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Abstract
This paper considers a nonlinear constrained optimal control problem (NCOCP) originated
from energy optimal trajectory planning of servomotor systems. Solving the exact optimal
solution is challenging because of the nonlinear and switching cost function, and various con-
straints. This paper proposes a method to manage the switching cost function to establish
a set of necessary conditions of an NCOCP. Specifically, a concept ”sub-trajectory” is intro-
duced to match multiple Hamiltonian due to switches in the cost function. Necessary condi-
tions on the optimal trajectory is established as a union of conditions for all sub-trajectories
and Weierstrass-Erdmann corner conditions between sub-trajectories. The set of feasible
structures of optimal trajectories is further identified and represented by various state tran-
sition diagrams for the servomotor application. A decomposition-based shooting method is
proposed to compute an optimal trajectory by solving multi-point boundary value problems.
Simulations and experiments validate the effectiveness of the methodology and the energy
saving benefit.
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Abstract

This paper considers a nonlinear constrained optimal control problem (NCOCP) originated from energy optimal trajectory
planning of servomotor systems. Solving the exact optimal solution is challenging because of the nonlinear and switching cost
function, and various constraints. This paper proposes a method to manage the switching cost function to establish a set
of necessary conditions of an NCOCP. Specifically, a concept “sub-trajectory” is introduced to match multiple Hamiltonian
due to switches in the cost function. Necessary conditions on the optimal trajectory is established as a union of conditions
for all sub-trajectories and Weierstrass-Erdmann corner conditions between sub-trajectories. The set of feasible structures of
optimal trajectories is further identified and represented by various state transition diagrams for the servomotor application.
A decomposition-based shooting method is proposed to compute an optimal trajectory by solving multi-point boundary value
problems. Simulations and experiments validate the effectiveness of the methodology and the energy saving benefit.
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1 Introduction

Trajectory planning, together with path planning, are
two major steps in a wide range of applications, for in-
stance motion control in factory automation systems,
aircrafts, robotics, unmanned aerial vehicles etc. A ref-
erence trajectory shall not only define the speed pattern
to meet certain performance, but also have a smooth
profile to avoid exciting natural modes of a plant. A ma-
jority of existing work focus on the time optimal trajec-
tory planning in order to maximize a plant’s productiv-
ity for instance, Lambrechts et al. (2005); Toacse and
Culpi (1976); Park and Won (1991); La-orpacharapan
and Pao (2004); Vasak et al. (2007) etc. The time opti-
mal or approximate time optimal trajectory generation
have been intensively studied in the past decades and
result in numerous sound work including dynamic pro-
gramming approach Shin and Mckay (1986); Singh and
Leu (1987), minimum principle approach Chang (1963);

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author Y. Wang. Tel. +1-617-621-7500. Fax +1-
617-621-7550.

Email addresses: yebinwang@ieee.org (Yebin Wang),
Ueda.Koichiro@da.MitsubishiElectric.co.jp (Koichiro
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Bobrow et al. (1985); Shiller and Lu (1992); Shin and
Mckay (1985), optimization-based approach Verscheure
et al. (2009) etc. A time optimal trajectory is not always
desirable because it disregards the energy consumption
of the motion control system, and can lead to a high
peak power as well as a waste of energy.

Another important criteria to generate a reference tra-
jectory is the energy consumption. This is practically
meaningful in factory automation due to the fact that
motion control systems consume approximately 65% of
the electricity in industry Worrell et al. (2009). Work in
this area includes the motor system steady state energy
optimization Abrahamsen et al. (1998); Ghozzi et al.
(2004), energy-optimal control scheme for incremental
motion drive Trzynadlowski (1988); Sheta et al. (2009),
a heuristic approach Dodds (2008); Vittek et al. (2010).
Work Trzynadlowski (1988); Sheta et al. (2009); Dodds
(2008); Kim and Kim (2007) does not address speed
and acceleration constraints thus leads to a conservative
design. Work Zhao et al. (2013) considers various con-
straints but with a smooth quadratic cost function thus
conventional minimum principle is applied.

