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Abstract
We study the problem of tracking a time-varying reference signal for constrained linear sys-
tems. The reference signal is the output of a linear system driven by an unknown bounded
input. The goal is to track the reference signal and never violate a predefined tracking er-
ror bound. The paper presents the design of a reference tracking controller satisfying state
and input constraints and guaranteeing the desired tracking error bound for all admissible
reference signals. A model predictive controller (MPC) enforcing a robust invariant set is
employed. We show how to compute the robust invariant set and how to design the tracking
MPC law which guarantees constraints satisfaction and persistent feasibility. Simulations
show the effectiveness of the proposed approach.
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Constrained Tracking with Guaranteed Error Bounds

Stefano Di Cairano, Francesco Borrelli

Abstract—We study the problem of tracking a time-varying
reference signal for constrained linear systems. The reference
signal is the output of a linear system driven by an unknown
bounded input. The goal is to track the reference signal and
never violate a predefined tracking error bound. The paper
presents the design of a reference tracking controller satisfying
state and input constraints and guaranteeing the desired track-
ing error bound for all admissible reference signals. A model
predictive controller (MPC) enforcing a robust invariant set is
employed. We show how to compute the robust invariant set
and how to design the tracking MPC law which guarantees
constraints satisfaction and persistent feasibility. Simulations
show the effectiveness of the proposed approach.

I. INTRODUCTION

The design of reference tracking controllers enforcing

inputs and state constraints has mainly followed two ap-

proaches. The approaches proposed in [1]–[8] are based on

model predictive control (MPC). MPC [9] uses a model of

the plant to predict the future evolution of the system and

to compute the optimal control strategy along a finite future

horizon. At each time step MPC optimizes a performance

index over a sequence of future input commands subject to

the system operating constraints. The first element of the

optimal sequence is the control action applied to the plant.

At the next time step a new optimization problem over a

shifted prediction horizon is solved. Research on reference

tracking MPC (see e.g., [1]–[8]) has focused on guaranteeing

asymptotic offset-free control for references that belong to

a specific class of signals when the constraints are inactive.

These approaches differ in the class of reference signals,

in the assumptions that guarantee offset-free control, and in

the MPC problem setup. In the aforementioned literature the

reference signal is usually the output of an autonomous linear

system.

An alternative approach to design reference tracking con-

trollers for constrained systems is based on reference gover-

nor [10]–[13]. A reference governor is a control algorithm

that modifies the reference signal as a function of the

system state to generate a virtual reference. The virtual

reference is then tracked by an existing linear controller. If

the reference governor is properly designed, the closed-loop

system satisfies state and input constraints, is asymptotically

stable, and exhibits asymptotic offset-free tracking [11]–[13].

In this paper we aim at designing a reference tracking con-

troller that satisfies state and input constraints and guarantees

a predefined bound on tracking error during both transient
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and steady-state. The tracking error bound is guaranteed

at all times for a class of reference signals which is more

general than what can be represented by the output of a linear

autonomous system. In particular, the reference signal is the

output of the “reference generator”. The reference generator

is a constrained linear system driven by an unknown input

belonging to a known bounded set. A bounded reference

signal with a bounded first derivative is the simplest class of

reference signal that can be modeled with this approach [14,

p. 159]. The recent work in [15] applies a similar reference

generator approach and characterizes the set of states to

which the tracking error converges. As opposed to reference

governor and virtual setpoint-augmented MPC [7], [15], the

proposed controller is not allowed to modify the reference

during execution.

In the proposed approach we compute the set of (plant

and reference) states for which there exists a control law

guaranteeing constraint satisfaction and the desired bound on

tracking error at all times and for all admissible references.

Such robust control invariant set is then enforced in a

model predictive control strategy. If the MPC problem is

initially feasible, the control strategy ensures that the system

constraints and the desired tracking error bound are satisfied

at all future steps, and for all admissible reference trajectories

produced by the reference generator. This paper shows how

to efficiently compute the robust control invariant set and

how to design the tracking MPC controller in order to

guarantee feasibility at all time instants.

The proposed control design is relevant in a number of

practical applications. For instance, in dual-stage automated

tooling machines, a slow stage with large workspace (also

called operating range) moves a stage that actuates the tool

with much faster dynamics and a limited workspace. Thus,

the tool workspace is the sum of the stages’ workspace.

