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Ripple Design of LT Codes for BIAWGN Channels
Jesper H. Sørensen, Toshiaki Koike-Akino, Philip Orlik, Jan Østergaard, and Petar Popovski

Abstract—This paper presents a novel framework, which
enables a design of rateless codes for binary input additive
white Gaussian noise (BIAWGN) channels, using the ripple-based
approach known from the works for the binary erasure channel
(BEC). We reveal that several aspects of the analytical results
from the BEC also hold in BIAWGN channels. The presented
framework is applied in a code design example, which shows
promising results compared to existing work. In particular it
shows a great robustness towards variations in the signal-to-noise
power ratio (SNR), contrary to existing codes.

Index Terms—

I. INTRODUCTION

LUBY-TRANSFORM (LT) codes [1] were the first practi-

cal examples of a rateless erasure correcting code which

approaches capacity for increasing message length, k. Such

rateless codes may potentially generate an infinite amount of

encoded symbols. For the BEC channel, decoding is possible

when n = (1 + ǫ)k encoded symbols have been received,

where ǫ approaches zero for increasing message length. An

important element in the design of LT codes for the binary

erasure channel (BEC) is a parameter called the ripple. The

performance depends significantly on how this parameter

evolves during decoding, and thus successful designs have

mostly focused on this parameter, and the heuristics around

it. Although LT codes were originally developed for the BEC,

several works have tried to extend the field of applications for

these codes, including [2]–[6].

Design of Raptor codes, which concatenate an LT code and

a fixed rate error correcting code, for the binary symmetric

channel (BSC) and binary-input additive white Gaussian noise

(BIAWGN) channel is studied in [2]. This design is based

on the Gaussian approximation method [3], which is used

to derive constraints for the degree distribution of the LT

code. In [4], [5], approaches based on extrinsic information

transfer (EXIT) charts are applied to the design of LT and

Raptor codes, respectively. Another design of Raptor codes

for arbitrary symmetric channels is presented in [6], where

an analogue to the ripple is defined as the increase in correct

bit estimates in a given decoding round. The design is based

on finding an optimal value for this measure. Other classes
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of rateless codes based on low density parity check (LDPC)

codes and turbo codes are presented in [7]–[9]. In [7] a rateless

code is designed for the BIAWGN channel through random,

potentially infinite, sampling of the encoded bits of a non-

binary LDPC code. In [9] the rateless property is achieved

through copying and permuting an LDPC code. Puncturing is

used to achieve more accurate rate compatibility. The work

in [8] presents a rateless code based on a potentially infinite

bank of interleavers at the output of a turbo code.

The contribution of this work is two-fold. The first con-

tribution is a derivation of a novel framework of LT codes

in the BIAWGN channel. Interestingly, we verify that key

analytical results presented in [1] for the BEC also hold in the

BIAWGN channel with some new interpretations. The second

contribution is a development of a new design methodology

of LT codes for the BIAWGN channels by making use of our

framework. The proposed framework enables us to design LT

codes by using a ripple-based approach, which was originally

applied for the BEC. This enables a simpler and more efficient

design due to the tractability of the BEC compared to noisy

channels. This is reminiscent of surrogate designs of LDPC

codes [10], in which a noisy channel is modeled as an

equivalent erasure channel, where equivalence is with respect

to e.g. capacity. Using the equivalent model, it is possible

to design the LDPC codes as if intended for application

in an erasure channel. The design approach applies density

evolution, which simplifies greatly in the case of BEC. As in

this work, the result is a more tractable design procedure.

The design proposed in this work operates in the binary

field, contrary to [7], thus these works are significantly differ-

ent in terms of complexity. Contrary to [9], the codes proposed

in this work are suitable for low and moderate sized message

lengths. Like for [7] and [9], the work in [8] differs from this

work in the class of codes applied in the rateless scheme. The

works presented in [2]–[6] all consider LT codes, either as

part of a Raptor code or solely, as is the case in this work.

However, this work carries considerable novelty in the design

approach.

The work presented in this paper is an extension of the

work in [11]. The framework is applied in a new way, which

proves to perform significantly better. This is verified through

more extensive numerical evaluations and comparisons with

state-of-the-art solutions.

