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Abstract
In this paper, we propose a multi-path elimination by sparse inversion (MESI) algorithm that
removes the clutter induced by internal wall reflections in a Through-the-Wall-Imaging (TWI)
system without prior knowledge of the scene geometry. Our approach iteratively recovers the
time-domain primary impulse responses of targets behind the front wall then finds a delay
convolution operator that best maps the primary impulse response of each target to the
multi-path reflections available in the received signal. Since the number of targets and the
number of reflecting surfaces is typically much smaller than the downrange extent of the
scene, we employ l1 regularized sparse recovery in both the target detection and reflection
operator estimation. Moreover, we specify extensions of the MESI algorithm that allow for the
detection of targets directly in the image domain even from randomly sub-sampled arrays and
compensate for the distortion of the source waveform due to the front wall propagation. We
present numerical simulations that demonstrate the effectiveness of MESI in locating targets
inside a room with unknown dimensions or wall parameters and highlight the robustness of
our scheme to severe measurement noise.
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Abstract—In this paper, we propose a multi-path elimination
by sparse inversion (MESI) algorithm that removes the clutter
induced by internal wall reflections in a Through-the-Wall-
Imaging (TWI) system without prior knowledge of the scene
geometry. Our approach iteratively recovers the time-domain
primary impulse responses of targets behind the front wall then
finds a delay convolution operator that best maps the primary
impulse response of each target to the multi-path reflections
available in the received signal. Since the number of targets and
the number of reflecting surfaces is typically much smaller than
the downrange extent of the scene, we employ `1 regularized
sparse recovery in both the target detection and reflection-
operator estimation. Moreover, we specify extensions of the MESI
algorithm that allow for the detection of targets directly in
the image domain even from randomly subsampled arrays and
compensate for the distortion of the source waveform due to the
front wall propagation. We present numerical simulations that
demonstrate the effectiveness of MESI in locating targets inside a
room with unknown dimensions or wall parameters and highlight
the robustness of our scheme to severe measurement noise.
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I. INTRODUCTION

Through-the-wall-imaging (TWI) is a technology that al-
lows for the detection of objects inside enclosed structures [1].
In TWI, a source emits an electromagnetic (EM) radar pulse
which propagates through the outside wall of the structure,
reflects off the internal targets then propagates back to a re-
ceiver antenna array [2]. However, depending on the dielectric
permittivity and permeability of the walls surrounding the
targets, the received signal is often corrupted with indirect
secondary reflections from the targets off of the internal walls
which result in ghost artifacts in the image domain.

Wall clutter mitigation techniques attempt to eliminate
ghost artifacts that arise from the multi-path reflections in TWI.
In [3] and [4], multi-path signal models are derived to associate
and map the multi-path ghosts to the true target locations,
thereby improving the radar system performance by reducing
false positives in the original SAR image. A physics based
approach to multi-path exploitation is proposed in [5] where
the imaging kernel of the back-projection method is designed
to focus specific propagation paths of interest. Recently, target
sparsity in TWI systems has been utilized for multi-path elim-
ination specifically in compressive sensing synthetic aperture
radar (SAR) architectures [6]. The approach incorporates the
sources of multi-path reflections of interest into a sparsifying

dictionary and solves a group sparse recovery problem to locate
the targets from randomly subsampled, frequency stepped SAR
data. However, all of the above techniques assume perfect
knowledge of the reflective geometry of the scene, which is
not necessarily feasible in practice.

In this paper, we propose a new algorithm for multi-
path removal in physical aperture and SAR TWI that does
not require any prior knowledge of the scene geometry. In
Section II we model the received signal at the radar array
as the sum of a primary response corresponding to the direct
path from the target objects, and a multiples’ response due
to the indirect multi-path reflections. Our approach relies on
the assumption that the scene is sparse in the image domain
which in turn translates to a sparse time-domain representation
of the primary response. Section III presents the proposed
multi-path elimination by sparse inversion (MESI) algorithm.
MESI first identifies the strongest impulse response of the
targets behind the wall and attributes that response to a primary
target. Second, a delay operator is computed that matches the
primary response to similar reflections in the residual data.
Third, the source waveform is updated to compensate for any
distortions that may arise from the EM propagation through
the wall. The three stages are then repeated until convergence.
We also extend the MESI algorithm to perform the recovery
in the image domain by introducing an imaging operator in
the first primary detection stage. Since the image domain is
incoherent with the time domain, the MESI algorithm can
therefore recover target objects and eliminate artifacts even
from compressive radar arrays where a random subset of the
receivers are active. Finally, we demonstrate experimentally
in section IV the effectiveness of our MESI algorithm in
eliminating the effect of multi-path reflections from an FDTD
simulated TWI scene with multiple targets. We also illustrate
the robustness of MESI to severe measurement noise as well as
its interpolative capability when the receiver array is randomly
subsampled.

