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Abstract—We1 propose two methods for the detection
of RF interference. The first one is for the detection of
the interferences from microwave ovens, and the second
one is for Wi-Fi and Bluetooth signals. The motivation
of this work is to design a system for reliable wireless
communication. Specifically, the systems equipped with in-
terference detectors will be able to choose the appropriate
time intervals to transmit signals in the presence of other
interferences, therefore avoid unnecessary collisions and
retransmissions.

Index Terms—Bluetooth, hidden Markov model, mi-
crowave Oven, RF interference, signal classification, spec-
trogram, Wi-Fi.

I. INTRODUCTION

There are a large number of devices operating on the
industrial, scientific and medical (ISM) radio bands. To
avoid collisions and wasting time on retransmissions,
the system should be able to sense the spectrum for
possible interferences and exploit the spectrum in an
intelligent way. The first step toward achieving this
objective is to detect and classify the interference present
in the environment, which is the focus of this work. We
note also that we seek low-complexity algorithms for
our interference classification task as we envision these
algorithms will operate on resource constrained wireless
local area network (WLAN) hardware.

There is a large number of existing works related to
the classification of wireless interferences. Some com-
mercial systems include Spectrum XT [1], AirMaestro
[2], and CleanAir [3]. These solutions utilize special cus-
tomized hardware together with sophisticated software to
detect interference. Many signal classification works deal
with the classification of modulation type, e.g., AM, FM,
QPSK, BPSK, FSK and MSK. Cyclostationary spectrum

1Zhiyuan Weng’s work was done while he was an intern in MERL.

detection is the most common method for modulation de-
tection and classification [4], [5]. Additionally, moments-
based algorithms have been explored for modulation
detection [6], [7]. The use of neural networks with tra-
ditional methods has also been proposed [8], [9]. Works
that are closely related to this paper include [10]–[12].
In [10], the authors study the impact of interferences
from Wi-Fi and microwave ovens (MWO) on wireless
sensor networks. They use spectral signatures to identify
the interferers. Since they have multiple sensors in the
network, it is possible to measure the spectrum power on
several different channels. Then the correlation between
channels is exploited for interference detection. In [12],
AirShark, a system that detects multiple non-Wi-Fi RF
devices, is proposed. The authors use a commercial Wi-
Fi card for the detection. However, its classification
target set is very large. They extract a set of generic
features, which include frequency, bandwidth, spectral
signature, duty cycle, pulse signature, inter-pulse timing
signature, pulse spread and device specific features like
sweeps. Then a decision tree-based mechanism has been
developed. The performance of the system is claimed to
be comparable to that of commercial signal analyzers.

In this work, we focus on the development of simple
yet efficient algorithms. We only assume that the system
is equipped with a simple spectrum analyzer, like the
on-chip spectrum analyzer embedded in the Atheros
AR9280 chip. The resolution of the spectrum analyzer is
less than 128 frequency bins. Also, we confine ourselves
to simple algorithms that do not involve heavy compu-
tation. The classification set includes Wi-Fi, Bluetooth,
MWO interference and noise as these are the most
common interference sources. We process the data on
the spectrogram. Although it is equally possible to do
detection on time domain using the IQ baseband time
series, we believe that it is easier for both human beings



and machines to distinguish different interferences by the
look of the signals on the spectrogram. To detect MWO
interference, we use its 60Hz periodicity feature, which
is the most distinguishing feature. The exact shapes
of the signals on the spectrogram may vary depending
on the maker, the model and the power of the MWO.
However, the 60Hz periodicity does not change as long
as the frequency of the AC power does not change. We
introduce another method to detect Wi-Fi or Bluetooth
signals, using the fact that they have different bandwidth-
s. Wi-Fi signals are wideband (20MHz or 40MHz) and
Bluetooth signals are narrowband (1MHz). Specifically,
we use templates to measure the bandwidth of the
signals. By doing so, we can reduce the high-dimensional
space down to a two-dimensional space. Then we use
Hidden Markov Model (HMM) to model the sequence.
The Expectation Maximization (EM) algorithm is used
to learn the parameters of the HMM. After the HMM
is learned, we can use the model to classify Wi-Fi and
Bluetooth signals.

The paper is organized as follows. In Section 2,
we introduce the algorithm for the detection of MWO
interferences. In Section 3, we discuss a method for the
classification of Wi-Fi and Bluetooth signals. In Section
4, we present our experimental results. We conclude our
work in Section 5.

