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Abstract

In this work, we propose recurrent deep neural networks (DNNs) for robust automatic speech
recognition (ASR). Full recurrent connections are added to certain hidden layer of a conven-
tional feedforward DNN and allow the model to capture the temporal dependency in deep rep-
resentations. A new backpropagation through time (BPTT) algorithm is introduced to make the
minibatch stochastic gradient descent (SGD) on the proposed recurrent DNNs more efficient
and effective. We evaluate the proposed recurrent DNN architecture under the hybrid setup
on both the 2nd CHiME challenge (track 2) and Aurora-4 tasks. Experimental results on the
CHiME challenge data show that the proposed system can obtain consistent 7% relative WER
improvements over the DNN systems, achieving state-of-the-art performance without front-end
preprocessing, speaker adaptive training or multiple decoding passes. For the experiments on
Aurora-4, the proposed system achieves 4% relative WER improvement over a strong DNN
baseline system.
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ABSTRACT

In this work, we propose recurrent deep neural networks (DNNs) for
robust automatic speech recognition (ASR). Full recurrent connec-
tions are added to certain hidden layer of a conventional feedforward
DNN and allow the model to capture the temporal dependency in
deep representations. A new backpropagation through time (BPTT)
algorithm is introduced to make the minibatch stochastic gradient
descent (SGD) on the proposed recurrent DNNs more efficient and
effective. We evaluate the proposed recurrent DNN architecture un-
der the hybrid setup on both the 2nd CHiME challenge (track 2)
and Aurora-4 tasks. Experimental results on the CHiME challenge
data show that the proposed system can obtain consistent 7% rela-
tive WER improvements over the DNN systems, achieving state-of-
the-art performance without front-end preprocessing, speaker adap-
tive training or multiple decoding passes. For the experiments on
Aurora-4, the proposed system achieves 4% relative WER improve-
ment over a strong DNN baseline system.

Index Terms— DNN, RNN, robust ASR, CHiME, Aurora-4

1. INTRODUCTION

Improving environmental robustness of automatic speech recogni-
tion (ASR) systems has been studied for decades. To deal with the
mismatched acoustical conditions between training and testing, fea-
ture space compensation approaches typically involve removing ad-
ditive noise and channel distortions using speech enhancement tech-
niques [1] such as spectral subtraction, Weiner filtering and MMSE
estimators [2, 3, 4]. Other researchers explored use of noise resis-
tant features [5, 6] or feature transformations [7, 8]. Model adapta-
tion methods attempt to achieve compensation by adapting the mod-
els to the noisy condition. The most straightforward way is using
the multi-style training strategy [9] to train models on the multi-
condition data that includes different acoustical conditions of the test
data. Other model space adaptation methods include parallel model
combination (PMC), data-driven PMC [10] and vector Taylor series
(VTS) based compensation [11, 12, 13]. The combination of both
feature space and model space compensation techniques usually of-
fer the state-of-the-art environmental robustness for an ASR system.

Recently, deep neural network (DNN) based acoustic models
have been introduced for LVCSR [14, 15] tasks and show its great
success in both Tandem [16] and hybrid DNN-HMM systems [17].
This opens new possibilities for further improving the noise robust-
ness of ASR systems. In [18] and [19], it is shown that DNN based
systems have remarkable robustness to environment distortions and
the authors can achieve state-of-the-art performance on Aurora-4
benchmark without multiple decoding passes and model adaptation.

Meanwhile, recurrent neural networks (RNNs) have been also ex-
plored for robust ASR in [20, 21, 22, 23]. However, the authors only
investigated RNNs in the Tandem setup or used it as a front-end de-
noiser and reported results on a small vocabulary task. Few if any
have explored the RNNs combined with deep structure in the hybrid
setup and report results on larger tasks where the language model
(LM) matters during decoding.

