIMDATA and
REALDATA, DNNs achieved the best performance. Discriminative
training for DNN systems turned out to be as effective as for other
systems.

6.4. System combination

We tried five types of system combinations as shown in Table 6. The
ID 1) system was a combination of SAT-GMMs (f-bMMI) using both
MFCC and PLP features. The performance for REALDATA was im-
proved by 4.15% (1ch) and 1.15% (8ch) over the f-bMMI with SAT
(MFCC) single system. With the GMM system without SAT, using
f-bMMI (ID 2)), the WER was improved by 1.49% and 0.6% (1ch)
and 0.19% and 1.36% (8ch) for SIMDATA and REALDATA, respec-



Table 6. WER [%] on the REVERB Challenge (dev) with system combination using both MFCC and PLP features. For GMM systems,
f-bMMI is used, while for SGMM and DNN systems, bMMI is used. The number 2 stands for MFCC and PLP systems and the number 4
stands for MFCC and PLP system along with their complementary systems. ROVER 6) uses black box optimization at the stage of the system
selection and parameter optimization for ROVER.

SIMDATA REALDATA
Number of systems Room 1 Room 2 Room 3 Avg Room 1 Avg

ID GMM SAT-GMM SGMM DNN near far near far near far near far
1ch 1) 2 6.00 8.19 7.52 14.37 8.78 18.35 10.54 27.70 30.35 29.03

2) 2 2 5.31 6.37 6.58 12.62 7.42 16.00 9.05 27.26 29.60 28.43
3) 4 4 5.33 6.39 6.63 12.67 7.49 15.60 9.02 27.01 29.67 28.34
4) 4 4 4 5.01 6.34 6.33 12.45 6.87 15.43 8.74 26.64 29.80 28.22
5) 4 4 4 4 4.67 5.88 6.31 11.93 6.63 14.89 8.39 26.58 28.91 27.75

8ch 1) 2 4.72 5.83 5.96 8.92 5.37 8.75 6.59 23.27 28.30 25.79
2) 2 2 4.72 6.02 5.72 8.26 5.14 8.56 6.40 22.27 26.59 24.43
3) 4 4 4.72 5.83 5.77 8.21 5.19 8.38 6.35 22.52 26.52 24.52
4) 4 4 4 4.08 5.16 5.62 7.79 4.80 8.38 5.97 22.40 27.00 24.70
5) 4 4 4 4 4.18 5.11 5.50 7.74 4.85 8.23 5.94 21.90 26.52 24.21
6) 3 1 4 2 4.18 5.51 5.50 7.74 4.97 8.43 6.06 21.58 26.32 23.95

Table 7. WER [%] on the REVERB Challenge (eva). All systems except ROVER are single systems. MFCC feature was used for single
system and MFCC and PLP features were used for ROVER 5).

SIMDATA REALDATA
Room 1 Room 2 Room 3 Avg Room 1 Avg

near far near far near far near far
1ch Kaldi baseline 13.23 14.13 15.54 29.69 20.06 37.44 21.68 50.62 45.98 48.30

derev. 12.50 13.43 14.61 24.71 17.09 32.62 19.16 44.75 43.32 44.04
f-bMMI 7.27 8.17 8.82 14.11 10.54 18.76 11.28 28.65 29.54 29.10

SAT+f-bMMI 6.44 7.22 7.57 13.97 9.52 18.44 10.53 28.87 29.78 29.33
SGMM+bMMI 5.81 6.54 7.22 13.84 8.70 18.17 10.05 27.75 28.36 28.06
DNN+bMMI 5.90 6.84 7.35 12.57 9.40 16.55 9.77 25.97 25.69 25.83
ROVER 5) 5.30 5.61 6.30 11.16 7.76 14.95 8.51 23.79 23.60 23.70

8ch CSP+BF+derev. 10.94 11.69 10.98 16.33 12.79 21.39 14.02 34.33 36.93 35.63
+NLMS 10.94 12.32 11.38 17.59 13.46 22.96 14.78 35.32 35.28 35.30
f-bMMI 6.57 6.93 6.80 9.93 7.47 12.76 8.41 20.22 23.19 21.71