The remainder of this paper is organized as follows. A

description of the system model and an introduction to LT

codes and their decoding are given in section II. Section III

presents the framework for ripple-based designs in BIAWGN

channels. An example of a design applying the presented

framework is given in section IV. Numerical evaluations are

presented in section V followed by conclusions in section VI.

0090-6778/13$31.00 c© 2013 IEEE
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II. BACKGROUND

In this section the system model is introduced along with a

description of LT codes and their decoding.

A. System Model

We consider a single link communication channel with

binary input and additive white Gaussian noise (BIAWGN).

This channel is used to transmit a message of length k,

XXX = [X1, X2, ..., Xk], Xi ∈ {0, 1}, from node A to node

B. This message is encoded using an LT code producing a

codeword of length n, XXX ′ = [X ′
1, X

′
2, ..., X

′
n], X

′
i ∈ {−1, 1},

where n is potentially infinite. The signal-to-noise power

ratio (SNR), γ, is defined as Es/N0, where Es is energy

per transmitted symbol and N0 is the noise spectral density.

During the transmission of the encoded message, γ is assumed

to be constant and known at both transmitter and receiver.

Hence, for each real-valued binary channel input X ′
i , we have

the output

Yi = X ′
i +Ni, (1)

where Ni ∼ N (0, N0/2), with N (·) being the normal distri-

bution.

Knowledge of γ is necessary at the receiver, since it has

been shown that no single LT code is universally capacity

approaching in noisy channels [2]. By universally, we mean

independent of the channel parameter, which in the case of BI-

AWGN is the SNR. Hence, optimizing the degree distribution

requires knowledge of γ. One could argue that with knowledge

of γ, the transmitter can just adapt the modulation and coding

scheme instead of using a rateless code. However, in practice,

only an estimate will be available, which means a non-zero

probability of error still exists. Retransmission mechanisms

must then potentially be invoked, which has a large impact on

throughput and delay. In this work we optimize for γ in the

design of the LT code, but we also show that the proposed

code design is very robust towards estimation errors. Degree

distributions can be found, which perform close to optimally

across a wide range of SNRs, thus softening the requirement

of SNR knowledge at the transmitter.

B. LT Codes

The transmitting message XXX = [X1, X2, ..., Xk] are re-

ferred to as input symbols. From these input symbols a

potentially infinite amount of encoded symbols, also called

output symbols, are generated. Output symbols are exclusive-

or (XOR) combinations of input symbols. The number of input

symbols used in the XOR is referred to as the degree of the

output symbol, and all input symbols contained in an output

symbol are called neighbors of the output symbol. The output

symbols of an encoder follow a certain degree distribution, Ω,

where Ω(d), d = 1, 2, ..., k is the probability that an output

symbol has degree d. The degree distribution is a key element

in the design of good LT codes. The encoding process of an

LT code can be broken down into three steps:

1) Randomly choose a degree d by sampling Ω(d).
2) Choose uniformly at random d of the k input symbols.

3) Perform bitwise XOR of the d chosen input symbols.

The resulting symbol is the output symbol.

Input symbols

Output symbols X5́X4

X4

´X3

X3

´X2

X2

´X1

X1

´

mo,i
l

mi,o
l

Fig. 1. Graphical representation of an LT code.

This process can be iterated as many times as needed, which

results in a rateless code. The terms degree and neighbors

originate from bipartite graphs, which are often used to

visualize a code. In Fig. 1, an example of LT codes is shown,

where the upper nodes represent input symbols and lower

nodes represent output symbols. An edge between two nodes

indicates that they are neighbors, and the number of edges

emanating from a node is the degree of the corresponding

symbol.

A widely used decoder for LT codes is the belief propaga-

tion (BP) decoder, which is the focus of this work. Depending

on the channel, the BP decoder can be implemented in

different variants with different structural and computational

complexities. The following subsections describe the cases of

the BEC and BIAWGN channels.