This paper focus on the energy optimal trajectory plan-
ning for a motion control system comprising a servomo-
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tor as an actuator. Particularly, the motion control sys-
tem is performing a single-axis point to point position-
ing task. A reference trajectory is generated to minimize
a cost function reflecting a trade-off between the energy
consumption and tracking time. Minimizing the cost
function subject to various constraints is posed as a non-
linear constrained optimal control problem (NCOCP).

The difficulty to obtain the analytical solution of an
NCOCP is well understood, and seeking a numerical so-
lution has been an important topic for decades. Numer-
ical methods for trajectory planning are usually catego-
rized into direct Verscheure et al. (2009); Elnagar et al.
(1995); Fahroo and Ross (2000); Gong et al. (2006) and
indirect methods Shin and Mckay (1986); Bobrow et al.
(1985); Shin andMckay (1985). Model predictive control
technique has been applied to solve free final time tra-
jectory planning Richards and How (2003); Shim et al.
(2003); Singh and Fuller (2001), while its application
to fixed final time problems is limited. Direct methods
represents a large class of algorithms which discretize
an NCOCP into a mathematical programming problem
over finite dimensional parameter space. Direct colloca-
tion Verscheure et al. (2009); Ascher et al. (1981) and
pseudo-spectral Elnagar et al. (1995); Fahroo and Ross
(2000) are two main techniques used in the discretiza-
tion. Indirect methods resort to solve necessary condi-
tions derived from the Minimum Principle Pesch (1989);
Gergaud and Haberkorn (2006); Pesch (1994), which
usually ends up with boundary value problems. Com-
pared to indirect methods, direct methods have advan-
tages in capabilities to handle complicated constraints
and performancemetrics, and having relative robustness
to initial guesses. It however suffers from issues such as
convergence speed and low accuracy of solutions, espe-
cially for cases where optimal solutions switch. Pseudo-
spectral methods improves the convergence speed but
assumes optimal solutions are smooth. Indirect methods
usually yield a solution with very high accuracy Pesch
(1994) but requires the structure of the optimal solution
as a priori. Limitations of indirect methods includes two
folds: the derivation of necessary conditions is not always
easy Gong et al. (2006); the determination of the struc-
ture information of the optimal solution is usually dif-
ficult. Recent work Verscheure et al. (2009) formulates
a class of NCOCP as a convex optimization problem.
However Verscheure et al. (2009) assumes a model with-
out viscous friction, and does not consider switching cost
functions. Readers can refer to Verscheure et al. (2009);
Gong et al. (2006); Betts (1998) and references therein
for detailed review of techniques in numerical methods
of NCOCP.

This paper considers an NCOCP having a switching
cost function, which is result from hardware limitations
in prevailing factory automation systems. Although an
NCOCP with a switching cost function might be put
in the hybrid system framework and studied by hy-
brid maximum principle Sussmann (1999); Garavello

and Piccoli (2005); Shaikh and Caines (2007), bi-level
optimization scheme Vasudevan et al. (2012); Wardi
and Egerstedt (2012), this paper uses the conventional
Minimum Principle and the Optimal Principle instead,
which is more natural. This is because the NCOCP
studied in this paper has switches based on a function
of state and control variables. This is different from the
a vast of literatures in optimal control of hybrid systems
where switches, represented by discrete-time inputs, are
free to design. This paper is also substantially differ-
ent from prior work Wang et al. (2012) by providing
a more concise and rigorous derivation of necessary
conditions, and including the analysis of structures of
optimal trajectories, a novel decomposition-based al-
gorithm to solve the resultant multi-point boundary
value problems (MBVPs), and experimental results.
The main contribution of this paper is two fold. First,
this paper proposes a systematic method to derive nec-
essary conditions for NCOCPs having switching cost
functions. The proposed method is complementary to
existing work. Second, this paper solves the energy opti-
mal motion planning for a servomotor system using the
proposed method and validates the effectiveness of this
approach by simulations and experiments. Specifically,
a key concept “sub-trajectory” is introduced to match
each piece of the piecewise Hamiltonian defined accord-
ing to the switching cost function. Necessary conditions
of the optimal trajectory are established as a combina-
tion of necessary conditions of each sub-trajectory and
the Weierstrass-Erdmann corner conditions between
sub-trajectories. The complete set of feasible structures
of optimal trajectories is studied on the basis of nec-
essary conditions. Transitions between sub-trajectories
are analyzed by using the Weierstrass-Erdmann corner
condition, and transitions between arcs within each
sub-trajectory are investigated through necessary con-
ditions of the sub-trajectory. Feasible structures of
optimal trajectories can be simply presented by various
state transition diagrams, where each state represents
either one sub-trajectory or arc. The identified set of
feasible structures has a finite number of elements,
thus eliminates the major handicap in applying indi-
rect methods to this problem. A decomposition-based
shooting algorithm is proposed to solve the resultant
MBVPs to compute the optimal trajectory. Simulations
and experiments are also performed to validate the de-
sign methodology and energy saving benefits. While it
is well-understood the difficulty to compute optimal so-
lutions of complex NCOCPs from necessary conditions,
the methodology to establish such a set of necessary
conditions for NCOCPs with switching cost function or
dynamics is general and is of theoretical interest.