Because of the stages timescale separation (often 2-3 orders
of magnitude), to ensure tool trajectory tracking it is enough

to control the slow stage so that the tool position reference is

always within the workspace of the fast stage. The method-

ology presented in this paper can be used to control the slow

stage so that it never violates the error bound consisting of

the fast stage workspace, for all admissible tool reference

trajectories. The automotive and aerospace industry are also

rich of potential applications. For instance, the desired engine

torque in SI engines is obtained by controlling airflow and

spark timing [16]. Due to limited spark timing authority, the

the airflow-generated torque must be controlled in a range

around the requested torque. In hybrid electric vehicles the

combustion engine power needs to be controlled so that the

difference with the driver-requested power can be achieved



by electric power [17]. Similar applications can be found

also in vehicle stability control with multiple actuators [18],

[19].

After reviewing some basic results in control invariant sets

and formalizing the problem in Section II, in Section III

we discuss how to synthesize the robust control invariant

set for tracking. In Section IV we discuss the design of the

tracking MPC controller that guarantees persistent feasibil-

ity, constraints satisfaction, and the desired tracking error

bounds. Finally, in Section V we show an example validating

the proposed approach, and in Section VI we draw our

conclusions and discuss future work.

Notation: R, R0+, R+ are the sets of real, nonnegative

real, positive real numbers, and Z, Z0+, Z+ are the sets of

integer, nonnegative integer, positive integer numbers. Unless

otherwise specified, ‖ · ‖ indicates either the 1 or ∞-norm,

and B(a, ρ) where a ∈ R
n, ρ ∈ R+ consistently indicates

either the 1 or∞-norm ball in Rn, centered in a and of radius

ρ. The results of this paper hold for consistently using either

1-norm, or ∞-norm. For a discrete time signal x ∈ R
n with

sampling period Ts, xt is the state a sampling instant t, i.e.,

at time Tst. The notation xk|t denotes the predicted value of

x at sample t+k, i.e., xt+k, based on data at sample t, and by

definition, x0|t = xt. By [x]i we denote the i-th component

of x, and, by I and 0 the identity and the “all-zero” matrices
of appropriate size.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, first we review some of useful results on

robust control invariant sets, then we formalize the problem

tackled in this paper. The following basic definitions and

results in robust control invariant sets for constrained systems

can be found in [20]–[23]. See [24] for a comprehensive

survey on set invariance in control.

A. Preliminaries on Invariant Sets

Consider the system

xt+1 = f(xt, ut, wt), (1)

where x ∈ R
n, u ∈ R

m and w ∈ R
d are the state, input and

disturbance vectors, respectively, subject to the constraints

xt ∈ X , ut ∈ U , wt ∈ W , ∀t ∈ Z0+. (2)

A robust control invariant set is a set of states for which

there exists a control law such that (1) never violates (2) for

any admissible sequence of disturbances.

Definition 1 (Robust control invariant set): A set C ⊆ X
is said to be a robust control invariant set for (1) if

xt ∈ C ⇒ ∃ut ∈ U : (3)

f(xt, ut, wt) ⊆ C, ∀wt ∈ W , ∀t ∈ Z0+.

The set C∞ is said to be the maximal robust control invariant

if it is a robust control invariant set and contains all the other

robust control invariant sets in X . ✷

The computation of robust control invariant sets relies on

the Pre-set operator

Pre(S,W) , {x ∈ X : ∃u ∈ U (4)

f(x, u, w) ⊆ S, ∀w ∈ W},

which computes the set of states of (1) that can be robustly

driven to the target set S ∈ R
n in one step.

The procedure to compute the maximal robust control

invariant set for system (1) subject to constraints (2) based on

the operator (4) is summarized by the following algorithm.

Algorithm 1 (Computation of C∞):

1) Ω0 ← X
2) Ωk+1 ← Pre(Ωk,W)
3) If Ωk+1 = Ωk

C∞ ← Ωk+1, return

4) k ← k + 1, goto 2.

✷

Algorithm 1 generates the sequence of sets {Ωk}
nω

k=0
,

nω ∈ Z0+, satisfying Ωk+1 ⊆ Ωk, for all k ∈ Z0+.

Algorithm 1 terminates if Ωk+1 = Ωk, and in this case Ωk is

the maximal robust control invariant set C∞ for (1) subject to

(2). See [20], [21] for details on termination of Algorithm 1.

Definition 2 (Input admissible set for C): Given a robust

control invariant set C for (1)-(2), the input admissible set

for state x ∈ C is

Cu(x) = {u ∈ U : f(x, u, w) ∈ C, ∀w ∈ W}.