In this work, we investigate the RNNs with deep architecture
in hybrid systems for robust ASR. Specifically, we add full recur-
rent connections to certain hidden layer of a feedforward DNN to
allow the model to capture the temporal dependency in deep repre-
sentations. A new backpropagation through time (BPTT) algorithm
for updating the parameters of the recurrent layer is introduced to
make the minibatch stochastic gradient descent (SGD) on the pro-
posed recurrent DNN more efficient and effective. We evaluate the
proposed recurrent DNN architecture under the hybrid setup on both
the 2nd CHiME challenge (track 2) [24] and Aurora-4 tasks. Exper-
imental results on the CHiME challenge data show that we can ob-
tain consistent 7% relative WER improvements over DNN systems,
achieving the state-of-the-art performance reported in [25] without
front-end preprocessing, speaker adaptive training and multiple de-
coding passes. For the experiments on Aurora-4, the proposed sys-
tem achieves 4% relative WER improvement over a strong DNN
baseline system.

The remainder of the paper is organized as follows. In Section
2, we review the DNN-HMM hybrid system and describe the archi-
tecture of the recurrent DNN. A new backpropagation through time
algorithm for the recurrent layer and minibatch SGD on the whole
network will be elaborated in Section 3. We report our experimental
results in Section 4 and conclude our work in Section 5.

2. RECURRENT DNN ARCHITECTURE

2.1. Hybrid DNN-HMM System

In a conventional GMM-HMM LVCSR system, the state emission
log-likelihood of the observation feature vector ot for certain tied
state or senone sj of HMMs is generated using,

log p(ot|sj) = log

M∑
m=1

πjmNjm(ot|sj), (1)

whereM is the number of Gaussian mixtures in the GMM for state j
and πjm is the mixing weight. As the outputs from DNNs represent
the state posteriors p(sj |ot), a DNN-HMM hybrid system [15] uses
pseudo log-likelihood as the state emissions,

log p(ot|sj) ∝ log p(sj |ot)− log p(sj), (2)



where the state priors log p(sj) can be estimated using the state
alignments on the training speech data. The input features vectors
ot to the first layer of DNNs usually use a context of l frames [15],
e.g. l = 9 or l = 11.

2.2. Recurrent Deep Architecture

The architecture of recurrent DNN we use is shown in Fig.1. The
fundamental structure is a feedforward DNN but with certain hid-
den layer having full recurrent connections with itself (In the Fig.1,
the third hidden layer from the input layer has recurrent property).
The values corresponding to those neurons at the feedforward hidden
layers can be expressed as,

xi =

{
W1x

0 + b1, i = 1
Wiy

i−1 + bi, i > 1
, (3)

yi =

{
sigmoid(xi) i < n
softmax(xi) i = n

, (4)

where n is the total number of the feedforward hidden layers and
both the sigmoid and softmax functions are element-wise opera-
tions. The vector xi corresponds to pre-nonlinearity activations ex-
cept that x0 is the input feature vector and yi is the neuron vector at
the ith hidden layer. For the recurrent hidden layer, denote by xit and
yit the pre-nonlinearity activation vector and neuron vector at frame
t, the value of neuron vector at the ith hidden layer is given by,

xit =Wiiy
i
t−1 + bii +Wiy

i−1
t + bi (5)

yit = sigmoid(xit), (6)

where Wii and bii are the recurrent weight matrix and bias vector.
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Fig. 1. Recurrent DNNs architecture: the third layer from the input
layer is the recurrent hidden layer with the parametersW33, note that
the bias terms are omitted for simplicity.