This paper is organized as follows. In Section 2, the tra-
jectory planning is formulated as a nonlinear constrained
optimal control problem. Section 3 presents the deriva-
tion of necessary conditions. Section 4 identifies the com-
plete set of feasible structures of optimal trajectories.
In Section 5, a decomposition-based shooting method is
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presented to solve multi-point boundary value problems
and various simulation examples show the effectiveness
of the proposed design methodology and algorithm. Ex-
perimental results are provided in Section 6 to validate
the methodology and energy saving benefit.

2 Preliminary

Consider the following second order servomotor model

Iθ̈ = Kτu− c̄− d̄θ̇,

where θ is the rotation angle of the motor, I is the sum
of load and servo motor inertia, Kτ is the torque con-
stant of the servo motor, d̄ is the viscous friction coeffi-
cient, c̄ is the Coulomb friction, and u is the input cur-
rent. For low inertia servomotors, it is fair to model the
Coulomb friction has a constant magnitude. Although
the Coulomb friction changes its sign according to the
velocity, this is not considered here because of the in-
troduction of non-negative velocity constraints. Given
x = (x1, x2)

T = (θ, θ̇)T , the plant model is written in
the state space form

ẋ = Ax+Bu+ C,

A =

[

0 1

0 −d

]

, B =

[

0

b

]

, C =

[

0

−c

]

,
(1)

where d = d̄/I, c = c̄/I, b = Kτ/I. The real servomo-
tor dynamics has minor nonlinearity due to saturation,
hysteresis etc. Considering the Linear Time Invariant
(LTI) model (1) is without loss of generality because the
proposed methodology can be readily generalized to the
nonlinear physical plant case.

2.1 Loss Models

A simple characterization of the energy consumption of
servomotors is the copper loss, which is consistent with
the following quadratic cost function

E(u) =

∫ tf

0

u2 dt. (2)

The loss model (2) may not be valid for certain types of
motors, for instance, high speed or large power servomo-
tors. This paper considers the energy consumption com-
bining iron loss, switching loss of amplifiers, mechanical
work, as well as copper loss, which is written as

P (x, u)=Ru2+Kex
2
2u

2+Kh |x2| |u|
γ
+Ks |u|+Kτux2,

where R is the resistance of the servo motor, Ke and Kh

are constant coefficients of eddy current and hysteresis
losses, γ is the Steinmetz constant, and Ks is a constant

coefficient of the switching loss. During the deceleration
period, P (x, u) could be negative. This means that the
servomotor performs as a generator and converts the
mechanical work into electricity. The generated electric-
ity however cannot flow back to the utility grid. Thus
we consider the minimization of the following cost func-
tional for a servo system

E(x, u) =

∫ tf

0

Q(x(t), u(t)) dt,

Q(x(t), u(t)) = max(0, P (x(t), u(t))),

(3)

where tf is the tracking time specified by users.

2.2 Problem Statement

The reference trajectory generation is treated as an open
loop optimal control design problem as follows.

Problem 1 Given the plant (1), the initial state x(0) =
x0 = (0, 0)T , the final state x(tf ) = xf = (r, 0)T , and
the final time tf , find the control u∗ which minimizes the
cost function E(x, u) subject to acceleration and velocity
constraints

0 ≤ x2 ≤ vmax, |ẋ2| ≤ amax, (4)

where vmax, amax, r are known constants.