✷

Definition 3: If system (1) is not subject to exogenous

disturbances (i.e.,W = ∅), the set C in Definition 1 is called
simply “control invariant set”.

✷

Next, we formally define the problem tackled in this paper.

B. Problem definition

Consider the system

xt+1 = Axt +But

yt = Cxt,
(5)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, input

and output vectors, respectively. System (5) is subject to the

constraints

xt ∈ X , ut ∈ U , ∀t ∈ Z0+. (6)

We study the problem of tracking with a predefined error

bound the time-varying reference signal yrt generated by the

reference model

rt+1 = Arrt +Brγt
yrt = Crrt,

(7)

where r ∈ R
nr , γ ∈ R

mr and yr ∈ R
p are the state, input,

and output vectors of the reference model, respectively.

The reference model (7) is subject to the constraints

rt ∈ R, γt ∈ Γ, (8)

and in what follows we assume that γ, the input to the

reference model (7), is selected by a reference generator

algorithm so that constraints (8) are satisfied.



At every time instant t ∈ Z0+, the reference generator

algorithm uses the current feasible reference rt to compute a

γt ∈ Γ such that the reference rt+1 at time t+1 is admissible,
i.e., rt+1 ∈ R. Thus, rt must belong to a control invariant

set Cr for (7), (8), and γt needs to be chosen accordingly.

By the definitions in Section II-A, the control invariant set

Cr for (7)-(8) is such that

rt ∈ Cr ⇒ ∃γt ∈ Γ : rt+1 ∈ Cr, ∀t ∈ Z0+. (9)

We denote by Cγ(r) the input admissible set associated to

Cr in (9).

Starting from r0 ∈ Cr, the reference generator algorithm
produces feasible references rt ∈ Cr, for all t ∈ Z0+,

by choosing γt ∈ Cγ(rt) as summarized by the following

assumption.

Assumption 1: At every t ∈ Z0+, given rt ∈ Cr, where
Cr is a known control invariant set of (7)-(8), the reference

generator algorithm enforces rt+1 ∈ Cr by selecting γt ∈
Cγ(rt). ✷

Note that if the reference system (7) is an integrator (Ar =
1, Br = 1, Cr = 1) then

C∞r = R, Cγ(r) = {γ ∈ Γ |r + γ ∈ R}.

Remark 1: The bounds on r induce state-dependent

bounds on γ because, for instance, when far from the border

of R (or Cr) not all the values of Γ are admissible for

γ. Indeed, r needs to be bounded otherwise the bounded

system (5) will not be able to always track it with a bounded

error. Furthermore, r, x needs in general to be bounded

for the computation of the robust control invariant set to

converge.

The results of this paper do not depend on the chosen

reference generator algorithm, as long as (8) is satisfied.

However, it is important to notice that the reference gen-

erator algorithm is separated from the tracking controller.

As opposed to [7], [15], the reference cannot be modified by

the controller. In addition, the reference generator algorithm

is unaware of the system state and constraints, as opposed

to the reference governor approaches [10]–[12], and its only

purpose is to guarantee that the reference signal is satisfying

its own constraints (8) at any time instant.

The problem we address in this paper is formalized as

follows.

Problem 1: Consider system (5) subject to constraints (6),

reference model (7) subject to constraints (8), and the

tracking error bound ǫ ∈ R+. Let R
N
t = [r′

0|t, . . . , r
′
N |t]

′,

N ∈ Z0+ be a reference profile satisfying Assumption 1.

Design a control law ut = κ(xt, R
N
t ), such that system (5)

in closed-loop with κ(xt, R
N
t ) satisfies constraints (6) and

guarantees

‖yt − yrt ‖ ≤ ǫ, (10)

for all admissible references rt ∈ R and for every t ∈ Z0+.

We denote by X0 the set of initial states and references

[x′
0, r

′
0]

′ for which κ(xt, R
N
t ) solves Problem 1. ✷

In Problem 1 the controller may have access to a predicted

future reference profile of length N ∈ Z0+. However, there

is no guarantee that such reference preview is correct, that is,

it is possible that rt+k 6= rk|t. In this way our results can be

used also for applications where the reference preview may

change in real-time, possibly unexpectedly.

