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Abstract

State of charge (SoC) estimation is of key importance in the design of battery management

systems. An adaptive SoC estimator, which is named AdaptSoC, is developed in this paper.

It is able to estimate the SoC in real time when the model parameters are unknown, via

joint state (SoC) and parameter estimation. The AdaptSoC algorithm is designed on the

basis of three procedures. First, a reduced-complexity battery model in state-space form

is developed from the well-known single particle model (SPM). Then a joint local observ-

ability/identifiability analysis of the SoC and the unknown model parameters is performed.

Finally, the SoC is estimated simultaneously with the parameters using the iterated extended

Kalman filter (IEKF). Simulation and experimental results exhibit the effectiveness of the

AdaptSoC.
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1. Introduction

Lithium-ion (Li+) batteries have gained widespread use in numerous applications from

consumer electronics to power tools soon after their first commercialization in 1991, thanks

to their higher capacity but reduced size, superior power performance with longer cycle

life [1]. Recent advances in electric vehicles and smart grids further strengthen the leading

role of Li+ batteries as electrical energy storage devices. Nowadays battery management

systems (BMSs) are used in almost all Li+ battery powered applications to monitor the
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battery status and regulate the charging and discharging processes for real-time battery

protection and performance enhancement [2, 3]. A fundamental component in a BMS is

the module for estimation of the state of charge (SoC), the design of which has been a

long-standing challenge and will be the focus of this paper.

Literature review: SoC can be defined as the percentage ratio of the present battery

capacity to the maximum capacity. Two straightforward yet typical non-model-based SoC

estimation methods are voltage translation and Coulomb counting. The former infers the

SoC from the predetermined open circuit voltage (OCV)-SoC lookup table using the OCV

measurement. Despite reliability, it requires the battery to rest for a long period with

cutting off from the external circuit to measure the OCV, thus restricting its practical

implementation without interrupting system operation. Coulomb counting, which is based

on numerical integration of the current over time, may suffer from a ‘drift’ of SoC estimates

from the true values due to cumulative integration errors and noise corruption. For a survey

of both methods, please refer to [3, 4] and the references therein.

In recent years, considerable attention has been directed toward model-based approaches

for real-time SoC estimation with improved accuracy. Equivalent circuit models (ECMs),

which include virtual voltage source, internal resistance and RC network to simulate battery

dynamics, have been used extensively. The state observability of a ECM is studied in [5],

by which a SoC estimation algorithm is designed. In [6], the extended Kalman filter (EKF)

is applied to ECMs to estimate the SoC with approximate dynamic error bounds. The

estimation results are enhanced in [7] using the sigma-point Kalman Filter (SPKF) that

is known to have better accuracy and numerical stability. Other nonlinear observer-based

design approaches have also been used to construct ECM based SoC estimators. Among

them, sliding mode observer [8], adaptive model reference observer [9] and Lyapunov-based

observer [10] are highlighted here.

Another important type of battery models are built upon electrochemical principles that

describe intercalation and deintercalation of Li+ ions and conservation of charge within a

battery. Such electrochemical models have the merit of ensuring each model parameter to

retain a proper physical meaning. However, they have a complex structure based on par-

tial differential equations (PDEs), often necessitating model simplification or reduction. A

linear reduced-order electrochemical model is established in [11], to which the classical KF

is employed for SoC estimation. In [12], the EKF is implemented to estimate SoC using

an ordinary differential equation (ODE) model obtained from PDEs by finite-difference dis-

cretization. The unscented Kalman filter (UKF) is used in [13] to avoid model linearization
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in SoC estimation. Rather than using the ODE model after simplification, nonlinear SoC

estimators are also developed in [14, 15] through direct manipulation of PDEs.

Adaptive SoC estimation, which enables the SoC to be estimated when the model pa-

rameters are unavailable, has been discussed for some ECMs and electrochemical models,

e.g., [7, 16, 17]. This paper makes new contributions to study of this topic, with the aim of

developing an adaptive SoC estimator that is easy to implement and sound both theoretically

and practically.

Statement of contributions: An electrochemical battery model with reduced com-

plexity in structure is derived from the single particle model (SPM) first. For this model, a

detailed analysis of joint local observability/identifiability of the SoC variable and the model

parameters is performed, which indicates that the SoC variable can be locally identified for

admissible input. This result shows that adaptive estimation of SoC is achievable. On

the basis of the analysis, an adaptive SoC estimator, AdaptSoC, is built using the iterated

extended Kalman filter (IEKF), where the SoC and model parameters are estimated con-

currently but only SoC estimates are reliable. Through both simulation and experimental

study, the AdaptSoC algorithm is shown to have excellent SoC estimation performance in

the presence of unknown parameters. Meanwhile, its efficient implementation lends itself to

practical application. The analysis and results presented in this paper can also be readily

extended to other types of battery models.