3. BACKPROPAGATION ON THE RECURRENT DNN

3.1. Backpropagation on the Feedforward Layers

For convenience, we will use the notations as shown in Fig.1. Taking
partial derivatives of the loss objective function with respect to the
pre-nonlinearity activations of output layer (xn in the Fig.1) will
give us the error vector to be backpropagated to the previous hidden
layers. The negative cross-entropy is commonly used loss function.
The loss functions based on discriminative training criteria such as
sMBR [26], MMI and MPE/MWE [27] have also been used for ASR.
When various loss functions are used, the only difference reflected
in the backpropagation lies in the error vector we backpropagate to
the previous hidden layers. If we use the negative cross-entropy loss

and let X be the whole training set which contains N frames, i.e.
x0
1:N ∈ X , then the loss associated with X is given by,

L1:N = −
N∑
t=1

J∑
j=1

dt(j) logy
n
t (j), (7)

and dt(j) is the jth element of the label vector at frame t, then the
error vector to be backpropagated to the previous layers is given by,

εnt =
∂L1:N

∂xn
= ynt − dt, (8)

the backpropagated error vectors at previous hidden layer are thus,

εit =WT
i+1ε

i+1
t ∗ yi ∗

(
1− yi

)
, i < n (9)

where ∗ denotes element-wise multiplication. With the error vectors
at certain hidden layers, the gradient over the whole training set with
respect to the weight matrix Wi is given by,

∂L1:N

∂Wi
= yi−1

1:N (εi1:N )T , (10)

note that in above equation, both yi−1
1:N and εi1:N are matrices, which

is formed by concatenating vectors corresponding to all the training
frames from frame 1 to N , i.e. εi1:N = [εi1, . . . , ε

i
t, . . . , ε

i
N ] . The

batch gradient descent updates the parameters with the gradient in
(10) only once after each sweep through the whole training set and
in this way parallelization can be easily conducted to speedup the
learning process. However, SGD usually works better in practice
where the true gradient is approximated by the gradient at a single
frame t, i.e. yi−1

t (εit)
T , and the parameters are updated right after

seeing each frame. The compromise between the two, minibatch
SGD, is more widely used, as the reasonable size of minibatches
makes all the matrices fit into GPU memory, which leads to a more
computationally efficient learning process.

3.2. BPTT on the Recurrent Layer

BPTT updates the recurrent weights by unfolding the networks in
time. As shown in Fig.2, the standard error BPTT over a minibatch
x0
1:M ∈ X is given by,

εit =

{
(WT

i+1ε
i+1
t ) ∗ yit ∗

(
1− yit

)
, t =M

(WT
i+1ε

i+1
t +WT

ii ε
i
t+1) ∗ yit ∗

(
1− yit

)
, t < M

,

(11)
whereM is the size of minibatch. Note that the evaluation of the ex-
act gradients with respect to the recurrent weight matrix Wii needs
the corresponding error vectors backpropagated through time to the
first frame of the current training speech utterance, but in practice
the gradients with respect to the recurrent weight matrix Wii over
the minibatch are usually approximated by truncating the BPTT pro-
cess within the corresponding minibatch. In (11), each time step of
BPTT needs both the error vector from next frame and the one from
next hidden layer which forces us to backpropagate the error vector
frame by frame rather than in a minibatch mode. In the standard
minibatch BPTT, a key observation is that error signals backpropa-
gated from the next hidden layer (i.e., εi+1

t−1, ε
i+1
t , εi+1

t+1 as in Fig.2)
will be backpropagated in different time steps which indicates each
training frame within a minibatch will make non-uniform contribu-
tion to the final minibatch gradient. Thus, we introduce the truncated
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Fig. 2. Backpropagation through time for ith recurrent layer’s pa-
rameter Wii: the solid lines denote the directions of forward propa-
gation and the dotted lines denote the directions of backpropagation.

minibatch BPTT where for each individual online gradient, we trun-
cated the BPTT process in fixed time steps,

∂L1:M

∂Wii
=

M∑
t=1

∂Lt
∂Wii

≈
M∑
t=1

T∑
τ=1

yit−τ (ε
i
t−τ+1)

T , (12)

where ∂Lt
∂Wii

is the online gradient at frame t, while for each individ-
ual online gradient, we backpropagate for multiple time steps as in
[28], e.g. T = 4 or T = 5,

εit−1 =WT
ii ε

i
t ∗ yit−1 ∗

(
1− yit−1

)
. (13)