II. CLASSIFICATION OF MICROWAVE OVEN

INTERFERENCE

Radiation leakage from commercial MWOs is one of
the most significant interference sources in the 2.4GHz
spectrum. A typical spectrogram of MWO interference is
shown in Fig. 1, where red and green color indicate large
and small amplitude, respectively. The two curved lines
pointed to by blue arrows are the MWO interferences.
The challenging part is that the frequencies, the shapes
and the duty cycles all depend on the make and the model
of the MWO. The only two features that are invariant
with respect to different models are the 60Hz periodicity
and the narrowband property. Note that some references
might describe MWO interference as wideband. It de-
pends on how we look at them. It is called wideband
because the signature on the spectrogram sweeps over a
wide spectrum. However, if we look at a specific slice on
the spectrogram, it occupies narrow space. There are also
”transients” at the beginning and end of each frequency
sweep which tend to be much wider band, however,
we chose to focus on the detection of the narrowband
sweep portion of the MWO signal. The periodicity of
60Hz is due to the frequency of the AC power. We use

the two features to detect MWO interferences. Basically,
our algorithm checks whether there is a narrowband
signature that appears periodically with the frequency
of 60Hz.

Fig. 1. A typical MWO spectrogram.

A. Proposed algorithm

In this subsection, we describe our algorithm in detail.
It consists of two parts. In the first part, we calculate a
value that reflects the bandwidth of the signal. In the
second part, we check if similar patterns appear with the
frequency of 60Hz. The steps of the algorithm are as
follows.

• Step 1: Take a J-sample subsequence from every
M -samples, where M determines how often we
sense the spectrum. Then we calculate the FFT
of the subsequence. Denote the magnitude of the
FFT samples by |Zj,n| the j-th element of the n-th
FFT vector generated by the n-th subsequence. We
normalize Zj,n by the sum:

Xj,n = |Zj,n|/
( J∑
l=1

|Zl,n|
)
. (1)

The first step is summarized in Fig. 2.
• Step 2: We calculate y(n) from Xj,n as follows:

y(n) =

J∑
j=1

(Xj,n −Xthreshold)+ (2)

where operator (x)+ is defined as

(x)+ =

{
x x > 0

0 x ≤ 0
. (3)

For example, in Fig. 3, the value of y(n) is equal
to the length of the dashed line segments summed



together. The value of y(n) tells us how narrow
the bandwidth is. To see this, note that the slice is
normalized. If the bandwidth is wide, it spreads out
and the values become smaller after normalization.
Few of them would be larger than a threshold. On
the other hand, if it is narrowband, the values are
concentrated. Some of the bins would be larger than
the threshold after normalization. Therefore, it is not
difficult to see that the larger the value, the narrower
the signal is.

• Step 3: We calculate auto-correlation of the se-
quence y(n) as,

r(n) = E[y(m)y(m+ n)]. (4)

• Step 4: We check the position of the maximum
value of r(n), of course, r(n) will have its max-
imum value at r(0). However, since r(n) derived
from a cyclostationary process we expect that it
is also periodic when MWO intference is present
in the measurement data. Thus we need only look
for a maximum in specific interval, say [a, b] that
includes the location of the expected maximum, and
since r(n) is periodic we need to exclude the peaks
at r(0) and higher order harmonics. We check if
a maximum value appears between interval [a, b],
where [a, b] itself is contained within an interval
[n1, n2] which excludes higher order harmonics.
The intervals are shown in Fig. 4. If the peak lies
in [a, b], we decide it is MWO interference, The
computation of the expected period depends on the
frequency of the AC power and the value of M and
is discussed in further detail below.

M

J points J points J points

FFT & normalize

X j , n−1 X j , n X j , n+11⩽ j⩽ J

IQ signal

Fig. 2. Extraction of IQ sequence.

B. Choices of parameters

In this subsection, we discuss how to choose the
appropriate values for the parameters in the algorithm.

1) Determine the threshold Xthreshold: It is obvious
that the range of y(n) is from 0 to 1. Ideally we would
like y(n) to be the value that can help us to differentiate

Fig. 3. Calculation of y(n).

Fig. 4. Check the location of the peak of r(n).

different bandwidth signals. Naturally we would like
y(n) to be zero when there is only noise and Wi-Fi traffic
on the channel. We can see that the larger the Xthreshold,
the more likely that y(n) becomes zero. On the other
hand, we shall also make y(n) large when narrowband
signals appear. In the noise-only or WLAN traffic case,
it is unlikely that the normalized FFT values Xj,n have
a large peak. If we assume that the Xj,n is uniformly
distributed on [0, umax] when no MWO interference is
present, we can derive the distribution of y(n). Note
that the value of umax does not affect the distribution
since there is a normalization step. The distribution of the
statistics y(n) is equivalent to the probability of covering
a circle with random arcs [13], which can be expressed
as