2. A Reduced-Complexity Model

In this section, the working mechanism of Li+ batteries is briefly introduced first, followed

by a review of the single particle model (SPM). Then a reduction of the SPM is developed

for the purpose of SoC estimation.

2.1. The Working Mechanism of Li+ Batteries

A schematic description of a Li+ battery is shown in Fig 1(a). The positive electrode is

typically made from Li compounds, e.g., LixMn2O4 and LixCoO2. Small solid particles of

the compounds are compressed together, giving birth to a porous structure. The negative

electrode is also porous, which usually contains graphite particles. The interstitial pores at

both electrodes provide intercalation space, where the Li+ ions can be moved in and out and

stored. The electrolyte contains free ions and is electrically conductive, where the Li+ ions

can be transported easily. The separator physically separates the electrodes apart. It allows
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(a) (b)

Figure 1: (a) Schematic characterization of a Li+ battery; (b) the single-particle model.

the migration of Li+ ions from one side to the other, but prevents electrons from passing

through. The electrons are thus forced to flow through the external circuit.

During the charging process, Li+ ions are extracted from the particles at the positive

electrode into the electrolyte, and the particles at the negative electrode absorbs Li+ ions

from the electrolyte. This process not only generates an influx of Li+ ions within the battery,

but also builds up a potential difference between the positive and negative electrodes. In

the reverse process the battery becomes discharged. The following equations exemplify the

chemical reactions in the positive and negative electrodes:

LixMn2O4

charge
−−−−−⇀↽−−−−−
discharge

Lix− yMn2O4 + y Li+ + y e−

xLi+ + x e− + C
charge

−−−−−⇀↽−−−−−
discharge

LixC

2.2. The Single Particle Model

This paper considers the SPM (see Fig. 1(b)), which, as the name suggests, simplifies each

electrode as a spherical particle with area equivalent to the active area of this electrode [18,

19]. Although only able to capture key physical and chemical phenomena, it decreases

complexities in identification, estimation and control design for battery operations to a

large extent [12, 15]. To proceed further, an introduction of the SPM is given below, with

the nomenclature shown in Table 1.

Input and output of the battery: The external input to the battery is the current

I(t) with I(t) < 0 for charge and I(t) > 0 for discharge. The output terminal voltage is the

potential difference between the two electrodes, that is,

V (t) = Φs,p(t)− Φs,n(t). (1)
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Variables

Φs electric potential in the solid electrode

Φe electric potential in the electrolyte

cs concentration of Li+ in the solid electrode

css concentration of Li+ at a particle’s spherical surface

J molar flux of Li+ at the particle’s surface

J0 exchange current density

η overpotential of reaction in the cell

U open-circuit potential

I external circuit current

V terminal voltage

r radial dimension of the particle

Physical parameters

Ds diffusion coefficient of Li+ in the solid electrode

r̄ radius of the spherical particle

F Farady’s constant

S specific interfacial area

T temperature of the cell

αa anodic charge transport coefficient

αc cathodic charge transport coefficient

R universal gas constant

Rc phase resistance

Rf film resistance of the solid electrolyte interphase

ρ Coulombic efficiency of the cell

Cn nominal capacity of the cell

Subscripts

s solid electrode phase

e electrolyte phase

n negative electrode

p positive electrode

j n or p

Table 1: Definitions and nomenclature.
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Conservation of Li+ in the electrode phase: The migration of Li+ ions inside a

solid particle is caused by the gradient-induced diffusion. It follows from the Fick’s laws of

diffusion that
∂cs,j(r, t)

∂t
=

1

r2
∂

∂r

(

Ds,jr
2∂cs,j(r, t)

∂r

)

, (2)

with the initial and boundary conditions given by

cs,j(r, 0) = c0s,
∂cs,j
∂r

∣

∣

∣

∣

r=0

= 0,
∂cs,j
∂r

∣

∣

∣

∣

r=r̄j

= −
1

Ds,j

Jj.

Here, Jj is the molar flux at the electrode/electrolyte interface of a single particle. When

j = n and p, respectively,

Jn(t) =
I(t)

FSn

, Jp(t) = −
I(t)

FSp

. (3)

Electrochemical kinetics: The molar flux Jj is governed by the Butler-Volmer equa-

tion:

Jj(t) =
J0,j
F

[

exp

(

αaF

RT
ηj(t)

)

− exp

(

−
αcF

RT
ηj(t)

)]

, (4)

where

ηj(t) = Φs,j(t)− Φe,j(t)− U(css,j(t))− FRf,jJj(t).

The electrolyte phase can be represented by a resistor Rc,j in the SPM, implying Φc,j can

be expressed as

Φe,j(t) = Rc,jI(t).

Hence, ηj becomes

ηj(t) = Φs,j(t)− U(css,j(t))− FR̄jJj(t), (5)

where R̄j = Rc,j +Rf,j.

To conclude the model review, the SPM is composed of (1)-(4). A visualization of the

relationship between key variables is given in Fig. 2, in which I is the external input, cs,j

and Φs,j are the variables showing the battery status, and V is the output.