Another benefit of the introduced truncated minibatch BPTT is that
after we exchange the summation order (see below), the BPTT on
the recurrent weights can be conducted in a minibatch mode,

∂L1:M

∂Wii
=

M∑
t=1

∂Lt
∂Wii

≈
M∑
t=1

T∑
τ=1

yit−τ (ε
i
t−τ+1)

T

=

T∑
τ=1

M∑
t=1

yit−τ (ε
i
t−τ+1)

T

=

T∑
τ=1

yi1−τ :M−τ (ε
i
1−τ+1:M−τ+1)

T︸ ︷︷ ︸
minibatch gradient

, (14)

note that in above equations the vectors with negative indices come
from the corresponding ones in previous minibatch. Therefore, the
gradients for updating the recurrent weights can also be calculated
in a minibatch mode using matrix multiplication which can be con-
siderably speeded up using GPU.

4. EXPERIMENTS

4.1. Experiments on CHiME challenge data

Track 2 of the 2nd CHiME challenge [24] is a medium vocabulary
(5k) task under reverberated and noisy environment. There are three
sets of data, clean, reverberated, isolated (reverberated and noisy).
All the clean speech utterances are extracted from WSJ0 database.
The reverberated speech utterances are generated by convolving
clean speech with time-varying binaural room impulse responses.
Noise backgrounds including concurrent speakers, TV, game con-
sole, footsteps, and distant noise from outside or from the kitchen
are first recorded and the isolated speech utterances are created
by selecting appropriate pre-recorded noise background excerpts,
mixing them to reverberated speech utterances to obtain the speech

Systems Conditions Avg.9dB 6dB 3dB 0dB -3dB -6dB
GMM 29.87 36.26 43.25 54.64 61.63 69.51 49.19
DNN I 19.19 23.41 28.17 36.56 45.99 56.81 35.02
DNN II 17.88 21.58 24.83 33.42 40.91 52.06 31.78
DNN III 16.85 20.25 23.05 30.81 39.59 50.70 30.21
DNN IV 16.89 20.29 22.83 30.36 39.49 49.47 29.89

Table 1. WERs (%) of baseline GMM-HMM, and DNN-HMM sys-
tems on CHiME challenge data, DNN I∼IV systems correspond to
the iteratively retrained DNNs with the new alignments

signals with the SNR of -6, -3, 0, 3, 6, and 9 dB without rescaling.
The multi-condition training set contains 7138 speech utterances
(reverberated and noisy version of SI-84) with SNR from -6 to 9
dB. The development set contains 2460 multi-condition speech ut-
terances and evaluation set contains 1980 (reverberated and noisy
version of NOV-92, i.e. 330×6) utterances with uniform number for
each condition.

We first build a GMM-HMM system using Kaldi toolkit [29]
for the task: 2008 distinct tied-state GMMs are trained with MFCC
features coupled with their linear discriminant analysis (LDA) and
maximum likelihood linear transform (MLLT) on the 7138 multi-
condition speech utterances and feature-space maximum likelihood
linear regression (fMLLR) for speaker adaptation during later iter-
ations. For the DNN-HMM systems, we first do generative pre-
training using RBMs, and stacking them together in the end to ini-
tialize the DNN with 7 2048-dim hidden layers. With the align-
ments obtained from the GMM-HMM system, we train DNN I sys-
tem with 40-dim log Mel filter-bank features. We use 256 minibatch
and 0.008 as the initial learning rate. After each epoch of train-
ing, we validate the frame accuracy on the development set, shrink
the learning rate by 0.5 when the improvements are less than 0.5%
and stop training when the improvements are less than 0.1%. With
the trained DNN I system, we do the realignments and train a sec-
ond DNN system DNN II using the new alignments. We repeat this
process until the performance gain from the realignments become
saturated. The standard 5k tri-gram language models are used for
the decoding. The WER results are listed in Table 1. As can be
seen, all DNN systems achieve significant gains over GMM-HMM
system, the performance gain from the realignments saturated until
the fourth system is trained and the best realigned DNN IV system
obtains 29.89% WER, which will be the baseline system we use for
the comparison with recurrent DNN system.