Problem1 is reduced to time optimal trajectory planning
if tf is the minimal feasible tracking time. To simplify the
presentation and focus on the energy optimal trajectory
planning, we introduce the following assumption.

Assumption 2 The final time tf in Problem 1 is larger
than the time optimal case.

Control constraint, present in motion planning litera-
tures e.g. Shin and Mckay (1985), is omitted in Problem
1 due to its similarity to acceleration constraint such
that the presentation is simplified. On the other hand,
max velocity and acceleration instead of control limita-
tion are imposed as constraints because they generally
appears as specifications of a servo system, and are more
intuitive to customers. Problem 1 with the cost function
(2) has been studied intensively. For instance, by includ-
ing the tracking error penalty in (2), the model predic-
tive control has been applied and leads to a quadratic
programming problem. Since both the cost function and
the constraints are convex, the resultant numerical opti-
mization problem has a global minimum. This property
however does not hold for Problem 1 with the cost func-
tion (3).

Numerous techniques have been proposed to treat in-
equality constraints, e.g. the integral penalty function
approach considers the optimal control problem with a
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new cost functional which penalizes heavily along trajec-
tory violating constraints, relaxation approaches intro-
duce slack variables to convert the inequality constraints
into equality constraints. This paper adjoins inequality
constraints to form the Lagrangian such that necessary
conditions can be derived.

3 Conditions on Optimal Trajectories

Necessary conditions of an optimal trajectory for a state
constrained optimal control problem have been investi-
gated since 1960s. Sets of necessary conditions can be
obtained in different ways. For instance, Jacobson et al.
(1971), as an example of direct adjoining approach, es-
tablishes necessary conditions by directly adjoining the
Hamiltonian to the state constraint in order to form the
Lagrangian. This paper follows the same treatment of
the state constraint as the indirect adjoining approach
Pontryagin et al. (1962), where a state constraint is first
converted into a mixed state control constraint, then the
Lagrangian is formed by adjoining the Hamiltonian and
the resultant mixed state control constraint. Interested
readers are referred to Pesch (1994); Jacobson et al.
(1971); Pontryagin et al. (1962); Hartl et al. (1995); A.
E. Bryson, Jr. and Ho (1975) for details. For a state con-
straint, the following definition applies.

Definition 3 A. E. Bryson, Jr. and Ho (1975) The one
dimensional state constraint has an order of q if

S(k)(x) = 0, 0 ≤ k ≤ q − 1,

S(q)(x, u) = 0,

where S(k)(x) is computed by differentiating S(x) k times
with respect to time.

The velocity constraint in Problem 1 is a pure state con-
straint. We exemplify the utilization of indirect adjoin-
ing approach to convert g1(x) = x2 − vmax ≤ 0 into a
mixed state control constraint. Taking time derivatives
of g1(x) until the control u appears, we have ġ1(x) =
−dx2− c+ bu. Hence, g1(x) ≤ 0 is equivalent to the for-
mula: −dx2 − c+ bu ≤ 0, if x2 = vmax, which prevents
the trajectory from violating the constraint g1(x) ≤ 0.
The equivalent constraint of g2(x) = −x2 ≤ 0 can be
similarly obtained. Thus the velocity constraint is con-
verted into a mixed state control constraint as follows

ḡ1(x, u) = −dx2 − c+ bu ≤ 0, if x2 = vmax

ḡ2(x, u) = dx2 + c− bu ≤ 0, if x2 = 0.
(5)

Note two constraints in (5) cannot be active at the same
time because the original state constraints x2−vmax ≤ 0
and −x2 ≤ 0 cannot be active at the same time. The ac-
celeration constraint is a mixed state control constraint

g3(x, u) = −dx2 − c+ bu− amax ≤ 0

g4(x, u) = −amax + dx2 + c− bu ≤ 0.
(6)

The importance of existence conditions of optimal solu-
tions for an optimal control problem was well received
since 1960s. Representative work includes Filippov
(1962); Cesari (1966). Combining the acceleration and
velocity constraints, we know the control input u lies in
a compact set

U(x) =

{

u|
−amax + dx2 + c

b
≤ u ≤

amax + dx2 + c

b
,

ġ1(x) ≤ 0 if g1(x) = 0, ġ2(x) ≤ 0, if g2(x) = 0}

Problem1 is a Pontryaginproblem.We can further verify
the Roxin’s condition holds, i.e., for every (t, x), the set

N(x) =
{
(z0, z)|z0 ≥ Q(x, u),

z = Ax+Bu+ C, u ∈ U(x)} ∈ R
3

is a convex subset of R3. Given the compactness of U(x)
and the convexity of N(x), (Cesari, 1966, Thm. 1) en-
sures the existence of optimal solutions.