2.3. The Reduced Complexity Model

Average Li+ concentration in the electrode phase: The average concentration of

Li+ ions in the particle is considered throughout the paper as the measure of the present

battery capacity, or equivalently, the SoC. It is defined as

cavgs,j (t) =
1

Ω

∫

Ω

cs,j(r, t)dΩ, (6)
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Figure 2: The relationship between key variables in the SPM.

where Ω denotes the volume of the particle sphere. From (2), it is obtained that

ċavgs,j (t) =
1

Ω

∫

Ω

∂cs,j(r, t)

∂t
dΩ

=
1

Ω

∫

Ω

1

r2
∂

∂r

(

Ds,jr
2∂cs,j(r, t)

∂r

)

dΩ

= ǫjDs,j

∂cs,j(r, t)

∂r

∣

∣

∣

∣

r=r̄j

, (7)

where ǫj is a constant coefficient. Depending on the electrode polarity, (7) splits into

ċavgs,n (t) = −
ǫn
FSn

I(t), (8)

ċavgs,p (t) =
ǫp
FSp

I(t). (9)

By (8)-(9), the rate of change of cavgs,j is linearly proportional to the input current I. In

other words, cavgs,j is equal to the initial value cavgs,j (0) plus integration of I over time. This

illustrates that the change of SoC depends linearly on I as a result of cavgs,j indicating SoC.

Such a relationship has not only been presented for electrochemical models, e.g., [11], but

also justified in ECMs, e.g., [20, 6] and the references therein.

Terminal voltage: Suppose there exists a function ϕ such that css,j(t) = ϕ(cavgs,j (t)) and

define Ū = U ◦ ϕ, where ‘◦’ denotes composition of two functions. Using (5), (1) becomes

V (t) = Ū(cavgs,p (t))− Ū(cavgs,n (t)) + ηp(t)− ηn(t) + (R̄p − R̄n)I(t).

With αa = αc = 0.5, it follows from (4) that

ηn(t) =
2RT

F
sinh−1

(

Jn(t)F

2J0,n

)

=
2RT

F
sinh−1

(

ǫnI(t)

2J0,n

)

,

ηp(t) =
2RT

F
sinh−1

(

Jp(t)F

2J0,p

)

=
2RT

F
sinh−1

(

−
ǫpI(t)

2J0,p

)

.
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Thus V (t) becomes

V (t) = Ū(cavgs,p )− Ū(cavgs,n ) +
2RT

F

[

sinh−1

(

−
ǫpI(t)

2J0,p

)

− sinh−1

(

ǫnI(t)

2J0,n

)]

+ (R̄p − R̄n)I(t). (10)

As such, V(t) consists of two parts. The first is the open-circuit voltage (OCV) that relies

on Ū(cavgs,j ), and the second part is the direct feedthrough from I to V .

Construction of the state-space model: It is seen from above that (8)-(10) provide a

concise characterization of the battery dynamics. To convert them into a state-space model

for SoC estimation, denote the SoC by a state vector x ∈ [0, 1]. The input u and the output

y of the model can be defined as u = I and y = V , respectively. Since cavgs,j is arguably

equivalent to the SoC, the following state-space model can then be constructed on the basis

of (8)-(10):
{

ẋ(t) = −au(t),

y(t) = h(x(t)) + g(u(t)).

In above, a = ρ/Cn, where the Coulombic efficiency ρ is a measure of the transfer efficiency

of the current charge and Cn is the battery’s nominal capacity, h(·) is the counterpart of the

part containing Ū in (10), and g(·) corresponds to the part involving I in (10). Discretization

of the above system yields
{

xk+1 = xk − αuk,

yk = h(xk) + g(uk).
(11)

where α = aT = ρT/Cn and T is the sampling period.

Note that, h(·) represents the SoC-OCV relationship and thus varies with different bat-

teries. For the battery under consideration, it takes the parametric form as follows:

h(x) = β0 ln(x+ β1) + β2.

In addition, g(·) can be determined from (10):

g(u) = γ0
[

sinh−1(γ1u)− sinh−1(γ2u)
]

+ γ3u,

where γi for i = 0, 1, 2, 3 are parameters from (10).

Two reasonable assumptions regarding the model are established. First, based on the

well-known charging/discharging properties of Li+ batteries, it is assumed

• Assumption 1: the Coulombic efficiency ρ = 1 and yk ≈ h(xk) when the magnitude

of the charging/discharging current is low enough.
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In addition, the precision of the measuring instruments used in our experiments is very high,

leading to

• Assumption 2: the covariance of the measurement noise is sufficiently small.