Then we build the proposed recurrent DNN-HMM systems. For
the comparisons, the alignments used to train all the recurrent DNN
system are the same as the DNN IV systems. We initialize recur-
rent DNN parameters as follows: for the feedforward layers, we just
copy the weights from the DNN trained after 5 epochs in DNN IV
systems (in our experiment, 15 ∼ 17 iterations are needed to reach
convergence. This is for speeding up the training, in the end, the
total epochs are almost the same); the recurrent parameters are ini-
tialized with randomization. We use 256 minibatch for SGD, and
0.004 for the initial learning rate. The learning rate scheduling and
stop criteria are the same as DNN training as described earlier. We
try 5 different setups in our recurrent DNN experiments: RDNN
system corresponds to the recurrent DNN with the recurrent units
at the 4th hidden layer from the input layer using standard mini-
batch BPTT. RDNN I∼IV systems correspond to the recurrent DNN
with the recurrent units at the 2nd, 3rd, 4th and 5th hidden layer
from the input layer using the introduced truncated minibatch BPTT
as described in Section 3.2. As shown in Table 2, with the stan-



Systems Conditions Avg.9dB 6dB 3dB 0dB -3dB -6dB
DNN IV 16.89 20.29 22.83 30.36 39.49 49.47 29.89
RDNN 17.26 20.29 22.83 30.21 38.67 48.98 29.71
RDNN I 15.92 18.59 21.41 28.28 35.81 47.23 27.87
RDNN II 15.95 18.49 20.87 27.89 36.65 46.35 27.70
RDNN III 16.22 18.49 21.24 28.04 36.26 46.46 27.79
RDNN IV 15.84 18.16 21.03 28.21 36.93 47.17 27.89

Table 2. WERs (%) of best DNN-HMM system and five recurrent
DNN-HMM systems trained on CHiME challenge multi-condition
data: RDNN system corresponds to the recurrent DNN with the re-
current units at 4th hidden layer using standard minibatch BPTT.
RDNN I∼IV systems correspond to the recurrent DNN with the re-
current units at 2nd, 3rd, 4th and 5th hidden layer from the input
layer using the introduced truncated BPTT as described in Section
3.2.

Systems Conditions Avg.9dB 6dB 3dB 0dB -3dB -6dB
DNN V 14.27 16.44 19.39 24.68 31.65 42.05 24.75
RDNN V 13.60 14.96 17.92 22.98 29.07 38.11 22.77

Table 3. WERs (%) of best DNN-HMM system and recurrent DNN-
HMM systems trained on CHiME challenge multi-condition data
with available stereo data.

dard minibatch BPTT, system RDNN only shows marginal WER
improvements over the baseline DNN system. While with the trun-
cated minibatch BPTT, all recurrent DNN systems significantly out-
perform the DNN systems in all conditions. This is very likely be-
cause the non-recurrent weights are copied from the DNN system
while the recurrent weights are randomly initialized. Thus the re-
current weights are less trained if not using the proposed approach.
Therefore, the truncated minibatch BPTT will be used through all
following recurrent DNN experiments. The best system with recur-
rent hidden layer at the 3rd layer obtain 27.70% WER, achieving the
state-of-the-art performance1 and 7.3% relative improvement over
our best DNN system. Furthermore, we observe no significant per-
formance difference between different setups of recurrent DNN, but
the system seems working best with the architecture where the recur-
rent layer is located at the middle of the DNN. Finally we conduct
the experiments on the dataset with the assumption that the stereo
data is available. We train the similar GMM-HMM system on the
clean speech data, and then using the alignments on clean data as
the label to train the DNN and recurrent DNN with similar setup
as described earlier. The experimental results are list in Table 3, as
can be seen that recurrent DNN also obtain consistent and significant
performance gain over the DNN system.