II. SIGNAL MODEL

We consider a monostatic physical aperture radar with a
single source located in the center of a one-dimensional array
of nr receiving antennas. The radar array is placed parallel to
the external front wall. Let s(t) be the time-domain waveform
of the pulse that is transmitted by the source, and denote by
gp(t, n) the primary impulse response of the scene at each
receiver n ∈ {1, . . . nr} with walls but excluding multi-path
reflections,which is essentially a delayed version of impulse
response when there are no walls. Also denote by gm(t, n)



the impulse response of the multi-path reflections due to the
wall clutter as well as other reflecting surfaces in the scene.
Using a standard time-domain representation of the received
signal model, we express the received signal r(t, n) as follows

r(t, n) = s(t) ∗ (gp(t, n) + gm(t, n)) , (1)

where ∗ is the convolution operator.
Without loss of generality, suppose that there are K target

objects in the scene, each inducing a primary impulse response
gk(t, n) where the index k ∈ {1 . . .K}. The multiples’
impulse response can then be modeled by the convolution
of a delay operator dk(t) with the primary impulse response
gk(t, n) of each target object in the scene, such that,

gp(t, n) =
K∑

k=1

gk(t, n), gm(t, n) =
K∑

k=1

dk(t) ∗ gk(t, n).

(2)
Here we define the delay operator as a sequence of weighted
Dirac delta functions

dk(t) =
∑
i∈Λk

w(ti)δ(t− ti),

where ti is the extra time taken by the multiple to reach the
receiver from the ith multi-path source, w(ti) is the attenuation
weight of the ith path, and Λk is the set of all sources of
multi-path reflections contributing to the multiple repetitions
of object k. Consequently, the received signal model can
be written as the superposition of the primary and multiple
responses of all K objects in the scene as follows

r(t, n) =
K∑

k=1

s(t) ∗ (gk(t, n) + dk(t) ∗ gk(t, n)) . (3)

In a blind multi-path elimination scenario, we have no
information about the geometry of the scene, the sources
and/or paths of the multiple reflections, or the number of
sources present in the scene. Our objective is to find the
impulse responses gk(t, n) of all K objects using only the
received measurements r(t, n) and an estimate of the source
waveform s(t). It is obvious from (3) that the inverse problem
is non-convex and generally ill-posed. However, we make the
following general assumptions that render the problem well-
behaved:

A1. The primary reflections with the most direct path
between the receiver and the target objects have the strongest
response compared to that of the corresponding multi-path
reflections.

A2. The primary reflectors in the scene to be imaged and
the number of reflecting surfaces that induce the multi-path
are sparse.

III. MULTIPATH ELIMINATION BY SPARSE INVERSION

We formulate the multi-path elimination problem as that of
finding the primary impulse responses gk and the delay oper-
ators dk given the observed raw data r and source waveform
s. Define the forward model f(.) as

f(gk, dk, s) := s ∗ (gk + dk ∗ gk) . (4)

Therefore, we wish to solve the least-squares inverse problem

min
gk, dk ∀k ∈ {1 . . .K}

∥∥∥∥∥r −∑
k

f(gk, dk, s)

∥∥∥∥∥
2

. (5)

However, the function f(.) is non-convex in gk and dk, and
the inverse problem is ill-posed in general.

To make the problem well-posed, we introduce sparsity
constraints on gk and dk and tackle the non-convexity of f
in the variable space by following a block coordinate-descent
minimization which renders the problem convex in each of the
variables gk and dk separately. We call our approach multi-
path elimination by sparse inversion (MESI) and present it in
generalized form in Algorithm 1.

