
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Multi-parametric Extremum Seeking-based Learning Control
for Electromagnetic Actuators

Benosman, M.A.; Atinc, G.M.

TR2013-137 June 2013

Abstract
We study in this paper the problem of adaptive robust control of electromagnetic actuators.
We first design a nonlinear controller that stabilizes locally the error dynamics. Next, we
complement this nonlinear controller with a multiparametric extremum seeking control to
tune the feedback gains of the nonlinear controller. We use numerical tests to demonstrate
the performance of this controller in dealing with model uncertainties.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139





Multi-Parametric Extremum Seeking-based Learning Control for

Electromagnetic Actuators

Mouhacine Benosman and Gökhan M. Atınç

Abstract— We study in this paper the problem of adaptive
robust control of electromagnetic actuators. We first design a
nonlinear controller that stabilizes locally the error dynamics.
Next, we complement this nonlinear controller with a multi-
parametric extremum seeking control to tune the feedback gains
of the nonlinear controller. We use numerical tests to demon-
strate the performance of this controller in dealing with model
uncertainties.

I. INTRODUCTION

Electromagnetic actuators can be used in many practical

applications, e.g. electromagnetic valve actuators of

combustion engines, artificial heart actuators etc. This

system requires accurate control of the moving armature

between two desired positions. The main objective, known

as ‘soft landing’ of the moving armature, is to assure small

contact velocity. In industrial applications of electromagnetic

actuators it is necessary to avoid high velocity impacts

between the moving armature and the fixed parts of the

actuator. Furthermore, the ‘soft-landing’ requirement has

to be guaranteed over a long period of time during which

the actuator’s components may age. Due to these practical

constraints we have developed a robust control algorithm

that aims for a zero impact velocity, and also adapts to the

actuator aging via a learning-based adaptive algorithm. We

present here the results of this study.

Many papers have been dedicated to the soft-landing

problem for electromagnetic actuators, e.g. [1], [2], [3],

[4], [5], [6], [7], [8], [9]. In [2], the authors studied the

problem of electromagnetic valve actuator control in an

internal combustion engine. The solution proposed by

the authors is based on iteratively solving a constrained

nonlinear optimal problem using Nelder-Mead algorithm.

The optimal solution defines a feedforward control signal.

The robustness of this approach to the system’s aging has

neither been proven nor tested, and there is no feedback

terms to robustify the feedforward control. Furthermore,

solving in real-time a nonlinear constrained optimal problem

can be computationally hard. In [6], the authors proposed

a nonlinear controller to solve the problem of armature

stabilization for an electromechanical valve actuator. The

authors obtained a global asymptotic stability result using

Sontag’s nonlinear controller. However, this approach does
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not solve the problem of armature trajectory tracking and

does not consider robustness of the controller with respect

to system’s uncertainties and parameters aging. In [8],

a nonlinear sliding mode approach is used to solve the

problem of trajectory tracking for an electromagnetic valve

actuator. The authors used a nonlinear model to design

the sliding mode control. The reported results showed

good tracking performances, however, this sliding mode

controller does not ensure robustness with respect to model

uncertainties. In [3], the authors used a single parameter

extremum seeking learning method to solve the problem of

soft landing for an electromechanical valve actuator. The

authors first designed a nonlinear controller based on a

nonlinear model of the actuator and then used an extremum

seeking algorithm to tune a scalar gain of the controller.

Although the learning algorithm is not directly tailored to

ensure robustness of the controller to model uncertainties

or parameters drift over time, one could argue that this

robustness is intrinsic due to the iterative nature of the

learning process. However, in this controller only one gain

is tuned online.

In this work we use a nonlinear model of the electromagnetic

actuator to design a controller that ensures trajectory tracking

for the nominal system, i.e. assuming first that there are

no uncertain parameters in the model. Subsequently, the

controller is robustified by a multi-parametric extremum

seeking algorithm that is used to tune the feedback

parameters online, allowing the controller to adapt to the

system aging over time. Notice that contrary to [3], we

are using a multi-parametric extremum seeking approach to

learn a vector of feedback gains.

This paper is organized as follows: We first present in

Section II, a nonlinear model of the electromagnetic

actuator. Then, in Section III, we report the main result

of this work, namely the nominal controller and its

learning-based adaptive version together with some stability

discussion. Numerical validation of the proposed controller

is given in Section IV, and finally the paper ends with a

summarizing conclusion in Section V.