3.1 Treatment of the Switching Cost Function

Non-differentiability ofQ(x, u) prevents us from a direct
application of the Minimum Principle and its extended
results. Given the switching cost function, we introduce
notation of sub-trajectories

S1 : {t|P (t) > 0}, S1 = S11 ∪ S12,

S11 : {t|P (t) > 0, u(t) > 0},

S12 : {t|P (t) > 0, u(t) < 0},

S2 : {t|P (t) ≤ 0},

and rewrite the cost function E =
∫

S11
P (t) dt +

∫

S12
P (t) dt+

∫

S2
0 dt.By the Optimal Principle Bellman

(1957), each sub-trajectory of S11,S12 and S2, which be-
longs to the entire optimal trajectory, is optimal. Thus
necessary conditions of the entire optimal trajectory
include necessary conditions of each sub-trajectory and
junction conditions between sub-trajectories. Necessary
conditions of each sub-trajectory can be established by
applying the Minimum Principle on the Hamiltonian
corresponding to the sub-trajectory. Introducing the no-
tation of sub-trajectory also simplifies the determination
of the set of feasible structures of optimal trajectories.
Next we apply theorems in Hartl et al. (1995) to estab-
lish necessary conditions over different sub-trajectories
of S1,S2 using corresponding Hamiltonian. Notation:
H1 and L1 are the Hamiltonian and Lagrangian over
S1; H11, H12 and L11, L12 are the Hamiltonian and
the Lagrangian over S11,S12 respectively; and H2 and
L2 are the Hamiltonian and Lagrangian over S2. To
simplify presentation, we drop out the arguments in
H11, H12, H1, H2, H, L11, L1, L12, L2.
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3.2 Necessary Conditions over S1

Given P (x, u) > 0 and the mixed state control con-
straints (5)-(6), we take the following Hamiltonian

H1 = P (x, u) + λT (Ax +Bu+ C), (7)

and the Lagrangian L1 = H1+ H̄1, where H̄1 = µTGv +
νTGa and Gv = [ḡ1, ḡ2]

T ,Ga = [g3, g4]
T . Lagrange mul-

tipliers µ ∈ R
2, ν ∈ R

2 satisfy conditions

µTGv = 0, µ ≥ 0,

νTGa = 0, ν ≥ 0.

Next we consider conditions on the optimal control.

3.2.1 Optimal Control

The Hamiltonian H1 and the Lagrangian L1 are not dif-
ferentiable at u = 0. We express H1 and L1 piecewisely,

H1 =

{
H11 = P1 + λT (Ax+Bu+ C), u > 0

H12 = P2 + λT (Ax+Bu+ C), u < 0,

L1 =

{
L11 = H11 + H̄1, u > 0,

L12 = H12 + H̄1, u < 0,

(8)

where P1 = P (x, u) with u > 0, and P2 = P (x, u) with
u < 0. We denote the positive control u+ over S11

u+ = arg min
P>0,u>0

H11, (9)

and the negative control u− over S12

u− = arg min
P>0,u<0

H12. (10)

Proposition 4 Given γ > 1 and x2 ≥ 0, (9) has a
unique solution u+.

Proof: Since u > 0 implies P (x, u) > 0, (9) is written as

u+ = arg min
0<u≤upacc

H11,

where upacc = (amax + dx2 + c)/b is the positive accel-
eration constrained control. If u+ is on the boundary
of its feasible domain, it is uniquely determined. Other-
wise, given γ > 1, we verify that the Legendre-Clebsch
condition holds over S11,

H11uu =
∂2H11

∂u2
= 2R+2Kex

2
2+γ(γ−1)Khx2u

γ−2 > 0.

Since the feasible control set is convex, andH11 is strictly
convex, we conclude the uniqueness of u+. �

We have a similar proposition about u−.