4.2. Experiments on Aurora-4

Aurora-4 is also a medium vocabulary task based on the WSJ0 cor-
pus. The training set contains both 8kHz and 16 kHz multi-condition
7137 utterances from 83 speakers. One half of the utterances were
recorded by the primary closed microphone and the other half were
recorded using one of secondary open microphones. Among the
whole training set, there are six different types of noise backgrounds,
street traffic, train station, car, babble, restaurant, airport at 10 ∼ 20

1The state-of-the-art system reported in [25] achieves 26.86% WER but
with discriminatively trained LM and MBR decoding. With the tri-gram
LMs, the best system reported by authors is 27.61%

Systems Conditions Avg.Clean Noise Channel Channel+Noise
GMM 8.28 13.83 17.84 29.24 20.32
DNN I 3.51 8.15 10.69 22.59 14.19
DNN II 3.34 7.48 10.09 21.76 13.49
DNN III 3.24 7.44 10.07 21.43 13.33

Table 4. WERs (%) of baseline GMM-HMM, and DNN-HMM sys-
tems on Aurora-4 data, DNN I∼III systems correspond to the itera-
tively retrained DNNs with the new alignments.

Systems Conditions Avg.Clean Noise Channel Channel+Noise
DNN III 3.34 7.44 10.07 21.43 13.33
RDNN I 3.27 7.30 9.15 20.67 12.88
RDNN II 3.06 7.26 9.10 20.44 12.74

Table 5. WERs (%) of best DNN-HMM system and two recur-
rent DNN-HMM systems trained on Aurora-4 multi-condition data:
RDNN I, II systems correspond to the recurrent DNN with the re-
current units at the 3rd and 4th hidden layer from the input layer.

dB SNR. The evaluation set is noisy and reverberated version of
WSJ0 5K NOV-92 which consists of 4620 utterances in 14 condi-
tions (330 × 14) and can be grouped into 4 subsets: clean, noisy,
clean with channel distortion, noisy with channel distortion.

We first build the baseline GMM-HMM system for the tasks,
2026 distinct tied-state GMMs are trained with MFCC features cou-
pled with their linear discriminant analysis (LDA) and maximum
likelihood linear transform (MLLT) on the 7137 multi-condition
speech utterances. For the DNN-HMM systems, the setup is similar
to the one in previous experiment: we first generatively pretrain
the DNN using RBMs, and stack them to initialize the DNN with
7 2048-dim hidden layers; With the alignments from GMM-HMM
systems, we trained the DNN I system using 40-dim log Mel filter-
bank features. Then we further do the realignments using trained
DNN I system and train the second DNN system with the new
alignments. Then this process is repeated until there are no further
significant improvements. The experimental results are shown in
Table 4. The best DNN III system achieves 13.33% average WER.
Following the same setup as described in the experiment on CHiME
challenge data, we build two recurrent DNN systems on top of DNN
III system, namely RDNN I and II systems which correspond to the
recurrent DNN with the recurrent units at the 3rd and 4th hidden
layer from the input layer. As shown in Table 5, both recurrent
DNN system outperform the DNN III system in all conditions. The
RDNN II system achieves 0.59% absolute improvements over our
best DNN system.

5. CONCLUSIONS

In this work, we propose recurrent DNNs for robust acoustic mod-
eling. A new BPTT algorithm is introduced to make the minibatch
SGD on the proposed recurrent DNNs more efficient and effective.
We evaluate the proposed recurrent DNN architecture under the hy-
brid setup on both 2nd CHiME challenge (track 2) and Aurora-4
tasks. The experimental results on the CHiME challenge data show
that we can obtain consistent 7% relative WER improvements over
DNN systems, achieving the state-of-the-art performance without
front-end preprocessing, speaker adaptive training or multiple de-
coding passes. On the Aurora-4, the proposed system obtains 4%
relative WER improvement over a strong DNN baseline system.
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