II. SYSTEM MODELLING

Following [7], [3], we consider the following nonlinear

model for electromagnetic actuators

md2x
dt2 = k(x0 − x) − η dx

dt − ai2

2(b+x)2 + fd

u = Ri + a
b+x

di
dt −

ai
(b+x)2

dx
dt , 0 ≤ x ≤ xf ,

(1)
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where, x represents the armature position physically

constrained between the initial position of the armature 0,

and the maximal position of the armature xf , dx
dt represents

the armature velocity, m is the armature mass, k the

spring constant, x0 the initial spring length, η the damping

coefficient (assumed to be constant), ai2

2(b+x)2 represents the

electromagnetic force (EMF) generated by the coil, a, b are

two constant parameters of the coil, fd a constant term

modelling unknown disturbance force, e.g. static friction,

R the resistance of the coil, L = a
b+x the coil inductance,

ai
(b+x)2

dx
dt represents the back EMF. Finally, i denotes the

coil current, di
dt its time derivative and u represents the

control voltage applied to the coil. In this model we do

not consider the saturation region of the flux linkage in the

magnetic field generated by the coil, since we assume a

current and armature motion ranges within the linear region

of the flux.

Based on this well known nonlinear model of

electromagnetic actuators we develop in the next section a

nonlinear controller and then we robustify this controller

using a multi-parametric extremum seeking algorithm.

III. LEARNING-BASED CONTROL

A. Nominal control

In this section we first design a nonlinear nominal control,

assuming that all the coefficients of the model are known.

We then prove the stability of the equilibrium point for the

closed-loop equations, i.e. model plus feedback controller.

Next, we robustify this controller by using a model-free

learning technique based on extremum seeking theory to tune

the controller’s feedback gains online.

Consider the dynamical system (1). The objective of the

control is to make the variable x track a desired smooth time-

varying position trajectory xref (t) satisfying the following

assumption.

Assumption 1: The desired trajectory is a smooth func-

tion satisfying the initial/final constraints: xref (0) =
0, xref (tf ) = xf , ẋref (0) = 0, ẋref (tf ) = 0, where

tf is a desired finite motion time and xf is a desired final

position.

We define the tracking error vector z := [z1 z2 z3]
T = [x−

xref ẋ− ẋref i− iref ]T , where ẋref =
dxref (t)

dt , and iref

is the reference current associated with the desired trajectory

xref , obtained from the model (1), where we assume for the

time being that fd = 0

iref =

√

2(b+xref )2

a

(

k(x0−xref )−η
dxref

dt −m
d2xref

dt2

)

(2)

Let us now define the control voltage u as

u(t, z) = uff (t) + v(z), (3)

where v(z) is a feedback term and uff is a feedforward term

given by

uff (t) = Riref +
a

b + xref

diref

dt
−

airef

(b + xref )2
dxref

dt
(4)

Using (1), (3) and (4) we can write the following error

dynamics

mż2 = −kz1 − ηz2 −
a

2(b+z1+xref (t))2 (z3 + iref )2

+
ai2ref

2(b+xref )2 + fd

v = Rz3 + L(z1)(ż3 +
diref

dt ) − a
b+xref

diref

dt

−
a(z3+iref )

(b+z1+xref )2 (z2 + ẋref ) +
airef

(b+xref )2 ẋref ,

(5)

where L(z1) = a
b+z1+xref

denotes the nonlinear inductance

of the coil.

To simplify the control problem we consider a linearization

of the inductance around the point z1 = 0, which is equiv-

alent to linearizing the inductance term along the desired

trajectory xref (t). In this case equations (5) writes as

mż2 = −kz1 − ηz2 −
a

2(b+z1+xref (t))2 (z3 + iref )2

+
ai2ref

2(b+xref )2 + fd

v = Rz3 + (L(0) + dL(z1)
dz1

|z1=0z1 + o(z1))(ż3 +
diref

dt )

− a
b+xref

diref

dt +
airef

(b+xref )2 ẋref

−
a(z3+iref )

(b+z1+xref )2 (z2 + ẋref ),
(6)

where o(z1) denotes a function vanishing for small values

of z1, i.e. small tracking errors along the desired trajectory.