C. Decoding for BEC

In the BEC, only non-erased symbols are included in the

decoding, which means all output symbols in the decoder

are completely reliable. This makes it possible to apply the

BP decoder in a quite simplistic form, since it implies that

the decoder can merely perform the logical XOR operations

inversely from the encoding process.

Initially, all degree-1 output symbols are identified and

their neighboring input symbols, which are identical to the

output symbols, are moved to a storage referred to as the

ripple. Symbols in the ripple are processed one by one; more

specifically they are XOR’ed with all output symbols who

have them as neighbors. Once a symbol has been processed, it

is removed from the ripple and considered decoded. In terms

of the graphical representation in Fig. 1, this is visualized

by removing all edges emanating from the processed input

symbol, except the edge connecting it with the output symbol,

which revealed its value. This will potentially reduce some of

the output symbols to degree one, in which case the values of

their neighboring input symbols are revealed. This is called

a symbol release. Among these input symbols, some may

already be revealed in the ripple, in which case the released

symbol is redundant. Those who are not already in the ripple,

are added to the ripple. This makes it possible for the decoder

to process symbols in a successive fashion. This variant of the

BP decoder can be formalized in two steps:

1) Identify all degree-1 symbols and add the neighboring

input symbols to the ripple.

2) Process a symbol from the ripple and remove it. Go to

step 1.
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Decoding is successful when all input symbols have been

recovered, i.e., all input symbols have at least one neighbor

with degree one. If the ripple size becomes zero, at any point

before this, decoding has failed. The receiver then either no-

tifies a decoding failure, or waits for more output symbols. In

the latter case, before continuing decoding, already processed

symbols are reprocessed. After this, if one of the new output

symbols has degree one, the decoding process is restarted.

Decoding progress is parameterized by L, the number of re-

maining unprocessed input symbols. The number of processed

input symbols is k − L. The ripple size after the k − L’th

decoding step is denoted R(L) and the number of releases in

the k − L’th decoding step is denoted Q(L). The number of

these, which are added to the ripple, is denoted A(L).

D. Decoding for BIAWGN Channels

In a BIAWGN channel, all received output symbols are

included in the decoding but with varying reliability due

to the noisy channel. BP decoding in this case consists of

passing messages between neighboring symbols, i.e., from

output symbols to input symbols or vice versa. Such a message

reflects the current belief of the sender on the value of an input

symbol. The belief is quantified by the log-likelihood ratio

(LLR), defined as ln
(

Pr(Xi=1|Y )
Pr(Xi=0|Y )

)

, where Xi is the value of

binary input symbol i to an AWGN channel with output Y . Y
is the vector of received output symbols of potentially infinite

length. The value of output symbol o is denoted Yo. The ℓ-th
round of the BP decoder starts with all input symbols passing

a message, mℓ
i,o to all their neighboring output symbols. Based

on those messages, the output symbols pass a message, mℓ
o,i,

back to all their neighboring input symbols. These rounds

continue until a specified stopping criterion has been reached,

e.g., a certain number of rounds or a target bit error probability.

The message values are calculated as follows [2]:

mℓ
i,o =

∑

o′ 6=o

mℓ−1
o′,i ,

mℓ
o,i = 2 arctanh

(

tanh

(

Zo

2

)

·
∏

i′ 6=i

tanh

(

mℓ
i′,o

2

)

)

, (2)

where Zo is the LLR of output symbol o based on the received

signal Y . The product (sum) is taken over all neighboring

input (output) symbols other than the message recipient i (o)

itself. If the maximum number of decoding rounds is reached,

without achieving the desired error probability, decoding is

considered failed. As in the case of the BEC, either a failure

is notified or more output symbols are collected.

Note that in this version of the BP algorithm, the graph

representing the code is not reduced by removing edges, as

was the case in the BEC. Instead the messages mℓ
i,o and

mℓ
o,i are passed along the edges until the specified stopping

criterion, see Fig. 1. The apparent differences between the two

versions of the BP decoder have resulted in different directions

of the research efforts in this area for the BEC and AWGN

channels. In the BEC, design strategies have largely evolved

around controlling the ripple parameter, where a successful

design provides a non-zero ripple with high probability during

the decoding process [12]–[16]. It is not immediately clear

how such design strategies extend to AWGN channels, since

the definition of the ripple is tightly connected to the BEC-

specific decoding algorithm. As a result, existing work on LT

codes for AWGN channels leverages on techniques developed

for other iteratively decodable codes. Examples are Gaussian

approximation and EXIT chart methods [2]–[5].