III. ROBUST CONTROL INVARIANT SET FOR

BOUNDED ERROR TRACKING

Consider (5) subject to (6), (7) subject to (8), and define

Xx,r = {[x
′ r′]′ ∈ R

n × R
nr : x ∈ X , r ∈ R,

(Cx − Crr) ∈ B(0, ǫ)}. (11)

At any time t ∈ Z0+, given [x′
t r

′
t]
′ ∈ Xx,r, the control law

that solves Problem 1 must guarantee that [x′
t+1 r′t+1]

′ ∈
Xx,r for every admissible reference. To this end we construct

Cx,r ⊆ Xx,r that is a robust control invariant set for (5)-(7)

subject to (6), (8), (10), and robust to any γ ∈ Cγ(r). Cx,r
is such that

Cx,r ⊆ Xx,r, (12a)

[x′ r′]′ ∈ Cx,r ⇒ ∃u ∈ U : (12b)

[Ax+Bu,Arr +Brγ] ∈ Cx,r, ∀γ ∈ Cγ(r).

The implementation of Algorithm 1 for systems (5), (7)

subject to (6), (8) and (10) requires the computation of

Pre(Ωk, Cγ(r)) = {[x
′ r′]′ ∈ Xx,r : ∃u ∈ U ,

[(Ax+Bu)′, (Arr +Brγ)
′]′ ∈ Ωk, ∀γ ∈ Cγ(r)}, (13)

where Ωk ⊆ Xx,r. The computation of (13) is involved

even if Ωk, Cγ(r), Xx,r and U are polyhedral. In fact γ,

which has the effect of a disturbance, belongs to the state

dependent set Cγ(r). In [25], [26], an algorithm was proposed

to compute (13), that results in an invariant set described as

union of polyhedra, which is, in general, non-convex. We

propose next an algorithm which exploits the decoupling of

the dynamics (5) and (7) to compute a polyhedral invariant

set Cx,r. The resulting Cx,r is, in general, a subset of the

maximal one obtained from the algorithms in [25], [26].

Algorithm 2 (Computation of Cx,r):

1) Initialization:k = 0, M0 = C, L0 = Cr , B̄0 =
B(0, ǫ), X0 = X ,

Ω̄0 = {[x′ r′]′∈ Xx,r : x ∈ X , r ∈ Cr,

(Cx − Crr) ∈ B(0, ǫ)}. (14)

2) write Ω̄k as

Ω̄k = {[x′ r′]′∈ Xx,r : x ∈ Xk, r ∈ Cr,

(Mkx− Lkr) ∈ B̄k}. (15)

3) Ω̄k+1 = Pref (Ω̄k,Γ) where

Pref (Ω̄k,Γ) =

{[x′ r′]′ ∈ Xx,r : ∃u ∈ U , Ax+Bu ∈ Xk,

r ∈ Cr,

Mk(Ax +Bu)− Lk(Arr +Brγ) ∈ B̄k,

∀γ ∈ Γ}. (16)



4) if Ω̄k+1 = Ω̄k

then Cx,r ← Ω̄k+1, return

5) Mk+1 = MkA, Lk+1 = LkAr,

Xk+1 = Pre(Xk)

= {x ∈ X : ∃u ∈ U , Ax +Bu ∈ Xk},

B̄k+1 = {v ∈ R
p : ∃u ∈ U , ∃b ∈ B̄k

v = b−MkBu+ LkBrγ,

∀γ ∈ Γ} (17)

6) k = k + 1, goto 2.

✷

Theorem 1: Let Assumption 1 hold, and let Algorithm 2

converge in a finite number of iterations. Then, the output

Cx,r of Algorithm 2 is a robust control invariant set for (5),

(7) subject to (6), (8), (10) and robust to any γr ∈ Cγ(r).
Proof (sketch): Due to limited space we present the

logical structure of the proof. Details will be reported in

full in an extended publication. Let X0 = X , R0 = R,
and Rk+1 = Pre(Rk, Cγ(r)) = {r ∈ R : Arr + Brγ ∈
Rk, ∀γ ∈ Cγ(r)}.
Consider Algorithm 1 (based on (13)) and Algorithm 2,

and the corresponding sequences of sets {Ω0, Ω1, . . .}
and {Ω̄0, Ω̄1, . . .}, respectively. The proof uses induction

arguments. Assume that at step k:

1) Ωk can be written as

Ωk = {[x′ r′]′ ∈ Xx,r : x ∈ Xk, r ∈ R,

(Mkx− Lkr) ∈ Bk}, (18)

where

Bk+1 = {v ∈ R
p : ∃u ∈ U , ∃b ∈ Bk

v = b−MkBu+ LkBrγ, ∀γ ∈ Cγ(r)}

2) Ω̄k can be written as (15)

3) Ω̄k ⊆ Ωk.