Eventually, in a small neighborhood of z1 = 0, equations (6)

writes as

mż2 = −kz1 − ηz2 −
a

2(b + z1 + xref (t))2
(z3 + iref )2

+
ai2ref

2(b + xref )2
+

a

2
z3 −

a

2
z3 + fd

v = Rz3 + l(t)ż3 −
a

(b + xref )2
z1(ż3 +

diref

dt
)

−
a(z3 + iref )

(b + z1 + xref )2
(z2 + ẋref ) +

airef

(b + xref )2
ẋref ,

(7)

where l(t) = a
b+xref (t) is the time-varying inductance along

the desired trajectory xref (t). We now rewrite equations (7)

in the standard control form

ż2 = − k
mz1 −

η
mz2 + a

2mz3 + F1(t, z)
ż3 = − R

l(t)z3 + v
l(t) + F2(t, z),

(8)

where F1 = − a
2m(b+z1+xref (t))2 (z3+iref )2+

ai2ref

2m(b+xref )2 −
a

2mz3 + fd, and F2 = a
l(t)(b+xref )2 z1(ż3 +

diref

dt ) +
a(z3+iref )

l(t)(b+z1+xref )2 (z2+ẋref )−
airef

l(t)(b+xref )2 ẋref . Note that we

added and subtracted the term a
2z3 in the first equation to

ensure the controllability of the linear part of the system. The

price to pay in doing so is the additional control effort that

will be needed to compensate for the effect of the nonlinear

part of the system. All the above algebraic manipulations

of the model equations were used to transform the error

dynamics in the form of a controllable linear (time-varying)

part and a nonlinear part. To write the nominal controller we

first need to introduce the following assumptions.

Assumption 2: The disturbance term fd satisfies |fd| ≤
fdmax .
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Assumption 3: The time-varying inductance l(t) is

bounded and varies slowly along the desired trajectory

xref (t); i.e. |dl(t)
dt | ≤ ǫ1, with ǫ1 > 0.

Assumption 4: There exist at least one set of constant

gains kp, kd, ki such that the matrix




0 1 0
−k
m

−η
m

a
2m

0 0 −R
l(t)



 +





0
0
1

l(t)



 .
[

kp kd ki

]

is Hurwitz ∀ t ∈ [0, tf ], uniformly in t.
Remark 1: Assumptions 3, 4 might seem restrictive, but

for many practical applications, the time-varying inductance

l(t) changes slightly along the desired trajectory, which

makes this assumption easier to satisfy.

Remark 2: We underline here that the linearization ap-

proximation of the inductance is done along the desired

trajectories, which is different from a linearization at a given

fixed point. Indeed, in this case, as long as the controller

tracks the desired trajectories with small errors, the lineariza-

tion assumption remains valid, even if the armature travels

a non-negligible distance, i.e. the linearization validity is

independent of xf .

We can now state the following practical stability result.

Theorem 1: Consider the system (1), where fd satisfies

Assumption 2, under the feedback control

u(z) = uff (t)+Kz

−k̃l(t)sgn(z3)[|z2|F1max
+ |z3|F2max

], (9)

where uff is given by (4), K = [kp, kd, ki] such that

l(t) satisfies Assumption 3, kp, kd, ki satisfy Assumption 4,

F1max
, F2max

are upper bounds of F1, F2 for x ∈ [0, xf ],
and sgn(.), |.| denotes the sign function and the L2 vector

norm, respectively. Then, starting from a non-zero small

initial condition z(0), the error dynamic z(t) asymptotically

converges to the ball Bz = {z ∈ R
3, s.t. |z| ≤ ǫ̃}, for any

chosen radius ǫ̃, such that, the feedback gain k̃ satisfies the

inequality k̃ > 1
|z3(0)|

(1 −
(0.5ǫ̃2−0.5|z(0)|2)/tf

|z2(0)|F1max+z3(0)F2max
).

Proof: We saw earlier that the system (1) with the

control (3) leads locally, i.e. for small z in the neighborhood

of 0, to the error dynamics (8). Let us first consider the linear

time-varying part of the system (8)

ż2 = − k
mz1 −

η
mz2 + a

2mz3

ż3 = − R
l(t)z3 + v

l(t)

(10)

Under Assumption 4, there exists K = [kp, kd, ki], s.t.