We show in the following section that by considering a

BP decoder using random serial scheduling it is possible to

generalize the key decoder parameters, L, R(L), Q(L), and

A(L), from the BEC to the BIAWGN channel. This makes it

possible to apply known design strategies to solve the problem

of designing LT codes for a BIAWGN channel.

III. ANALYSIS OF SERIAL SCHEDULING

We consider the BP decoder described in section II-D, with

a slight modification. Instead of letting all input symbols pass

a new message in a round, we allow only one randomly

chosen input symbol to do so. All other input symbols pass

the message they passed in the previous round. This modified

BP decoder is expressed as

mℓ
i,o =







∑

o′ 6=o

mℓ−1
o′,i , if i is allowed to pass,

mℓ−1
i,o , if i is not allowed to pass,

mℓ
o,i = 2 arctanh

(

tanh

(

Zo

2

)

·
∏

i′ 6=i

tanh

(

mℓ
i′,o

2

)

)

. (3)

This modification is known as random serial scheduling

[17] or shuffled belief propagation [18]. Serial scheduling

in BP decoders has been shown to converge faster than

their parallel counterparts [17]–[19], without sacrificing error

performance [18]. We consider this decoder solely for the

purpose of the analysis. Note that any code designed by this

analysis can also be decoded by the traditional BP decoder

using a standard scheduling.

A. Novel Framework

We introduce a slight abuse of notation, by defining H(Zℓ
i )

as the entropy of input symbol i after ℓ decoding rounds. Note

that Zℓ
i is the log-likelihood ratio of input symbol i after ℓ

decoding rounds, and is therefore not stochastic. Hence, H(·)
is a mapping from the log-likelihood domain to the entropy

domain, contrary to traditional notation. H(Zℓ
i ) is calculated

as follows:

H(Zℓ
i ) = −

∑

x∈{0,1}

Pr(Xi = x|Y ) log2
(

Pr(Xi = x|Y )
)

,

Pr(Xi = 1|Y ) =
exp(Zℓ

i )

1 + exp(Zℓ
i )
,

Pr(Xi = 0|Y ) = 1− Pr(Xi = 1|Y ),

Zℓ
i =

∑

o

mℓ
o,i. (4)

When an input symbol passes a new message to its

neighbors, we refer to the information it holds as processed

information. After the ℓ-th decoding round, the processed
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information, IℓP , is defined as the total amount of information

passed from input symbols to output symbols. It is given as

IℓP =

k
∑

i=1

(

1−H
(

Zℓ′

i

))

, Zℓ′

i =

∑

om
ℓ
i,o

d− 1
, (5)

where H
(

Zℓ′

i

)

should be interpreted as the entropy of input

symbol i at the point of its last message passsing. Directly

following from (5), we have the definition of unprocessed

information, IℓL =
∑k

i=1 H
(

Zℓ′

i

)

.

When deciding which input symbol should be allowed to

pass a new message, a uniform random selection is performed

among the input symbols, which hold information not yet

passed to its neighbors. We say that these candidates contribute

to the information ripple. The information ripple, IℓR, after

the ℓ-th decoding round, is defined as the total amount of

information, held by the input symbols which have not yet

been passed to the output symbols. We have

IℓR =

k
∑

i=1

H
(

Zℓ′

i

)

−H
(

Zℓ
i

)

. (6)

After the input symbol has passed its message, the output

symbols obtain a chance to pass messages back to their

neighboring input symbols. Only output symbols, which are

neighbors to the last message passing input symbol, have new

information to pass. This new information is referred to as

released information, denoted by IℓQ. It is expressed as

IℓQ =

k
∑

i=1

(

H
(

Zℓ′

i

)

−H
(

Zℓ′+
i

))

,

Zℓ′+
i = Zℓ′

i +
∑

o

(

mℓ
o,i −mℓ−1

o,i

)

, (7)

where H
(

Zℓ′+
i

)

should be interpreted as the entropy of

input symbol i, when newly released information is taken into

account.