Proposition 5 Given γ > 1 and x2 ≥ 0, (10) has a
unique solution u−.

Assuming that at any time instant, only one constraint
is active 1 , then the control on constrained arcs is readily
obtained as follows

u =







uvel, velocity constraint is active,

upacc, ẋ2 − amax ≤ 0 is active,

unacc, −amax − ẋ2 ≤ 0 is active,

(11)

where uvel =
dx2+c

b
, unacc =

−amax+dx2+c
b

.

3.2.2 Costate Dynamics

Since x2 ≥ 0, the partial derivative of L1 w.r.t. x is well-
defined. The costate dynamics are written as follows

λ̇ =−
∂L1

∂x
(12)

The costate variable is continuous at the entry point of
the unconstrained arcs. For constrained arcs, we shall
determine µ, ν and jump conditions of λ at their entry
points. Since jumps of costate arise from interior points
conditions, acceleration constraints will not incur dis-
continuity of the costate at the entry of acceleration con-
strained arcs A. E. Bryson, Jr. and Ho (1975). Denot-
ing the entry time of an acceleration constrained arc as
tentry, the corresponding costate dynamics are written
as (12) with µ = 0 and ν solved from

L11u =
∂L11

∂u
= 0, g3 = 0, (13a)

L12u =
∂L12

∂u
= 0, g4 = 0, (13b)

and the entry condition λ(t+entry) = λ(t−entry). Equation
(13a) has a solution

ν1 =
−1

b
{2Ru+ 2Kex

2
2u+ γKhx2u

γ−1

+Ks +Kτx2 + bλ2}.
(14)

To ensure ν1 ≥ 0, λ2 should be negative. Equation (13b)
has a solution

ν2 =
1

b
{2Ru+ 2Kex

2
2u− γKhx2(−u)γ−1

−Ks +Kτx2 + bλ2}.
(15)

1 This assumption is required to satisfy the constraint qual-
ification (Hartl et al., 1995, (28)), which means the gradients
of all active constraints w.r.t. u must be linearly indepen-
dent. This assumption is generally true for considered ser-
vomotor systems.
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On the other hand, the velocity constraint may incur
jumps of the costate. Since the velocity constraint is an
order one state constraint, it will not become active as
a touch point, i.e., the velocity constraint is active over
arcs. For the constraint g1 ≤ 0, we have jump conditions
at the entry point of a velocity constrained arc

λ(t+entry) = λ(t−entry)− π1

(
∂g1
∂x

)T

(t−entry)

H11(t
+
entry) = H11(t

−
entry).

(16)

where π1 ∈ R is a Lagrange multiplier satisfying π1 ≥ 0
and π1g1 = 0. Similarly, for the constraint g2 ≤ 0, jump
conditions are

λ(t+entry) = λ(t−entry)− π2

(
∂g2
∂x

)T

(t−entry),

H11(t
+
entry) = H11(t

−
entry),

where π2 ∈ R is a Lagrange multiplier satisfying π2 ≥ 0
and π2g2 = 0. The costate dynamics over a velocity
constraint arc are written as (12) with ν = 0. The La-
grange multiplier µ is determined from L11u = 0 with
u = uvel > 0. We solve L11u = 0 for

µ1 =
−1

b
{2Ru+ 2Kex

2
2u+ γKhx2u

γ−1

+Ks +Kτx2 + bλ2}, g1 = 0

µ2 =
−1

b
{2Ru+Ks + bλ2}, g2 = 0.

(17)

where u = uvel.

Remark 6 When the velocity constraint is active, u > 0
and P (x, u) > 0. Hence, the velocity constrained arcs
always belong to S1. Similarly, the arcs where the positive
acceleration constraint g3 ≤ 0 is active belong to S1. For
the negative acceleration constraint g4 ≤ 0, u = unacc is
generally negative, which may render P (x, u) < 0.