An outlook of SoC and parameter estimation: Developed for SoC estimation, the

model in (11) contains parameters α, βi’s and γi’s. Their values are often hard to determine

jointly and may even be subject to change over time in practice. It is hence quite appealing to

consider ‘adaptive SoC estimation’ via simultaneous estimation of the SoC and the unknown

parameters. A two-stage approach can then be designed as follows to realize the notion:

• Stage 1: Apply a very small current to charge the battery from zero to full capacity,

and then discharge from full to zero. By Assumption 1, the SoC can be directly

calculated through integration of the current over time, and the measured output

voltage can be regarded as the OCV. Using the SoC-OCV data set collected, the

parameters βi’s in h(·) can be determined.

• Stage 2: After h(·) is obtained, the state x(k), the parameters α and γi’s are estimated

simultaneously based on the measurements of the charging/discharging current and the

output voltage.

This identification problem in Stage 1 can be formulated as a nonlinear least squares data

fitting problem, which can be easily addressed by numerical methods such as the Gauss-

Newton [21]. Therefore, h(·) is assumed to be known in sequel. More complicated as a

nonlinear state and parameter estimation problem, Stage 2 will be the focus of the following

study.

3. Joint Observability/identifiability Analysis

Joint observability/identifiability analysis is crucial to state and parameter estimation

since it reveals whether effective estimation is possible or not. In this section, it is performed

using the approach of sensitivity analysis.

The identifiability problem: The joint observability/identifiability problem is tack-

led by parameter identifiability analysis by transforming the model in (11) into the model

including the initial state and the parameters:

yk = φ(θ; u0, · · · , uk), (12)
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where

θ =
[

x0 α γ0 γ1 γ2 γ3

]T

,

φ(θ; u0, · · · , uk) = h

(

x0 + α

k−1
∑

i=0

ui

)

+ g(uk, γ).

In sequel, θi for i = 1, 2, · · · , 6 and its corresponding parameter will be used interchangeably.

Thus the identifiability problem for (12) is: given the data set ZN = {u0, · · · , uN , y0, · · · , yN},

can θ be uniquely identified? If it cannot be, which parameters in θ can be identified, and

what is the difficulty to determine each parameter?

Before proceeding further, it is important to introduce a definition of local identifiability

following [22]:

Definition 1. A model structure φ(θ; u0, · · · , uk) is said to be locally identifiable in some
point θ0 in the parameter space for a given {u0, u1, · · · , uN}, if for any θ1 and θ2 within the
neighborhood of θ0, φ(θ1; u0, · · · , uk) = φ(θ2; u0, · · · , uk) holds if and only if θ1 = θ2.

Basics of sensitivity analysis: Sensitivity analysis is used to investigate the identifi-

ability of θ through investigating the sensitivity of yk with respect to the change of θ. The

sensitivity matrix for (12) is given by

S(θ) =









...

· · · ski · · ·
...









, (13)

where

ski =
∂yk
∂θi

for k = 0, 1, · · · , N and i = 1, 2, · · · , 6.

To estimate θ, consider the following weighted mean-square-error cost function without

loss of generality:

ℓ(θ) =
1

2

N
∑

i=0

wiδ
2
i (θ) =

1

2
∆TW∆,

where wi > 0, δi = yi − φ(θ; u0, · · · , ui), ∆ = [δ0 · · · δN ]
T, and W = diag(w0, · · · , wN).

Here, W can be viewed as a weight matrix to account for the effects of the measurement

noise. By Assumption 2, the diagonal elements of W are relatively large.

The best estimate of θ, denoted as θ̂, is the one that minimizes ℓ(θ), that is,

min
θ

ℓ(θ) = ℓ(θ̂).
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It is known that θ̂ will be the locally unique solution to minimize ℓ(θ) if ℓ′(θ̂) = 0 and

ℓ′′(θ̂) > 0. Note that the Hessian ℓ′′(θ) is

ℓ′′(θ) = ST(θ)WS(θ)−
N
∑

i=0

∆TWi

∂

∂θ

(

∂φ(θ; u0, · · · , ui)

∂θ

)T

,

where Wi is the i-th column of W. When θ = θ̂, the second term in the right hand side

becomes negligible because ∆ approaches zero. Thus ℓ′′(θ̂) can be approximately rewritten

as

ℓ′′(θ) ≈ ST(θ)WS(θ). (14)

From (14), it is seen that ℓ′′(θ̂) > 0 if and only if S(θ̂) has full column rank.

Local identifiability analysis of θ: For the battery model in (11), the sensitivity

coefficients are given by

sk1 =
β0

x0 + α
∑k−1

i=0 ui + β1

,

sk2 = −
β0

∑k−1
i=0 ui

x0 + α
∑k−1

i=0 ui + β1

,

sk3 = sinh−1(γ1uk)− sinh−1(γ2uk),

sk4 =
γ0uk

√

γ2
1u

2
k + 1

,

sk5 = −
γ0uk

√

γ2
2u

2
k + 1

,

sk6 = uk.