P (y < Y ) =1−
J∑

l=1

l−1∑
k=0

(−1)k+l+1

(
J

l

)(
l − 1
k

)(
J − 1
k

)
· Y k(1− lXthreshold − Y )J−k−1

+ . (5)

We would like to emphasize that for noise-only case,
the value of y(n) does not depend on the power of the
noise due to the normalization effect. The above analysis
applies to noise-only cases. If there is interference, the
effect of the threshold depends on the signal to noise
ratio (SNR). In the higher SNR, we can expect y(n) be
able to correctly reflect the bandwidth of the interference.
However, at lower SNRs, the interference, even if it is
narrowband, is likely to be buried in the noise, which



makes y(n) close to zero. Therefore, it is difficult to
determine the threshold based on SNR.

The calculation of y(n) itself can be viewed as a
detection problem, with the output being soft values.
If we make decision by comparing the threshold and
the value of y(n), it becomes a standard hypothesis
testing problem. In hypothesis testing, if the probability
of detection is hard to derive, one can simply choose the
threshold according to the false alarm ratio. Similarly in
our problem, we can select Xthreshold simply based on the
noise-only case by using (5).

In Fig. 5, we plot the cumulative distribution function
(CDF) of y(n) in noise-only case as expressed in (5) for
J = 64 with different values of Xthreshold. We can see
that when Xthreshold ≥ 0.1, y(n) would be very close to
zero with high probability.

Fig. 5. CDF of y for different values of Xthreshold.

2) Determine the intervals [a, b] and [n1, n2]: The
periodicity of the MWO interferences is due to the AC
power. Given the frequency of the AC power fac, we can
calculate the period of the MWO interference, say T0,
in terms of samples as follows:

T0 =
fs

fac
· 1

M
. (6)

Note that T0 is not necessary an integer. We shall
choose integer values of a, b such that T0 lies between
[a, b]. Also we know that r(0) must be the maximum,
which we should exclude in the range. We should also
exclude r(2T0) since any integer multiple of T0 also
corresponds to a peak in r(n). The purpose of interval
[n1, n2] is to exclude both r(2T0) and r(0).

III. CLASSIFICATION OF WI-FI AND BLUETOOTH

In this section, we introduce an algorithm to detect
Wi-Fi and Bluetooth signals. The main feature we use
for Wi-Fi and Bluetooth classification is the bandwidth

information. In the left subfigure in Fig. 7, both Wi-Fi
and Bluetooth signals are present. We can see that the
major difference is that the bandwidth of Wi-Fi signals
is wider than that of Bluetooth signals. Obviously we
should use the difference in bandwidth to classify the
two signals. This is the motivation for the preprocessing.

A. Preprocessing

To extract the bandwidth information, we use two
templates to filter the spectrogram. One is for Wi-Fi
signals; the other is for Bluetooth signals. The shape
of the templates is shown in Fig. 6. We use three
parameters E,W , and L to specify each template. The
underlying principle is similar to matched filters used in
communication receivers. When the same shape appears,
the response to the filter reaches a peak. The parameter,
L, is the length in time domain. L should be larger
than the minimum length of the signal we expect on
the spectrogram. The same rule applies for E and W .
The number of -1s, E, controls how thin the mainlobe
of the template response is. The more -1s you put on
the edge of the template, the thinner the shape of the
response. The effects of the filtering on the filtered
spectrogram can be seen in Fig. 7. The first left figure
is the original spectrogram. The second left one is the
filtered spectrogram by the template for Wi-Fi signal.
The second right one is the filtered spectrogram by
Bluetooth template.
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Fig. 6. Illustration of the template and filtering.

B. Dimensionality reduction

Before we reduce the dimensions, our state space has
J dimensions. However, we do not care about what
happens on a particular frequency bin. We care about
what happens on a particular timeslot. Therefore, we can
take the maximum value in each time slot for the two
filtered spectrograms. By doing so, we effectively reduce
J dimensions to two dimensions. This can be seen in the
right subfigure in Fig.7.



Fig. 7. The effect of 2D filtering and dimension reduction.

C. Hidden Markov Model

A hidden Markov model (HMM) is a statistical
Markov model in which the system is assumed to have
the Markov property with hidden states [14]. Denote
by st and yt the unknown state of the system and the
observation, respectively, at time t. Note that, yt depends
only on st, and st depends on st−1. In our model,
st ∈ {S1, S2, S3}, where S1,S2, and S3, respectively,
stand for noise, Wi-Fi, and Bluetooth. Given the se-
quence of observation y0,y1, · · · ,yT , we would like to
infer the states of the system s0, s1, · · · , sT . In our case,
yt ∈ R2. The probabilistic graph can be represented
in Fig. 8. The dependency between states is given by

sn−1 sn sn+1sn−1

yn−1 yn yn+1

... ...