3.3 Necessary Conditions over S2

Interval set S2 is characterized by the constraint
P (x, u) ≤ 0 which requires u ≤ 0. According to Re-
mark 6, over intervals S2, the Hamiltonian H2 =
λT (Ax + Bu + C) and the Lagrangian L2 = H2 + H̄1

except µ = 0, ν1 = 0, i.e., L2 = λT (Ax+Bu+C)+ν2g4.
The Lagrangian L2 is differentiable w.r.t. x and u. The
corresponding costate dynamics are

λ̇1 = 0,

λ̇2 = −λ1 + dλ2 − dν2.
(18)

For the case where the negative acceleration constraint
is active over S2, we have

L2u =
∂L2

∂u
= bλ2 − bν2 = 0,

and solve ν2 = λ2. The λ2 dynamics is given by λ̇2 =
−λ1. Note the sign condition of ν2 requires λ2 ≥ 0 when
the negative acceleration constraint is active over S2.

For the unconstrained case, ν2 = 0, thus L2 is written as

L2 = H2 = λ1 + λ2(dx2 + c) + bλ2u.

It is clear that if λ2 6= 0, the optimal control is in the
form of Bang-Bang. Otherwise, if λ2 ≡ 0, we have a
singular control arc. We have the following conclusion
about the existence of singular arcs for Problem 1. Given
Proposition 7, necessary conditions can be utilized to
construct an optimal solution. Proposition 7 however
does not establish the uniqueness of the optimal solution.

Proposition 7 An optimal trajectory of Problem 1 does
not include a singular arc.

Proof: We assume that a singular arc exists, and try to
derive a contradiction. Because the optimal control is
uniquely defined over constrained arcs, we only need to
consider the unconstrained arcs. Clearly sub-trajectories
S1 do not include a singular arc. We only consider un-
constrained arcs over S2, where the costate dynamics are

λ̇1 = 0,

λ̇2 = −λ1 + dλ2.
(19)

The fact that λ2 ≡ 0 over a singular arc and (19) im-

plies λ1 ≡ 0. Since λ̇1 ≡ 0, we know λ1 ≡ 0 over [0, tf ],

and λ̇2 = dλ2. Clearly, the singular arc cannot succeed a
negative acceleration constrained arc or a negative un-
constrained arc over S2 since both requires λ2 > 0. If
the singular arc is after S11, the Weierstrass-Erdmann
corner condition between S11 and S2 requires λ2 contin-
uous at the transition time t1, i.e., λ2(t

−
1 ) = 0. However,

given a non-positive λ2, there does not exist a solution
u+ of (9). A contradiction is resulted thus S11 cannot
precede the singular arc. Similarly, if a S12 precedes the
singular arc, λ2(t

−
1 ) = 0 gives a positive solution u− of

(10), and leads to a contradiction. Therefore, λ2 cannot
be zero at the entry of the singular arc. If λ2 is non zero,
it will not become zero over the entire arc due to its dy-
namics. The proof is completed. �

We consider the case when λ2 = 0 at finite points. Since
P (x, u) ≤ 0 allows a larger domain of admissible control
than P (x, u) ≤ −ǫ < 0, the control over unconstrained
arcs should be solved from

argmin
u

H2 subject to P (x, u) ≤ 0. (20)
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It can be shown that given γ > 1, x2 ≥ 0, the inequality
P (x, u) ≤ 0 gives a convex domain D ⊂ R

− ∪{0}. Since
H2 is a linear function of u, (20) has a unique minimizer
u0. Given the domain D and the sign of λ2, we have the
unconstrained optimal control over S2

u0 =

{
min{D}, λ2 > 0,

max{D} = 0, λ2 < 0.
(21)

3.4 Weierstrass-Erdmann Corner Conditions

Previously we established the necessary conditions of
each sub-trajectory based on individual Hamiltonian.
Here we derive junction conditions rising from switches
among sub-trajectories S11,S12, and S2. These condi-
tions are referred as the Weierstrass-Erdmann corner
conditions Kirk (1970) and can be established by using
calculus of variations. We exemplify the derivation of
necessary conditions of the switch from S11 to S12.

Without loss of generality, we assume the switch from
S11 to S12 happens at t1 and simplify the cost

E =

∫ t1

0

(L11 − λẋ) dt+

∫ tf

t1

(L12 − λẋ) dt.