The order of magnitude of each variable is: x0 ≈ 10−1, α ≈ 10−5, β0 ≈ 100, β1 ≈ 100,

β2 ≈ 100, γ0 ≈ 10−2, γ1 ≈ −(10−7 ∼ 10−6), γ2 ≈ 10−7 ∼ 10−6 and γ3 ≈ 10−3 ∼ 10−2.

Suppose uk lies within the reasonable range of −20 ∼ 20.

The degree of influence of the change in θi on yk can not be fully shown by the sensitivity

ski for i = 1, 2, · · · , 6, because it is also dependent on the scale of θi. Thus ski should be

normalized to eliminate the scale-induced effects:

s∗ki = |θi| ski,

from which the normalized sensitivity matrix S∗ can be defined accordingly. The normalized

Hessian H∗ is defined as

H∗(θ) = Γθℓ
′′(θ)Γθ
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= S∗T(θ)WS∗(θ),

where Γθ = diag(|θ1|, · · · , |θ6|). Analysis of s
∗
ki and S∗ establishes the following:

Fact 1. The parameter vector θ is almost locally unidentifiable.

Explanation of this fact is straightforward. It is seen that s∗ki → 0 for i = 3, 4, 5.

This indicates that S∗
i for i = 3, 4, 5, where S∗

i is the i-th column of S∗, are almost linearly

dependent. From a theoretical perspective, if {uk} contains a rich mix of frequency contents,

S∗
2 corresponding to α is independent of the other S∗

i ’s. However, the order of magnitude of

s∗k2 is quite small, which lies between 10−5 ∼ 10−1, depending on the scale of {uk}. It can

be concluded that S∗ will be almost surely rank-deficient in numerical sense, with rank of

about 3, so θ can be hardly identified.

It is now worth considering what can be identified using the given model and data even

if θ cannot be identified as a whole. It is pointed out in [22] that a reparameterized model

structure, or more specifically, a combination of parameters in θ, can be identified. The

next remarkable fact is established.

Fact 2. Despite Fact 1, x0 can still be locally identified with high accuracy.

Intuitive thinking shows that x0 can still be estimated due to the independence of S∗
1

from S∗
i for i = 2, · · · , 6 and the order of magnitude of s∗k1 far exceeding s∗ki for i = 2, · · · , 6.

An additional support is that xk is noted to be the major force that causes the increas-

ing/decreasing values of yk during the charging/discharging processes. Now consider the

normalized Hessian H∗, which is rank deficient. Its singular value decomposition (SVD) can

be expressed by

H∗ =
[

Ul Us

]

[

Σl 0

0 0

][

VT
l

VT
s

]

, (15)

where U and V are unitary matrices and Σl is a diagonal matrix containing nonzero singular

values of H∗. The rank of H∗ is 3 since S∗ has rank 3 as aforementioned. Hence, the

dimensions of Σl, Ul and Vl are 3× 3, 6× 3 and 6× x, respectively. It can be proven that

the column space of Ul is the subspace of the identifiable parameter space [22]. In other

words, the vector ϑ obtained from reparameterizing θ is identifiable, where ϑ is given by

ϑ = UT
l θ. (16)

It is of much importance to note that an element in ϑ will correspond to θ1 or x0 with

extremely minor difference due to the numerical properties of S∗ given above. That is,
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x0 will be projected by Ul to a point in the identifiable subspace, which is very close to

itself. Thus it can be identified with a considerable amount of accuracy. A simulation-

based identifiability study will be given in Example 1 of Section 5 to validate the findings

presented.

According to the analysis, a joint state and parameter estimation algorithm can be

designed, which, though only able to yield imprecise estimates for α and γi’s, would still

provide reliable SoC estimates. Hence, adaptive SoC estimation is achievable. However, this

requires model restructuring.

As can be seen from the above, the term γ0
[

sinh−1(γ1u)− sinh−1(γ2u)
]

plays a role

that can be neglected in the measurement equation of the model (11). Therefore, a further

simplified battery model may be used via reducing g(u) as g(u) = γu:

{

xk+1 = xk − αuk,

yk = β0 ln(xk + β1) + β2 + γuk.
(17)

The parameter vector θ of this model is

θ =
[

x0 α γ
]T

.

The following facts regarding (17) can be stated:

Fact 3. For the model (17), θ is locally identifiable when the input sequence {uk} contains
a sufficiently rich mix of frequency contents.

Fact 4. Among all the parameters, x0 is the ‘easiest’ one to estimate.

Here, the normalized sensitivity matrix S∗(θ) is given by

S∗(θ) =













...
...

...

|x0|β0

x0 + α
∑k−1

i=0 ui + β1

−
|α|β0

∑k−1
i=0 ui

x0 + α
∑k−1

i=0 ui + β1

|γ|uk

...
...

...













Fact 3 is straightforward following the similar lines to analyze the full rankness of S∗. ‘Easi-

est’ in Fact 4 means that the estimate of the parameter x0 has the smallest error covariance.