Algorithm 1 Multipath Elimination by Sparse Inversion

1: Input r, s, imaging operator W , subsampling operator R,
f̄ the adjoint of f , maxiter

2: Output gp, d
3: Initialize d = 0, gp = 0, gm = 0
4: for k = 1 to maxiter do
5: Solve for the update gk
6: rg = r − s ∗R(gp + gm)

7:
gk = arg min

g̃
‖rg − s ∗Rg̃‖2

s.t. ‖Wg̃(n)‖0 = 1,∀n ∈ {1, . . . nr}
8: gp = gp + gk
9: Solve for the delay operator dk

10: rd = r − s ∗R(gp + gm)
11: τk = ‖rd‖22/‖f̄(R, gk, rd, s)‖∞

12:
dk = arg min

d̃
‖rd − f(R, gk, d̃, s)‖2

s.t. ‖d̃‖1 ≤ τk
13: gm = gm + dk ∗ gk
14: Update the source waveform s (optional)
15: rs = r − s ∗R(gp + gm)

16: sk = arg min
s̃
‖rs −

k∑
j=1

f(R, gj , dj , s̃)‖2
17: s = s+ sk
18: end for

A. The basic MESI algorithm

The MESI algorithm is separated into two main minimiza-
tion stages. The first stage constitutes a sparse matched filtering
step in which the impulse response gk of the strongest reflector
in the residual downrange rg of all receivers is detected. The
residual downrange is given by rg = r − s ∗ (gp + gm),
where gp and gm are the estimated primary and multiple
impulse responses, both initialized to zero. Following from
assumption A1, we consider gk to be the primary impulse
response of a target object in the scene. The primary impulse
response update gk identifies a single spike for each receiver
that best approximates the data residual rg by solving the
sparse recovery problem

gk = arg min
g̃

‖rg − s ∗ g̃‖2
subject to ‖g̃(n)‖0 = 1,∀n ∈ {1, . . . nr}.

(6)

The primary impulse response is then updated such that gp =
gp +gk. This first stage of our algorithm parallels the CLEAN
algorithm introduced by Högbom in [7] for the identification
and deconvolution of point sources, although our algorithm is
not based on CLEAN.

In the second stage, we find a delay operator dk that
matches the detected impulse response gk with the remaining



reflections in the data residual rd = r − s ∗ (gp + gm). Here
we assume that all receivers view the multiple reflections of a
primary target gk with the same delay operator dk. Moreover,
assumption A2 indicates that the operator dk should be sparse,
which leads to the following LASSO problem

dk = arg min
d̃
‖rd − f(gk, d̃, s)‖2 subject to ‖d̃‖1 ≤ τk

(7)
where τk =

‖rd‖22
‖f̄(gk,rd,s)‖∞

, and f̄ denotes the adjoint of f .
The choice of τk ensures that the delay operator dk contains
only a small number of nonzero entries. Therefore, the nonzero
components in dk have to match gk with the strongest co-
herent multi-path reflections in rg while ignoring incoherent
responses and noise artifacts. The multiple impulse response
gm is then updated according to gm = gm + dk ∗ gk. The
above two stages are repeated until the maximum number of
iterations is reached or a preset data mismatch is reached.

B. Extensions

The structure of the MESI algorithm allows for direct
extensions that address multi-path elimination under a variety
of conditions.

For example, one can exploit the sparsity in the image
domain instead of the time domain by introducing an imaging
operator into the regularization term in (6). Let W be any
linear operator that maps the time domain received signal to
the down-range/cross-range image pixel domain, i.e.

W : Cnt×nr → CNx×Ny,

where nt is the number of time samples, Nx is the resolution
in the cross-range, and Ny is the resolution in the downrange.

Moreover, since the image domain is incoherent with the
time domain, performing the recovery in the image domain
allows for the use of MESI in the compressed sensing regime
where the receiving antennas are randomly subsampled using a
sampling operator R that selects a subset m of the nr receivers,
i.e.

R : {1, . . . nr} → Ω ⊆ {1, . . . nr}, |Ω| = m ≤ nr.

The generalized sparse recovery problem becomes

gk = arg min
g̃

‖rg − s ∗Rg̃‖2
subject to ‖Wg̃(n)‖0 = 1, ∀n ∈ {1, . . . nr},

(8)
and the forward model f(.) is rewritten as

f(R, gk, dk, s) := s ∗R (gk + dk ∗ gk) . (9)

Finally, we note that the source waveform s(t) can undergo
distortions due to the propagation of the EM wave through
dielectric walls. As a result, the received signal at the antenna
array is composed of the convolution of the primary and
multiple impulse responses with a modified waveform s̃(t).
Depending on the severity of the waveform distortion, the
impulse response estimation by matched-filtering stage may
exhibit artifacts.