Here, IℓQ is defined by H
(

Zℓ′

i

)

as reference, which is the

information known by the output symbols. Hence, IℓQ can be

regarded as the amount of new information passed to the input

symbols, as seen from an output symbol perspective. In fact,

this is not the true amount of new information since it might

be combined with information in the ripple. For this case,

the actual reference is H(Zℓ−1
i ) and we can define the actual

amount of information added to the ripple, IℓA, as follows:

IℓA =

k
∑

i=1

(

H(Zℓ−1
i )−H

(

Zℓ−1
i +

∑

o

(

mℓ
o,i −mℓ−1

o,i

)

)

)

=

k
∑

i=1

(

H
(

Zℓ−1
i

)

−H
(

Zℓ
i

))

. (8)

In general, there is a strong relation between the quantities

in (4) through (8) and the parameters defined in section II-C

for the BEC decoder. They are essentially information based

continuous counterparts of the discrete symbol based versions

from the BEC. Table I lists an overview of the analogies.

The contributions from a single input symbol to the BI-

AWGN parameters are illustrated in Fig. 2, where the entropy

I
ℓ−1

P = I
ℓ
P

I
ℓ
Q

I
ℓ−1

R

I
ℓ
A

I
ℓ
R I

ℓ−1

L = I
ℓ
L

0 1 2 3 4 5 6 7 8
0

H
(

Z
ℓ
i

)

H
(

Z
ℓ−1

i

)

H

(

Z
ℓ′+
i

)

H

(

Z
ℓ′

i

)

1

LLR

Fig. 2. Entropy as a function of LLR for an input symbol i. The contribution
to the defined quantities are annotated, assuming that the symbol has not
passed a new message, but received new information from its neighbors.

TABLE I
ANALOGIES BETWEEN BEC PARAMETERS AND BIAWGN PARAMETERS.

BEC BIAWGN

L: The number of unprocessed
input symbols

Iℓ
L

: The amount of unprocessed
information among input
symbols after ℓ decoding
rounds

Q(L): The number of released sym-
bols in the k−L’th decoding
step

IℓQ: The amount of released in-
formation in the ℓ’th decod-
ing round

A(L): The number of symbols
added to the ripple in the
k − L’th decoding step

IℓA: The amount of information
added to the ripple in the ℓ’th
decoding round

R(L): The size, in symbols, of the
ripple after k − L decoding
steps

IℓR: The size of the informa-
tion ripple after ℓ decoding
rounds

of a single input symbol has been plotted as a function of its

LLR. Due to the convexity of the entropy function (except at

very low LLR), we have IℓA < IℓQ when Iℓ−1
R > 0, which

indicates loss of information. This is analogous to the risk of

redundancy for nonzero ripple in the BEC.

B. First Moment of Information Ripple

One particularly interesting quantity in a ripple-based de-

sign is the expected amount of released information from an

output symbol of degree d as a function of the amount of

unprocessed information. This is key since it expresses the

universal connection between the degree distribution, which

is the design parameter, and the rate of recovery of new

information during the decoding process. It was derived in

[1] for the BEC and is repeated below for convenience of

further discussion.

q(1, k) = 1,

q(d, L) =
d(d− 1)L

∏d−3
j=0 (k − (L+ 1)− j)

∏d−1
j=0 (k − j)

,

for d = 2, ..., k, and L = k − d+ 1, ..., 1,

q(d, L) = 0, for all other d and L, (9)

where q(d, L) is the probability that an encoded symbol of

degree d is released when L out of k input symbols remain

unprocessed.