It is known that

Cov(Γ−1
θ θ̂) ≈

[

E
(

H∗(θ̂)
)]−1

=
[

E
(

S∗T(θ̂)WS∗(θ̂)
)]−1

.
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Consider diag
[

Cov(Γ−1
θ θ̂)

]

, which indicates the error covariance of θ̂. Its first element

corresponding to x0 will be much smaller than the others, because the elements of S∗
1 has

much larger magnitudes than those of S∗
2 and S∗

3. Fact 4 will also be validated in Example

1 of Section 5.

4. Adaptive SoC Estimation

The adaptive SoC estimation is treated as joint state and parameter estimation. In

this section, an IEKF-based technique will developed for the model (17). The IEKF is

an improved version of the KF and EKF to deal with severe nonlinearities in the system

by iteratively refining the state estimate around the current point at each time instant.

Its estimation performance is superior to the EKF, while the increase in computational

complexities can be restrained to a tolerable level.

State augmentation: To use the IEKF, define an augmented state vector to incorporate

both the original state x and the unknown parameters:

ξk =
[

xk α γ
]T

.

Analogous to θ, ξi,k for i = 1, 2, 3 and its corresponding variable or parameter will be used

interchangeably. Thus (11) can be rewritten as

{

ξk+1 = Fkξk,

yk = h̄(ξk, uk),
(18)

where

Fk =







1 uk

1

1






,

h̄(ξk) = β0 log(ξ1,k + β1) + β2 + ξ3,kuk.

Application of the IEKF: For the augmented battery model in (18), the IEKF is

applied to estimating ξk. Like the KF and EKF, it consists of two procedures — prediction

and update.

The prediction formulae of the IEKF are

ξ̂k|k−1 = Fk−1ξ̂k−1|k−1, (19)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Q, (20)
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where ξ̂k|k−1 and ξ̂k|k are the estimates of ξk given Zk−1 and Zk, respectively, P is the

estimation error covariance, and Q ≥ 0 is adjustable to reduce the effects of process noise.

The update is implemented iteratively:

K
(i)
k = Pk|k−1H

(i−1)
k

[

H
(i−1)
k Pk|k−1H

(i−1)T
k +R

]−1

, (21)

ŷ
(i)
k = h̄(ξ̂

(i−1)

k|k ), (22)

ξ̂
(i)

k|k = ξ̂k|k−1 +K
(i)
k

[

yk − ŷ
(i)
k −H

(i−1)
k (ξ̂k|k−1 − ξ̂

(i−1)

k|k )
]

, (23)

where R > 0, the superscript (i) denotes the iteration number, ξ̂
(0)

k|k = ξ̂k|k−1 and

H
(i)
k =

∂h̄

∂ξ

∣

∣

∣

∣

ξ̂
(i)
k|k

.

The iteration process stops when i achieves the pre-specified maximum iteration number imax

or when the error between two consecutive iterations is less than the pre-selected tolerance

level. The associated estimation error covariance is given by

Pk|k = (I−K
(imax)
k H

(imax)
k )Pk|k−1. (24)

The estimate of SoC at time instant k is then given by ξ̂
(imax)

1,k .

The IEKF-based adaptive SoC estimation algorithm, AdaptSoC, is summarized in (19)-

(24). It has a recursive structure for sequential real-time implementation, and furthermore,

the update procedure is executed through iterative operations.

Discussion: Regarding the AdaptSoC, the following remarks are given:

Remark 1. Convergence of AdaptSoC. Convergence analysis for the nonlinear joint state
and parameter estimation considered is difficult to perform. The discussion in [23] may shed
some light, which is about the convergence properties of the EKF for joint parameter and
state estimation problem for linear systems. It is shown in [23] that the estimates may be
biased because of the lack of coupling between the filtering gain and the parameters. While
likely to suffer from the similar bias problem to a certain extent, AdaptSoC should have better
convergence performance, because the IEKF is numerically more accurate than the EKF and
the noise level in our experiments is quite low.

Remark 2. Feasible improvements to AdaptSoC. The update procedure of IEKF is equiva-
lent to applying the Gauss-Newton method to finding the minimum of a mean-square-error
cost function [24]. There are a few methods available in the literature as improvements
of the Gauss-Newton method, e.g., the Levenberg-Marquardt algorithm with better conver-
gence properties and numerical stability. They can be used in the AdaptSoC to attain better
estimation performance.
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Remark 3. Potential alternatives to AdaptSoC. Essentially, the AdaptSoC is concerned with
joint state and parameter estimation using state augmentation and the IEKF. Its develop-
ment is motivated by conceptual simplicity, satisfactory SoC estimation performance vali-
dated by experiments and modest computational complexity. However, there exist a few other
alternatives to choose from. Not only can other state estimation techniques such as UKF,
particle filter and nonlinear Gaussian filter substitute the IEKF, but various methods for
joint state and parameter estimation, e.g. [25, 26], can also be potentially used here.