0 1 0
−k
m

−η
m

a
2m

kp

l(t)
kd

l(t)
−R
l(t) + ki

l(t)



 is Hurwitz uniformly in t. Next,

under Assumption 3 and using the results of Lemma 9,

([10], p.370), we conclude about the existence of a unique

positive definite Q, such that A(t) + AT (t) = −Q(t), ∀t,

with A =





0 1 0
−k
m

−η
m

a
2m

0 0 −R
l(t)



, and the associated Lyapunov

function V = 0.5zT z, satisfying the inequality

V̇ ≤ −c1z
T z, c1 > 0,

along the dynamics (10). We use now the technique of Lya-

punov reconstruction from nonlinear robust control, e.g.[11],

to construct the third term of the controller (9). We compute

the derivative of V along the full dynamics (8), where we

choose v = Kz + vnl

V̇ ≤ −c1|z|
2 + z3vnl/l(t) + F1z2 + F2z3

≤ −c1|z|
2 + z3vnl/l(t) + |F1||z2| + |F2||z3|

(11)

Let us examine the bounds of F1, F2: From the structure of

F1, F2 and the fact that xref , iref , l(t), |fd| are bounded ,

i.e. Assumptions 1, 2, 3, and since z1 is assumed to be very

small around the origin, i.e. local stability analysis (refer to

the linearization step at equation (6)), we can write the upper

bounds for F1, F2 as follows

|F1(t, z)| ≤ c2z
2
3 + c3z3 + c4

|F2(t, z)| ≤ c5z2z3 + c6,

with ci > 0 ∀i ∈ {2, ...6}. This shows that, locally,

the nonlinearities F1, F2 are upper-bounded with decreas-

ing functions of z. Thus, if we select two upper-bounds

F1max , F2max , s.t. c2z
2
3(0) + c3z3(0) + c4(0) ≤ F1max ,

c5z2(0)z3(0) + c6 ≤ F2max
, and if we select vnl such that,

V̇ < 0, ∀t, we impose that the states can only decrease

starting from z(0) and thus the upper-bounds F1max
, F2max

remains valid for all z. Now to impose the negativeness of

V̇ , we choose vnl as

vnl = −l(t)k̃sgn(z3)[|z2|F1max + |z3|F2max ], k̃ > 0,

this leads to

V̇ < −k̃|z3|(|z2|F1max
+ |z3|F2max

) + F1max
||z2|

+|F2max ||z3|

< (1 − k̃|z3|)(|z2|F1max
+ |z3|F2max

),
(12)

which ensures that V̇ < 0 if we choose a high gain k̃, i.e.

k̃, s.t. k̃ > 1/|z3|. This implies that the norm of the error

decreases until it enters the invariant set {z ∈ R
3, s.t. 1 −

k̃|z3| > 0}. Next, we obtain a better characterization of the

state vector norm as function of the gain k̃. First, we can

write the following

V̇ < (1 − k̃|z3|)(|z2|F1max
+ |z3|F2max

) < −ǫ < 0
⇒ V (t) − V (0) < −ǫt, 0 ≤ t ≤ tf
⇒ V (t) < −ǫt + V (0),

we choose now to drive the states to the ball Bz = {z ∈
R

3, s.t. |z| ≤ ǫ̃}. To this purpose, we write

V (t) < −ǫt + V (0) < 0.5ǫ̃2

⇒ ǫ > V (0)−0.5ǫ̃2

t > V (0)−0.5ǫ̃2

tf

⇒ −ǫ < 0.5ǫ̃2−V (0)
tf

,

finally, we can write

(1 − k̃|z3|)(|z2|F1max
+ |z3|F2max

) < 0.5ǫ̃2−V (0)
tf

⇒ k̃ >
1−

(0.5ǫ̃2−V (0))/tf
|z2|F1max

+z3F2max

|z3|

⇒ k̃ >
1−

(0.5ǫ̃2−V (0))/tf
|z2(0)|F1max+z3(0)F2max

|z3(0)|
.
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Remark 3: The lower-bound inequality of k̃ in Theorem

1 involves |z3(0)|, and this leads to the legitimate question

of division by 0. However, for the real practical case, we are

never in this situation. Indeed, in real systems, the term fd

in (1) is never zero and cannot be identified precisely, which

implies that the desired ideal current initial value iref (0)
obtained by (2), where we assumed fd = 0, is never equal

to the real current i(0), which discards the case z3(0) = 0.

Remark 4: We underline here that in the design of the

controller (9), we have used a simple quadratic Lyapunov

function, however, more general Lyapunov functions can

be used. This will not change the design procedure (based

on Lyapunov reconstruction technique), and will not alter

the conclusion of this work, which is mainly about the

combination of a model-based nonlinear controller and a

model-free learning algorithm to obtain a robust adaptive

controller.