Deriving the BIAWGN channel equivalent to (9) is outside

the scope of this paper. However, we can easily obtain an

understanding of its behavior by simulating an LT code in
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a BIAWGN channel and logging IℓQ versus IℓL for different

degrees. By the definitions of IℓQ and IℓL, their relationship

at a certain value of d is the BIAWGN equivalent of (9). In

order to compare with (9), we quantize IℓL to integer values

{0, 1, ..., k}, such that we have a vector of length k + 1, in

which the i’th element represents the sum of IℓQ for all ℓ where

|IℓL − (i− 1)| < 0.5. When normalizing this vector, such that

it sums to one, an element will represent the fraction of the

released information, which is released when IL bits remain

unprocessed. This is denoted as Iq(d, IL) for output symbols

of degree d and is defined as

Iq(d, IL) =

∑

ℓ:|Iℓ
L
−IL|<0.5

IℓQ

∑

ℓ

IℓQ
, (10)

where only information from output symbols of degree d is

included. Fig. 3 shows a plot of the results at γ = 5 dB

with 5000 iterations of the simulation. It reveals a clear

correspondence between the theory derived for the BEC and

what is observed in the BIAWGN channel. The error vectors

for the three comparisons in Fig. 3 have squared norms

2.1 · 10−8, 3.7 · 10−8 and 6.7 · 10−8, respectively. The same

comparison has been performed at γ = {−2, 0, 2, 4, 6, 8, 10},

with similar correspondence.

However, as described in connection with (8), not all re-

leased information is added to the ripple. In order to determine

how much, we must know
Iℓ
A

Iℓ
Q

, the ratio of released information

which is added to the ripple. The BEC counterpart is given

by
A(L)
Q(L) = L−(R(L+1)−1)

L , where R(L+ 1) is the ripple size

after the (k − (L + 1))-th decoding step, i.e., the previous

step. For the AWGN channel,
Iℓ
A

Iℓ
Q

has been determined for

0 < R ≤ 20 and 0 < L ≤ 64 through a simulation similar

to the one used for determining Iq (d, IL). Fig. 4 shows a

histogram of
Iℓ
A

Iℓ
Q

− A(L)
Q(L) at γ = 5 dB, which illustrates that

the BIAWGN channel essentially behaves as the BEC. Again,

the same observation is made for γ = {−2, 0, 2, 4, 6, 8, 10}.

In [16] it was shown that the redundancy due to a non-zero

ripple can be taken into account in the derivation of (9). The
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Fig. 4. Histogram of the difference between simulated IℓA/IℓQ from AWGN

channel and theoretic A(L)/Q(L) from the BEC.

result is

a(1, k, 0) = 1,

a(d, L,R) =

(

k−(L+1)
d−2

)(

1
1

)(

L−R+1
1

)

(

k
d

)

for d = 2, ..., k,

R = 1, ..., k − d+ 1,

L = R, ..., k − d+ 1,

a(d, L,R) = 0, for all other d, L and R (11)

where a(d, L,R) is the probability that an encoded symbol of

degree d is released and added to the ripple when L out of k
input symbols remain unprocessed, given that the ripple size

is R at the point of release.

Based on (11), it is possible to control the expected amount

of symbols added to the ripple in each decoding round,

through the choice of degree distribution. See [16] for details.

We have verified that the theory behind (11) also holds for the

AWGN channel, given the presented framework. It is tempting

to engage in a proof of this correspondence, however this

is outside the scope of this paper. In the following, we will

assume that it holds. Hence, the ripple-based design approach

can also be used for the AWGN channel, in order to control

the first moment of the ripple. Next we present an example of

such a design.

IV. CODE DESIGN

Through the analysis in section III, we have established a

framework for making a ripple-based design of LT codes for

the BIAWGN channel. This design approach was first applied

in [1], where a fundamental trade-off in BEC was described.

On the one hand, it is desirable to keep the ripple size large

during decoding, in order to avoid that it hits zero due to

variance. On the other hand, it is desirable to keep the ripple

size small, in order to avoid redundancy. Hence, the aim of

this design is to first find a ripple size evolution, that gives

a good trade-off between these two concerns. Next, finding

degree distributions, which provides the desired ripple size

evolution.

A. Choice of Ripple Size Evolution

The first step is to find a target ripple size evolution. It is

impractical to specify this target for IℓR and all ℓ, since the

decoding progress per BP round depends on the SNR. Instead,

we specify the target as a function of integer IℓL between 0 and
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k, i.e., IℓR(I
ℓ
L) ∀ {ℓ : IℓL ∈ N, IℓL ≤ k}. For ease of notation,

we denote this as ILR .