5. Application Studies

Three examples are given to verify the findings and effectiveness of AdaptSoC. The first

two are based on numerical simulation, and the third uses experimental data.

Example 1. Identifiability analysis. Consider the model in (11) and assume that it is
accurate. The nominal parameter values are given as follows: α = 5.0708 × 10−5, β0 =
1.0480, β1 = 2.208 × 10−1, β2 = 3.9998, γ0 = 5.1400 × 10−2, γ1 = 8.7615 × 10−7, γ2 =
−1.5274×10−7, γ3 = −5×10−3. The values of α and γi’s are reckoned according to [18, 19].
The values of βi’s are determined by fitting the SoC-OCV data of the battery that will be
experimented with in Example 3. The weight matrix W = 108I. The input to the model is
a square wave alternating between 5A and −5A with period of 40s for 100 cycles.

Let us verify Fact 2 in the first place. According to the results in Section 3, the normalized
Hessian around the above nominal parameters can be computed:

H∗ =









2.0992× 1011 1.0619× 109 1.3429× 101 1.1435× 101 −1.9935× 100 1.2696× 106

1.0619× 109 7.1804× 106 −1.9359× 101 −1.6485× 101 2.8738× 100 −1.8303× 106

1.3429× 101 −1.9359× 101 2.7968× 10−2 2.3816× 10−2 −4.1519× 10−3 2.6442× 103

1.1435× 101 −1.6485× 101 2.3816× 10−2 2.0281× 10−2 −3.5356× 10−3 2.2517× 103

−1.9935× 100 2.8738× 100 −4.1519× 10−3 −3.5356× 10−3 6.1636× 10−4 −3.9254× 102

1.2696× 106 −1.8303× 106 2.6442× 103 2.2517× 103 −3.9254× 102 2.5000× 108









.

By SVD, the singular values of H∗ listed in decreasing order are

σ1 = 2.0992× 1011, σ2 = 2.5001× 108, σ3 = 1.7945× 106,

σ4 = 1.9497× 10−13, σ5 = 6.1746× 10−16, σ6 = 2.2716× 10−17.

Direct observation shows that the singular values vary dramatically in magnitude. In par-
ticular, the last three singular values are ignorable, so the rank of H∗ is 3. As in (15), Ul

corresponding to the three largest eigenvalues in this case is

Ul =

















9.9999× 10−1 −3.1423× 10−5 −5.0588× 10−3

5.0589× 10−3 7.3996× 10−3 9.9996× 10−1

6.3578× 10−11 −1.0577× 10−5 7.8266× 10−8

5.4140× 10−11 −9.0066× 10−6 6.6647× 10−8

−9.4383× 10−12 1.5701× 10−6 −1.1619× 10−8

6.0110× 10−6 −9.9997× 10−1 7.3996× 10−3

















16



3920 3930 3940 3950 3960 3970 3980 3990 4000
49.9

50

50.1

50.2

50.3

50.4

50.5

k

S
o
C

v
s.

Ŝ
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Figure 3: Example 2 — noise-free case: (a) SoC estimation; (b) estimation of α; (c) estimation of γ.

Using (16), the identifiable vector ϑ repameterized from θ can be obtained via the unitary
projection matrix Ul. Here, ϑ1 = UT

l,1θ, where Ul,1 is the first column of Ul. It follows
immediately that

ϑ1 = 9.9999× 10−1x0 + 5.0589× 10−3α + 6.3578× 10−11γ0

+ 5.4140× 10−11γ1 − 9.4383× 10−12γ2 + 6.0110× 10−6γ3

≈ x0,

because the magnitude of x0 far exceeds those of α and γi’s for i = 0, 1, · · · , 3. Thus Fact 2
is verified.

Now consider the verification of Fact 4. The model (17) is used, where γ = −5× 10−3.
Let θ̂ take the true parameter values for simulation purpose. The normalized identification
error covariance matrix is given by

Cov(Γ−1
θ θ̂) =





1.9024× 10−11 2.8188× 10−9 −2.0734× 10−11

2.8188× 10−9 5.5720× 10−7 −4.0936× 10−9

−2.0734× 10−11 −4.0936× 10−9 4.0301× 10−9



 .

It is seen from above that the normalized error covariance of θ̂1 or x̂0 is the smallest and
much less than that of α̂ and γ̂, thus validating Fact 4.

Example 2. Application of AdaptSoC to a perfect model. Consider the model in (17) with
the same parameters and input sequence as in Example 1. The noise-free case is investigated
first. The input data is applied to the model to generate the output using (17). Then
AdaptSoC is implemented to process the input and output data to estimate the SoC. The
iteration number at each time step is set to be 10 in the update procedure. The initial actual
SoC is 50%, and the initial SoC estimate takes the value of 40%. The estimation results are
shown in Fig. 3. It is illustrated that the estimates of the SoC, α and γ coincide with the
true values after a few seconds. The almost fully accurate state and parameter estimation
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Figure 4: Example 2 — noisy case: (a) SoC estimation; (b) estimation of α; (c) estimation of γ.

for systems without noise corruption supports the finding that the model parameter vector is
locally identifiable as stated in Fact 3.