We prove that: (i) Ωk+1 can be written as in (18), (ii) Ω̄k+1

can be written as in (15), and (iii) Ω̄k+1 ⊆ Ωk+1.

Remark 2: The modifications to Algorithm 1 to obtain

Algorithm 2 are as follows. First, we as domain of the ref-

erence we use Cr instead of Rk. Second, we robustify (16),

(17) with respect to Γ instead of Cγ(r). These modifications
remove the dependency of the reference model input from the

current reference model state, r. Thus, we ignore that close

to the boundaries of the reference set not all the reference

model inputs can actually be applied. This introduces some

conservativeness in the invariant set computation. On the

other hand the resulting invariant set is a polyhedron and

its calculation is much faster and memory efficient. ✷

Remark 3: An alternative way of defining the robust con-

trol invariant set Cx,r is

Cx,r ⊆ Xx,r (19a)

[x′ r′]′ ∈ Cx,r ⇒ ∀γ ∈ Cγ(r) ∃u ∈ U :

[Ax+Bu,Arr +Brγ] ∈ Cx,r. (19b)

In (19) by inverting the ∀ and ∃ quantifiers compared to (12)
we imply that γt (and thus the next reference rt+1) is known

to the controller at any time t. This has two implications.

First, the control law κ solving Problem 1 will be a function

of xt, rt and γt. Second, the set on initial states and

referencesX0 where Problem 1 admits a solution will include

the one obtained when using (12). However, in this case,

the reference rt+1 implemented by the reference generator

algorithm at time t+ 1 cannot differ from r1|t used by κ at

time t, i.e., perfect preview of at least one step is needed.

We are currently investigating solutions based on (19).

IV. RECEDING HORIZON CONTROL

WITH GUARANTEED TRACKING ERROR BOUND

The robust control invariant set Cx,r computed in Sec-

tion III defines the set of states and references for which there

exists an input that allow any future admissible reference

signal to be tracked within the allowed error bound while

enforcing system’s constraints. Given the current state xt ∈
X and reference rt ∈ Cr, there are multiple ways to compute
the input ut ∈ U such that [x′

t+1 r′t+1] ∈ Cx,r. In this section
we propose an approach based on model predictive control.
At time t ∈ Z0+, let the state xt ∈ X and the reference

state trajectory along a future horizon of length N ∈ Z+,
RN

t = [r′
0|t, . . . , r

′
N |t]

′, be given. Rt is assumed to have been

generated by the reference generator algorithm according
to Assumption 1. Solve the finite horizon optimal control
problem,

gU (xt, R
N
t ) = argmin

Ut

N−1∑

k=0

q(yk|t − yr,k|t, uk|t) (20a)

s.t. xk+1|t = Axk|t +Buk|t, (20b)

yk|t = Cxk|t, (20c)

y
r
k|t = Crrk|t, (20d)

[x′
k|t, r

′
k|t]

′
∈ Cx,r, (20e)

uk|t ∈ U , (20f)

x0|t = xt, (20g)

k = 0, . . . , N (20h)

where Ut = [u′
0|t, . . . , u

′
N−1|t]

′, and q is a convex stage

cost Let U∗
t = [u∗

0|t
′, . . . , u∗

N−1|t
′]′ be the optimal solution

of (20). The first element of U∗
t is applied to system (5),

hence obtaining the control law

gRHC(xt, R
N
t ) = [I 0 · · · 0]gU(xt, R

N
t ). (21)

At time t + 1, the optimization problem (20) is solved

based on the new state x0|t+1 = xt+1, and RN
t+1. The next

theorem presents sufficient conditions guaranteeing persistent

feasibility of the MPC control law (20), (21).

Theorem 2: Consider system (5) and reference model (7)

subject to constraints (6), (8), respectively, and tracking con-

straint (10). Let Assumption 1 be satisfied by the reference

generator algorithm, and r0|t+1 = r1|t for all t ≥ 0. Let
Cx,r be a robust control invariant set for (5), (7) subject to

constraints (6), (8), (10), robust to any γr ∈ Cγ(r), and let

ut = gRHC(xt, R
N
t ). If (20) is feasible at time t, then (20) is

feasible for all t̄ ∈ Z0+, t̄ ≥ t. Moreover, constraints (6) and

(10) are satisfied by the closed-loop system.



The proof follows the reasoning of classical recursive

feasibility proofs of MPC, and it is omitted here due to

limited space.