When choosing the target ILR , we will leverage on the

analysis from [16], which is based on the approach used in

the design of Raptor codes [20]. The idea is to model the vari-

ations of the ripple size using a random walk. In [20], it was

assumed that the ripple size either increases or decreases by

one with equal probabilities in each decoding step. Hence, the

ripple size is modeled as a simple symmetric one-dimensional

random walk, for which the expected absolute distance from

the origin after N steps is
√
N . Based on this, it is argued

that the ripple size should be kept in the order of
√
L, when L

symbols remain unprocessed, in order to be robust against the

expected variance. In [16], it was shown that a more accurate

random walk model suggests that higher order roots should

be considered in the relationship with L. Hence, in that work

the target ripple size was c1L
(1/c2), for suitably chosen c1 and

c2. We follow this result, replacing L with IL, such that we

have the following target ripple size evolution:

ILR = c1I
(1/c2)
L , for IL > c1I

(1/c2)
L ,

ILR = IL, for IL ≤ c1I
(1/c2)
L , (12)

for suitably chosen c1 > 0 and c2 ≥ 2. Note that, by definition

of the information ripple, we must have ILR ≤ IL, hence the

need for a cap in the target.

B. Achieving the Target Ripple Size Evolution

In order to achieve the target ripple evolution in (12),

we must find a degree distribution, which provides released

information distributed correctly. Following our specification

of the target ripple at integer IℓL, we introduce ILA =
∑

ℓ:|Iℓ
L
−IL|<0.5 I

ℓ
A, which is a quantization of IℓA to integer

IℓL. From the insight established in section III-B, we then have

ILR = ILA , for IL = k,

ILR = IL+1
R − 1 + ILA, for 0 ≤ IL < k, (13)

since the processing of one bit results in an initial decrease

of the ripple by one followed by an increase of ILA. If n
denotes the number of symbols collected before decoding,

then nI(X ′;Y )Ω(d) is the corresponding amounts of bits

carried by symbols of degree d. Here I(X ′;Y ) is the mu-

tual information of the BIAWGN channel, and we introduce

n′ = nI(X ′;Y ). Since we know that (11) also holds in the

BIAWGN, we further obtain

ILA =

k
∑

d=1

n′Ω(d)a
(

d, IL, I
L+1
R

)

. (14)

By combining (12), (13), and (14), we can write the following

system of equations:






a(1, k, Ik+1
R ) 0 0

...
. . . 0

a(1, 1, I2R) · · · a(k, 1, I2R)













n′Ω(1)
...

n′Ω(k)






=







IkA
...

I1A






.

(15)

When solving (15), we find the vector n′Ω(d). Hence, a

solution tells us how many bits should be carried by symbols

TABLE II
DEGREE DISTRIBUTION EXAMPLE FOR k = 500, c1 = 2.0 AND c2 = 2.6.

d Ω(d)

1 0.0386
2 0.4533
3 0.1535
4 0.0775
5 0.0484
6 0.0263
7 0.0342
8 0.0097

10 0.0372
13 0.0141
17 0.0264
27 0.0198
32 0.0016
41 0.0011
47 0.0132
78 0.0021
82 0.0078
143 0.0075
247 0.0016
248 0.0061
393 0.0056
394 0.0144

of the different degrees, in order to achieve the desired ripple

evolution. Normalizing the solution vector with n′ provides

the degree distribution. However, since the matrix in (15)

becomes singular for high k, the proposed ripple evolution

can only be achieved for short message lengths. Nonetheless,

a ripple evolution close to the target can be achieved with the

least-squares nonnegative solution to (15). Table II shows an

example of a code with parameters k = 500, c1 = 2.0 and

c2 = 2.6. The least-squares solution has an error vector with

squared norm 3.3 · 10−8, which is negligible.