A weak white noise process with covariance of 10−8 is added to the measured output to
account for practical limitation. We follow the same procedure as above and apply AdaptSoC
to the simulation data to estimate the SoC, α and γ. The overall estimation performance, as
shown in Fig. 4, deteriorates as a result of the measurement noise, with the estimates slightly
differing from the actual values. Visual comparison indicates that the estimation of α and
γ is relatively poor compared to the SoC. This corroborates Fact 4 and the computational
analysis in Example 1, both of which argue that the SoC is easier to estimate than α and γ.
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Figure 5: Example 3: the input-output (current-voltage) profile.

Example 3. Application of AdaptSoC to experimental data. To evaluate the real-world per-
formance of AdaptSoC, data was collected from a Li+ battery via practical experiments. No
details regarding the battery could be released due to required intellectual property protection.

In this experiment, the SoC-OCV relationship was obtained at the first stage, and the
values of βi’s were identified using nonlinear least squares fitting from the SoC-OCV data.
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Figure 6: Example 3: (a) SoC estimation; (b) SoC estimation output in a partially enlarged view; (c) output

estimation; (d) output estimation in a partially enlarged view; (e) estimation of α; (f) estimation of γ.

Then AdaptSoC was implemented to estimate the SoC from the current-voltage data during
the second stage. For comparison purpose, the Coulomb counting and non-adaptive EKF
reported in the literature were also applied to the data for SoC estimation.

The current applied is a pseudo-random binary signal (PRBS) that is stretched by 10
times over the time axis and alternates between approximately 1A and -1A. A PRBS signal is
periodic, deterministic, but has white-noise-like properties, so it is commonly used in system
identification [27]. The resultant current-voltage profile within the first 450s is shown in
Fig. 5. With some a priori knowledge of the experiment, it was understood that the initial
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SoC was roughly 50%, so the initial SoC estimate is set to be 56.3%.
An overview of SoC estimation through time is illustrated in Fig. 6(a). The SoC estimates

given by Coulomb counting are significantly different from those by AdaptSoC and EKF, while
an enlarged view in Fig. 6(b) shows milder difference between the latter two. The actual
SoC values cannot be measured due to equipment limitations, but we can compare the true
output {yk} with the predicted one {ŷk|k−1} for an indirect analysis of the SoC estimation

accuracy. Here, one-step-ahead prediction is used, e.g., ŷk|k−1 = h̄(ξ̂k|k−1) in the case of
AdaptSoC, please refer to (18). It is seen from Fig. 6(c) that the predicted output resulting
from Coulomb counting deviates from the measured data. From partial enlargement given in
Fig. 6(d), it is observed that AdaptSoC leads to excellent output prediction. Compared with
the EKF, it has much smaller output prediction error. This suggests considerable confidence
on AdaptSoC-based SoC estimation.

In addition, the following consistent observations are obtained through numerous simu-
lations:

• Coulomb counting is sensitive to the initial SoC estimate and tends to be less accurate
due to lack of correction using the output data;

• EKF may exhibit satisfactory SoC estimation, largely depending on the accuracy of
parameter values, but the parameters are often difficult to be determined precisely due
to battery dynamics involving uncertainty and variation over time.

• AdaptSoC, unlike Coulomb counting and EKF, yields reliable SoC estimation results
with robustness to initial estimate and even in the presence of unknown parameters.

While AdaptSoC only guarantees effective SoC estimation, estimation of the parameters
α and γ over time is depicted in Fig. 6(e)-6(f). Despite its relatively lower accuracy as
analyzed in Section 3 and demonstrated in Example 1, the parameter estimation may still
provide some clues to practitioners on the parameters.

From the above analysis, we see that AdaptSoC is a promising method with much potential
for practical application. Taking full advantage of the input-output data, it does not require
high-accuracy initial SoC estimate and model parameters but is still able to provide effective
SoC estimation.

6. Conclusion

SoC estimation is of much importance for safe and efficient application of Li+ as energy

storage devices in various areas. The design of SoC estimators usually follow the trilogy

of ‘modeling—identification—SoC estimation’. This paper, however, studies adaptive SoC

estimation for Li+ batteries, which integrates SoC estimation with parameter identification.

A reduced-complexity model is derived from the single particle model. Joint observabil-

ity/identifiability of the SoC and the unknown parameters of the model is investigated,
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showing the advantageous property that the SoC is almost locally observable. An iterated

extended Kalman filter-based adaptive SoC estimator, the AdaptSoC algorithm, is then de-

veloped. The analysis results and the effectiveness of AdaptSoC are verified by both simula-

tion and experiments. Due to its excellent estimation performance and easy implementation,

AdaptSoC will hopefully have strong practical appeal.
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