We compensate for waveform distortions by adding a third
source waveform estimation stage to the MESI algorithm. In
this stage, we compute a least-squares update sk for the source
waveform by finding a least-squares fit between the forward

model and the data residual as follows

sk = arg min
s̃
‖rs −

k∑
j=1

f(gj , dj , s̃)‖2. (10)

We then use the updated source waveform s = s + sk in the
subsequent iterations of the MESI algorithm.
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Fig. 1: Schematic of the simulation layout.

No−wall signal

Receiver #

(a)

T
im

e 
(s

)

5 10 15 20

0.5

1

1.5

2

2.5

3

x 10
−8 With−wall signal

Receiver #

(b)

T
im

e 
(s

)

5 10 15 20

0.5

1

1.5

2

2.5

3

x 10
−8 Subsampled + noise

Receiver #

(c)

T
im

e 
(s

)

5 10 15 20

0.5

1

1.5

2

2.5

3

x 10
−8

Fig. 2: Received time domain radar reflections of the scene (a)
without the wall, (b) with a two layer wall, (c) with the wall,
subsampled receiver array, and additive measurement noise
resulting in a 5.4 dB channel.

IV. NUMERICAL EXPERIMENTS

To study the performance of our algorithm, we generate a
2.7m×2.7m room with 7 cylindrical targets placed as shown
in Fig. 1. A 21-element radar array is placed outside the front
(west) wall of the room with a standoff distance equal to
4.5cm. The wall has two layers. The thickness and relative
permittivity are 3cm and εr = 10 for the outer layer and
1.2cm and εr = 5 for the inner layer, respectively. The radar
transmitter is located at the center of the array and the 21
receiving elements are half-wavelength apart, which is 3cm for
the pulse central frequency fc = 5GHz. We then use a two-
dimensional FDTD simulator to emit a derivative of Gaussian
pulse from the transmitter and record the EM reflections at all
21 receivers. Fig. 2 illustrates the time-domain signal received
at the antenna array when (a) no walls are present, (b) two
layer walls are added to the perimeter of the room, and (c)
when the walls are present, the channel is noisy at 5.4 dB and
the receiver array is randomly subsampled such that half of
the receiving antennas are switched off.
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Fig. 3: Result of applying a beam forming operator to image the time domain data in Fig. 2 from (a) the no-wall signal, (b)
the with-wall signal, (c) the with wall signal contaminated with noise and subsampled receivers. The images after multi-path
elimination and denoising using MESI are shown in the bottom row for the solution (d) using time-domain sparsity, (e) using
image-domain sparsity, and (f) using image domain sparsity to recover from noise and subsampling. The red circles identify the
true locations of the targets. All images are shown in logarithmic scale.

Notice that the radar reflections in Fig. 2a still contain some
multi-path reflections from the other targets in the scene even
though there are no walls present. Moreover, the response of
the target in the top right corner of the room is completely
missing from the data due to the occlusion by its adjacent
target. The multi-paths are clearly visible in Fig. 2b as a
result of the walls of the room. In performing the recovery,
we first time-gate the received signals in order to mask the
direct front-wall reflections. Fig. 3a to 3c show the result
from beam forming the time-domain data shown in Fig. 2a to
2c, respectively. Notice that the beamformed images exhibit
a spatial shift due to the wall propagation and contain ghost
targets. Multi-path reflections from the top wall are also visible
in Fig. 3b resulting in ghost targets outside the room.

To eliminate the multi-path effects and denoise the data,
we apply the MESI algorithm that exploits sparsity in the
time-domain (Fig. 3d) and in the image-domain (Fig. 3e).
The figures show that MESI successfully eliminates the multi-
path reflections even from the top wall that is perpendicular
to the antenna array. Fig. 3f demonstrates the effectiveness
of the MESI algorithm in denoising and reconstructing the
image from the subsampled radar array data in Fig. 2c. The
imaged result contains significantly less clutter than Fig. 3c
although the top right targets are not identified due to the severe
subsampling.

In conclusion, we showed that the MESI algorithm is a
highly effective at eliminating wall-clutter and multi-path re-
flections from TWI data. The algorithm also successfully iden-
tifies targets from compressively sampled and noisy measure-
ments. Moreover, the simulation results demonstrate MESI’s

robustness to model mismatch since the FDTD setup does not
necessarily satisfy assumptions A1 and A2. Finally, we note
that the performance is best when the sources of the multi-path
reflections are parallel to the antenna array.
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