V. NUMERICAL RESULTS

In this section, the proposed design Ω(d) is evaluated in

comparison to standard LT codes using the Robust Soliton

distribution (RSD) and the solutions proposed in [8] (TF) and

[2] (Φ(d)). The RSD was first presented in [1] and is the de

facto standard for LT codes in the BEC.
The performance metric of the first evaluation is the average

overhead necessary to reach |Zi| > 20 for all i. The simula-

tions have been performed at γ = {0, 2, 4, 6, 8, 10} dB. A BP

decoder with parallel scheduling is applied with a maximum

iterations of 100. For every value of γ, the parameters of

the RSD, c and δ, and the parameters of Ω(d), c1 and c2,

are optimized numerically. These optimizations show that the

RSD is very sensitive to variations in γ, whereas Ω(d) is much

more robust in this sense. Table III shows optimal parameter

values at k = 1000 for the two degree distributions.
The average overhead as a function of γ is shown in Fig. 5

for the codes along with the capacity of the BIAWGN channel.

The results are averages of 1000 simulations. The results

show that TF and an LT code applying the RSD have similar

performance, despite the relatively high message length for

TF. They also show that the design proposed in this work has

a performance similar to the reference schemes already at a

message length of 500. As the message length is increased,

the proposed design is able to close a significant part of the

gap to capacity observed for the reference schemes.
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TABLE III
OPTIMAL PARAMETER VALUES AT k = 1000.

RSD Ω(d)
γ c δ c1 c2
0 0.015 0.03 2.0 2.6
2 0.020 0.05 2.0 2.6
4 0.030 0.20 2.0 2.8
6 0.050 0.40 1.8 2.2
8 0.060 1.00 2.2 2.6
10 0.100 4.00 2.2 2.8
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Fig. 5. Comparison of the evaluated codes with respect to average overhead
as a function of SNR.

Next, we compare Ω(d) with the Raptor code from [2] in

terms of bit error rate (BER) as a function of the overhead.

The comparison is performed at k = 4000 and γ = 0.2 dB,

since the degree distribution presented in [2] is designed for

this channel quality. The optimized parameter values for Ω(d)
are c1 = 2.2 and c2 = 2.4. The maximum number of allowed

iterations in the BP decoder with parallel scheduling is 100
and results are averages of 100.000 simulations. As in [2],

we include results for both the Raptor code and the LT code

component only. The results are shown in Fig. 6, where it is

seen that the proposed design outperforms both the LT code

and Raptor code from [2] at lower overheads. Both LT codes

have an error floor, which is a well-known drawback of many

designs of these codes. It has recently been shown in [21] that

by shaping the input symbol degree distribution, the error floor

can be mitigated. The problem can also be mitigated through

precoding, as is done with Raptor codes. This is evident from

Fig. 6.

Finally, we also present a comparison of the complexities

of the evaluated codes. Parameter values optimized for γ =
0 dB are applied, see Table III. The encoding and decoding

complexities are directly related to the average output symbol

degree, which is plotted as a function of the message length

in Fig. 7. The figure shows that the proposed design exhibits

a complexity increase similar to that of the RSD, although

with an offset of roughly 4. Hence, the superior performance
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Fig. 6. Comparison between the proposed design and the work in [2] with
respect to bit error rate as a function of overhead.
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Fig. 7. Comparison of the complexities of the evaluated LT codes.

comes at the price of increased complexity. The average output

symbol degree of the design from [2] is independent of k,

hence the complexity is linear. This was the design goal of

Raptor codes. The price paid is a slight decrease of the code

rate due to the precoder, which is also evident from Fig. 6.

VI. CONCLUSIONS

We have presented a framework for a ripple-based design

of LT codes in BIAWGN channels. This framework builds a

bridge between the original work on LT codes for the BEC

and noisy channels, which is a major contribution of this

paper. Surprisingly, key analytical results, originally derived

for the BEC, have been shown to hold in the BIAWGN as

well. A design example applying the presented framework

has been given. Numerical evaluations show promising results,

significantly outperforming a standard LT code with the robust

soliton distribution and the turbo fountain from [8], at the

price of a minor increase of complexity. The application of

the framework is not limited to BIAWGN channels and LT

codes. It can readily be extended to any noisy channels and/or

related rateless codes, e.g. Raptor codes.
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