In Theorem 2 the role of the predicted reference trajectory

RN
t = [r′

0|t, . . . , r
′
N |t]

′ computed by the reference generator

algorithm at time t is evident. Starting from a r0|t, the

reference generator algorithm selects a feasible sequence of

inputs γ0|t, . . . , γN−1|t to model (7) and communicates to the

tracking algorithm the sequence RN
t = [r′

0|t, r
′
1|t, . . . , r

′
N |t]

′.

At t + 1, the reference generator algorithm is initialized

with r1|t = r0|t+1 and the procedure is repeated. Therefore,

at t + 1 the future references r1|t+1, . . . , rN−1|t+1 can be

different from r2|t, . . . , rN |t.

Remark 4: The results of Theorem 2 hold for any feasible

controller gU (xt, R
N
t ) for problem (20), regardless of its

optimality, i.e., at each step t, only a feasible solution of

the optimization problem (20) is needed. ✷

Corollary 1: Under the assumptions of Theorem 2, con-

troller gRHC solves Problem 1 and X0 , Cx,r. ✷

Remark 5: Consider the control invariant set Cx,r, and
the associated input admissible set Cu(x, r). If prob-

lem (20) is augmented with the additional constraint u0|t ∈
Cu(x0|t, r0|t), then the assumption r0|t+1 = r1|t can be

removed from Theorem 2 and persistent feasibility is still

guaranteed since [x′
t, r

′
t]
′ ∈ Cx,r ✷

If the predicted reference along the horizon is guaranteed

not to change, a slightly modified optimal control problem

can be formulated. The control invariant set constraint is

enforced only at the end of the prediction horizon, resulting

in a larger feasible region. Details are omitted here due to

limited space.

It shall be noted that in this paper we only focus on

reference tracking with guaranteed error bounds, and hence

we do not require steady state convergence to the reference.

However, it is immediate to include an integral action [27],

[28] for constant references, or use the disturbance model

approach (e.g., [2], [8]) in order to obtain also steady

state offset free tracking, when the reference is eventually

coinciding with the output of a linear autonomous system.

V. EXAMPLES

We present an example where a second order underdamped

system has to track a reference generated by a (different)

second order underdamped system driven by a bounded

input.

We consider the second order system

ẋ =

[

−2 −2
2 0

]

x+

[

4
0

]

u (22a)

y =
[

0 5
]

x, (22b)

subject to constraints

−0.1 ≤ u ≤ 0.1,

[

−0.04
−0.015

]

≤ x ≤

[

0.04
0.015

]

. (23)

We sample (22) with sampling period Ts = 0.1s to ob-

tain (5). The reference model (7) is obtained by sampling

with Ts = 0.1s

ṙ =

[

−4 −6.25
4 0

]

r +

[

2
0

]

γ (24a)

yrt =
[

0 3.125
]

r, (24b)

where (24) has oscillatory modes with damping ratio 0.4
and settling time 2s. In this example Γ = {γ ∈ R : γ− ≤
γ ≤ γ+}, γ+ = −γ− = 0.06, and ǫ = 0.04. We compute

the robust control invariant Cx,r using Algorithm 2, where

for Cr and Cγ(r) the maximal robust control invariant sets

C∞r and C∞γ (r) are used, respectively. Algorithm 2 converges

after 6 iterations.
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Fig. 1. Simulation of example system in closed-loop with the proposed
controller.

In Figure 2 we show a closer look to part of the simulation,

which highlights the complex system behavior due to the

two objectives of keeping the tracking error bounded while

minimizing the control effort.

We design the MPC tracking controller (20), (21) with

q(yk|t − yr,k|t, uk|t) = u2
k|t and prediction horizon N = 3.
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Fig. 2. Simulation of example system in closed-loop with the proposed
controller. System output and reference in part of the simulation.

Figure 1 depicts the closed loop system behavior when the

initial state is x0 = [0.04 0.003]′ for a reference profile which
satisfies Assumption 1.

Figure 1 shows that the synthesized control algorithm is

effective in maintaining the tracking error within the desired

bounds at every time step, while satisfying input and state

constraints.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a design technique for tracking con-

trollers for constrained systems that guarantees satisfaction of

constraints on system states and inputs, and predefined error

bounds on the tracking error at every time step, for all the

reference trajectories generated by a constrained linear sys-

tem driven by a bounded input. The control design is based

on a model predictive controller enforcing a robust control

invariant set. We have proposed an algorithm to compute the

robust control invariant set, and proved persistent feasibility

of the MPC controller. In future works we will develop

alternative formulations for the robust control invariant set

and MPC controller and consider problems such as recovery

an reference design.
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