In the next section, we extend this controller to its adaptive

version, using multi-variable extremum seeking.

B. Learning-based robustification

We first define the cost function to be minimized as

Q(z(β)) = C1z1(tf )2 + C2z2(tf )2, (13)

where C1, C2 > 0, and β = (δk̂p, δk̂d, δk̂i, δ
ˆ̃
k)

′

represents

the variations of the learned gains (k̂p, k̂d, k̂i,
ˆ̃
k) defined as

k̂p = kpnominal
+ δk̂p

k̂d = kdnominal
+ δk̂d

k̂i = kinominal
+ δk̂i

ˆ̃
k = k̃nominal + δ

ˆ̃
k,

(14)

where kpnominal
, kdnominal

, kinominal
, k̃nominal are the

nominal initial values of the feedback gains in (9).

Folowing multi-parametric extremum seeking theory [12],

the variations of the estimated parameters are defined as

ẋk̂p
= ak̂p

sin(ω1t + π
2 )Q(z(β))

δk̂p(t) = xk̂p
(t) + ak̂p

sin(ω1t + π
2 )

ẋk̂d
= ak̂d

sin(ω2t + π
2 )Q(z(β))

δk̂d(t) = xk̂d
(t) + ak̂d

sin(ω2t + π
2 )

ẋk̂i
= ak̂i

sin(ω3t + π
2 )Q(z(β))

δk̂i(t) = xk̂i
(t) + ak̂i

sin(ω3t + π
2 )

ẋˆ̃
k

= aˆ̃
k
sin(ω4t + π

2 )Q(z(β))

δ
ˆ̃
k(t) = xˆ̃

k
(t) + aˆ̃

k
sin(ω4t + π

2 ),

(15)

where ak̂p
, ak̂d

, ak̂i
, aˆ̃

k
are positive tuning parameters, π/2

phase is introduced to search for a minima (vs. maxima for

a zero phase) and

ωp + ωq 6= ωr, p, q, r ∈ {1, 2, 3, 4}, for p 6= q 6= r.
(16)

1) Stability discussion: Under the constraints (16), the

convergence of the previous learning algorithm has been

proven, e.g. [12]. However, proving the stability of the

combined controller (9) and the learning algorithm (14) and

(15), is more challenging. Due to paper-length constraints we

Parameter Value

m 0.27 [kg]
R 6 [Ω]
η 7.53 [kg/sec]
x0 8 [mm]
k 158 [N/mm]
a 14.96× 10−6 [Nm2/A2]
b 4× 10−5 [m]

TABLE I

NUMERICAL VALUES OF THE MECHANICAL PARAMETERS

will not report here the detailed analysis, however, we can

give simple guidelines to ensure that practically the learning-

based controller is stable. Indeed, for real-case examples

we noticed that the inductance changes slowly and slightly

along the desired trajectories. Thus, after choosing nominal

gains kpnominal
, kdnominal

, kinominal
satisfying Assumption

4 for the nominal model, we can choose the parameters

ak̂p
, ak̂d

, ak̂i
small enough to make sure that the new gains

k̂p, k̂d, k̂i still satisfy Assumption 4. Next, one can choose

k̃nominal satisfying the condition of Theorem 1. The nominal

gain can be selected to satisfy this condition with some

margin, i.e. high gain, and the learning parameter aˆ̃
k

can be

selected small enough to still satisfy this condition during the

learning process. Now, one can argue that even if we can have

a stable feedback controller for each value of the gains during

the learning, we still need to worry about the stability of the

switching between these stable closed-loop plants. Indeed, to

make sure that the switching during the learning process does

not lead to instability, we use a dwelling-time argument, e.g.

[13]. In practical cases, it is sometimes possible to restrict

the switching time, when the new learned gains are used

in the feedback loop, it is sufficient to wait long enough to

make sure that the effect of the previous gains dissipates,

which ensures that the switching process remains stable. We

underline that the above discussion does not pretend to be

a proof of stability of the learning-based controller, a more

rigorous proof is under developmental and, due to paper-

length constraints, will be presented in a journal version of

this work.