Fig. 8. The probabilistic graph for hidden Markov model.

P (sn = Sj |sn−1 = Si) = aij , for i, j ∈ {1, 2, 3}. A
matrix A with its elements (ai,j) is called a transition
matrix. We assume that noise is Gaussian, i.e., the
dependency between st and yt is given by

p(yt|st = Si) =

1√
(2π)2|Σi|

exp

(
−1

2
(yt − µi)

TΣ−1
i (yt − µi)

)
(7)

where µi and Σi are the mean and the covariance
matrix of the normal distribution associated with state Si.
The hidden Markov model has the following parameters
(1) The transition matrix A. (2) The mean µi and the
covariance matrix Σi for i ∈ {1, 2, 3}. (3) The prior for

each state P (Si) for i ∈ {1, 2, 3}. Given a dataset, these
parameters can be trained using the Expectation Maxi-
mization (EM) algorithm. After the model is trained, we
can use the trained model to classify a given sequence.

IV. EXPERIMENT

In our experiment, we collect wireless signal using a
special device and then process the data on computers.
We use a ThinkRF WSA4000 receiver to collect IQ
baseband signals at the MERL office. Although it can
sample the signal at a rate up to 125MHz, we only
use 20.83MHz2 sampling rate to make it consistent with
the device on which we would be implementing the
algorithms. The center frequency is set to be 2.437GHz,
which is the center of Channel 6 according to IEEE
802.11b/g/n standard.

A. Detection of MWO interference

We placed the WSA4000 receiver at an office that was
approximately 10 meters from a commercial MWO. We
collected 1154 sequences a total of 53 had MWO inter-
ference present. Note that Wi-Fi signals are commonly
present due to the office environment. Therefore, most
of the time we are in fact detecting MWO signatures
buried in Wi-Fi signals rather than in pure noises. Each
sequence has 4.096 × 106 samples, duration of 0.1966
seconds.

We have tested various values of M =
640, 1280, 1920 and 2560. Let Xthreshold = 0.1,
J = 64. Using (6), we have obtained the period T0
for each values of M . Based on the values of T0, we
selected the corresponding n1, n2, a, and b that give
the best performance. For all the cases, the probability
of detection (PD) and the false alarm ratio (FA) are
shown in Table 1. We can see that the performance is
insensitive to value of M . We still achieve reasonalbe
performance for as large as M = 2560.

B. Detection of Wi-Fi and Bluetooth signals

As noted previously, Wi-Fi signals are always in the
air. To generate Bluetooth signals, we have streamed
music between two bluetooth devices. We placed the
interferer and the receiver at two corners of an office
room, where we collected 40 sequences for training. We
use the following parameters for the templates: L=45,
W=40, E=2, for Wi-Fi signals; L=45, W=6, E=1, for
Bluetooth signals. We have reduced the dimensions to
two and plotted them on the plane as shown in Fig.
9. Afterwards, we used the EM algorithm to train the

2We set the decimation rate to be six.



Fig. 10. The result of the classification.

M 640 1280 1920 2560
T0 542.53 271.26 180.84 135.63
n1 100 50 50 30
n2 700 500 300 230
a 540 265 178 133
b 545 276 183 138

PD 48/53 48/53 47/53 47/53
FA 24/1154 33/1154 30/1154 30/1154

TABLE I
THE RESULT OF THE DETECTION OF MWO INTERFERENCES FOR

DIFFERENT VALUES OF M .

HMM. We have plotted µi and Γi in Fig. 9 as well.
We can see that those points can be roughly divided
into three clusters. Also, for HMM, the dependencies
between two consecutive states have been considered.

Fig. 9. The training result of the HMM.

After the model has been trained, we can use the
trained model to classify signals. Fig. 10 shows the
classification result of a specific data sequence. The
subfigure on the right is the spectrogram of a collected

data sequence. The one on the left is the classification
result. X axis is the probability of the state, and Y axis
is time. Red line indicates Bluetooth signals; Cyan line
indicates the Wi-Fi signals; Black line indicates noises.
The two subfigures are aligned in time domain, so that
we can easily compare the result. We can see that Wi-Fi
and Bluetooth signals are correctly classified.

V. CONCLUSION

We have proposed two algorithms. The first algo-
rithm is for the detection of MWO interference. The
features we exploit are the narrowband width and the
periodicity. The second algorithm is used to detect Wi-
Fi and Bluetooth signals. We differentiate them by their
bandwidths and smooth the result using the hidden
Markov model. We have shown that they work well for
real data collected in the office building.
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