SAT+f-bMMI 6.17 6.64 6.51 10.13 7.40 13.15 8.33 20.63 23.67 22.15
SGMM+bMMI 5.86 6.44 6.29 9.23 6.96 12.83 7.94 20.66 23.50 22.08
DNN+bMMI 5.64 6.18 6.16 9.29 7.08 12.40 7.79 19.35 22.28 20.82
ROVER 5) 4.96 5.62 5.58 8.18 5.73 10.47 6.76 16.90 20.29 18.60
ROVER 6) 5.00 5.56 5.38 8.15 5.73 10.70 6.75 17.47 20.36 18.93

tively. Including the complementary systems (ID 3)), the WER was
slightly improved. For the best case, WER was improved by 0.40%,
while for the worst case, WER was decreased by 0.07%. This shows
the effectiveness of our proposed method. Adding in SGMMs (ID
4)), which was effective for SIMDATA, the performance for SIM-
DATA was further improved by 0.28% (1ch) and 0.38% (8ch). Tak-
ing into account DNNs (ID 5)), the performance was again improved
and this system achieved the best performance in average.

In all cases except Room 1/far(8ch) condition, the performances
were better than those of the best system.

6.5. Black box optimization

For eight channel data, black box optimization was performed. The
results were shown at the last column of Table 6. The performance
was improved mainly for REALDATA. Figure 2 shows the average
WER by the iteration number. WER almost decreased monotoni-
cally and, after 100 iterations, it converged.

6.6. Evaluation set

Table 7 shows the results for the evaluation set (eva). The DNN with
discriminative training achieved the best performance for SIMDATA
and REALDATA among single systems. This shows the robustness of
DNN in unseen conditions. Moreover, system combination (ROVER
5)) improved the WER by 1.26% and 2.13% (1ch) and 1.03% and
2.22% (8ch) for SIMDATA and REALDATA, respectively. Among
system combination systems, the performance of ROVER 5) was
better than that of ROVER 6), which could be due to overtuning on
the development set.

7. CONCLUSIONS

We validated the effectiveness of feature transformations and dis-
criminative training for reverberated speech. Experiments show that
these state-of-the-art techniques are effective across various types of
reverberation as well as for noisy environments. Moreover, the sys-
tem combination approach was used in order to improve the robust-



ness in various environments. We constructed multiple systems, be-
cause the best performing system was different from environment to
environment. System combination improved the performance in al-
most all the cases even from the best single system for each environ-
ment. Our proposed method to specifically provide desired comple-
mentary systems for system combination improved the performance
further.
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tem combination and a comparison with weighted ROVER and CNC,”
in Proc. of ICSLP, 2006, pp. 537–540.

[21] Y. Tachioka and S. Watanabe, “Discriminative training of acoustic
models for system combination,” in Proc. of INTERSPEECH, 2013.

[22] Y. Tachioka, S. Watanabe, J. Le Roux, and J.R. Hershey, “A general-
ized framework of discriminative training for system combination,” in
Proc. of ASRU, 2013.

[23] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlı́cek, Y. Qian, P. Schwarz, et al., “The Kaldi
speech recognition toolkit,” in Proc. of ASRU, 2011.

[24] T. Suzuki and Y. Kaneda, “Sound source direction estimation based on
subband peak-hold processing,” The journal of the Acoustical Society
of Japan, vol. 65, no. 10, pp. 513–522, 10 2009.

[25] T. Nishiura, T. Yamada, T. Nakamura, and K. Shikano, “Localization
of multiple sound sources based on a CSP analysis with a microphone
array,” in Proc. of ICASSP, 2000, vol. 2, pp. 1053–1056.

[26] E.A.P. Habets, “Speech dereverberation using statistical reverberation
models,” in Speech Dereverberation, P.A. Naylor and N.D. Gaubitch,
Eds. Springer, 2010.

[27] S.F. Boll, “Suppression of acoustic noise in speech using spectral sub-
traction,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 27, no. 2, pp. 113–120, 4 1979.

[28] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and
K. Visweswariah, “Boosted MMI for model and feature-space discrim-
inative training,” in Proc. of ICASSP, 2008, pp. 4057–4060.
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