IV. NUMERICAL RESULTS

We show here the behavior of the proposed approach

on the electromagnetic actuator example presented in [14],

where the model (1) is used with the numerical values of

Table I. The desired trajectory has been selected as the

5th order polynomial xref (t) =
∑5

i=0 ai(t/tf )i, where the

ai’s have been computed to satisfy the boundary constraints

xref (0) = 0.2, xref (tf ) = xf , ẋref (0) = ẋref (tf ) =
0, ẍref (0) = ẍref (tf ) = 0, with tf = 0.5 sec, xf =
0.7 mm.

We assume in these numerical tests that the disturbance value

is fd = 10 N , which is negligible compared to the spring

force, but it has to be accounted for since it is never zero

in real systems. However, since it is difficult to measure

this disturbance beforehand, its value is assumed to be zero

in the design of the controller, i.e. in the generation of the

desired current trajectory (2), which induces an initial error

on the current: z3(0) = 0.0895A. Furthermore, to make the
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simulation case more challenging we assume an initial error

both on the position and the velocity z1(0) = 0.01 mm,

z2(0) = 0.1 mm/sec. Note that these values may seem

small, but for this type of actuators it is usually the case

that the armature starts form a predefined static position

constrained mechanically, so we know that the initial velocity

is zero and we know in advance very precisely the initial

position of the armature. However, we want to show the

performances of the controller on some challenging cases,

to confirm the performance expected from the theoretical

analysis. Next, based on this initial error vector, we compute

the lower bound of the feedback gain k̃ using Theorem 1.

Using the formula in Theorem 1, choosing a desired error

ball-radius ǫ̃ = 0.1, we obtain a lower bound for k̃ equal

to 13.5, and we choose a larger value k̃ = 17 (refer to the

stability discussion Section III-B.1). We also select the linear

feedback gains kp = 500, kd = 80, ki = 30 satisfying

Assumption 4, and we select F1max
= F2max

= 20 (of

course a more conservative, i.e. larger, upper bound of the

nonlinearities can be chosen, if we assume a higher bound

for |fd|, but this will lead to higher control voltages).

First we show on figures 1, 2 the effect of the controller

(9) with nominal gains on the nominal plant, i.e. with initial

stats errors but without model uncertainties. We see that the

controller has no problem following the desired trajectories

in this case. Next, we teste a more realistic case where we

assume an error on the spring constant coefficient of 3%
and in the damping coefficient η of 20%, together with the

position and the velocity initial errors mentioned above. The

learning algorithm (14), (15) is implemented with the cost

function (13) where C1 = 10, C2 = 50, and the learning

coefficients for each feedback gain are ak̂p
= 0.56, ω1 =

7.5 rad/sec, ak̂d
= 0.28, ω2 = 5.3 rad/sec, ak̂i

= 0.06,

ω3 = 5.1 rad/sec, aˆ̃
k

= 0.35, ω4 = 6.1 rad/sec. We

point out here that one way to choose the learning angular

frequencies ωi, i = 1, 2, 3, 4, is to select these values in such

a way to have slow learning dynamics relatively to the system

dynamics, i.e. time-scale separation, which can ensure, via

a dwelling-time argument, the stability of the switching

between different gains during the learning. We show on

figures 3, 4 the results of the nominal controller (9), with

and without the learning algorithm. We see clearly the effect

of the learning algorithm that corrects the tracking overall

and also makes the landing velocity closer to the desired

zero landing velocity, i.e. z2(tf ) = 0.07mm/sec without

learning, and z2(tf ) = 0.0053mm/sec after learning the

new gains. We also report on figure 5, the cost function

value along the learning iterations. We see a clear decrease

of the cost function. We stopped the learning after 1000
iterations since the trend of the learning was clearly towards

decreasing the cost function and stabilizes after the first

1000 iterations. Finally, the variable parts of the feedback

gains δk̂p, δk̂d, δk̂i, δ
ˆ̃
k are given in figures 6, 7, 8, and 9,

respectively. They also show a trend of convergence of the

learning algorithm.
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V. CONCLUSION

We have presented in this paper some preliminary results

about multi-parametric extremum seeking learning control

of electromagnetic actuators. First, we have proposed a

nominal nonlinear controller that stabilizes locally the ar-

mature position tracking error and velocity tracking error

to a desired small amplitude. Next, we have complemented

this controller with a learning algorithm which uses multi-

parametric extremum seeking to tune the feedback gains

of the nominal controller. Finally, We have reported some

numerical results that demonstrated the performance of this

learning-based controller.
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