Considering the variations δt1, δx, δλ, δu, we have

δE = (L11 − λẋ)(t−1 )δt1 +

∫ t1

0

(δL11 − ẋδλ− λδẋ) dt

− (L12 − λẋ)(t+1 )δt1 +

∫ tf

t1

(δL12 − ẋδλ− λδẋ) dt

= (L11 − λẋ)(t−1 )δt1 − (L12 − λẋ)(t+1 )δt1

− λδx

∣
∣
∣
∣

t
−

1

0

− λδx

∣
∣
∣
∣

tf

t
+

1

+

∫ t
−

1

0

(δL11 − ẋδλ+ λ̇δx)
︸ ︷︷ ︸

β1

dt

+

∫ tf

t+
1

(δL12 − ẋδλ+ λ̇δx)
︸ ︷︷ ︸

β2

dt.

Since x(tf ), x(0) are fixed, we have δx(tf ) = 0, δx(0) =
0. Also, Euler equation implies β1 = 0, β2 = 0. Given
δx(t−1 ) = δx∗−ẋ(t−1 )δt, and δx

∗ is arbitrary, the junction
conditions at time t1 are rewritten by

(L11 − λẋ+ λẋ)(t−1 )− (L12 − λẋ + λẋ)(t+1 ) = 0,

−λ(t−1 ) + λ(t+1 ) = 0.

The junction conditions due to the transition from S11

to S12 at the switch time t1 are given by

H11(t
−
1 ) = H12(t

+
1 ),

λ(t−1 ) = λ(t+1 ).
(22)

Conditions of switches for other cases can be similarly
obtained and take the same form as (22). The first equa-
tion in (22) not only infers that the piecewise Hamil-
tonian is continuous along the optimal trajectory, but
also determines the switch time t1. The second equation
in (22), used in the proof of Proposition 7, implies the
continuity of the costate variables during the transitions
among sub-trajectories of S11,S12, and S2. The junction
conditions (22) will be used extensively in Section 4 to
determine structures of optimal trajectories. Given the
continuity of state, (22) is equivalent to

P1(t
−
1 )− P2(t

+
1 ) + bλ2(t

−
1 )(u(t

−
1 )− u(t+1 )) = 0. (23)

3.5 Optimality

Previously we show (9), (10), and (20) has a unique min-
imizer respectively. Here we aim to show argminu∈U H
has a unique minimizer. We introduce notation

U+ : U(x) ∩ R
+,

D : [z1, 0],

D12 : {U(x) ∩ R
−} \D,

where z1 denotes the negative real root of P (x, u) = 0.
If P (x, u) = 0 has only one real root, z1 = 0. We have
the following result on determining the optimal control.

Theorem 8 Given the control set U(x) and the piece-
wise Hamiltonian H, the formulae argminu∈U H has a
unique minimizer which takes the expression as follows

u =







u+, u+is solvable from (9),

u−, u−is solvable from (10),

u0, otherwise.

(24)

Detailed proof of Theorem 8 is omitted due to space
limitation. The key to show Theorem 8 is to verify the
strict convexity of Q(x, u) and the domain D12, which
is tedious but not difficult to establish. Theorem 8 not
only excludes the possibility that both u+ and u− can
be solved from (9) and (10) respectively, but also implies
if u+ ∈ U+ is solved from (9), then

min
u∈U

H(u) = H11(u+) = min
u∈U+

H11(u);

if u− ∈ D12 is solved from (10), then

min
u∈U

H(u) = H12(u−) = min
u∈U

−

H12(u);

if both u+ and u− cannot be solved from (9) and (10)
respectively, then minu∈U H = minu∈D H2.
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4 Structures of Optimal Trajectories

Wefirst analyze the order of sub-trajectories correspond-
ing to S11,S12, and S2 respectively on the basis of the
Weierstrass-Erdmann corner condition, then derive the
structure of each sub-trajectory. We have the following
main result.

Theorem 9 An optimal solution of Problem 1 has the
following properties:

(I) the optimal trajectory always starts with a S11 type
of sub-trajectory;

(II) a S11 type of sub-trajectory can be followed by a S2

type of sub-trajectory;
(III) a S2 type of sub-trajectory can be followed by a S12

type of sub-trajectory;
(IV) no other transitions between sub-trajectories are

allowed.

Theorem 9 can be illustrated by a state transition dia-
gram shown in Figure 1, where arrowed lines represent
feasible transitions. Figure 1 means that only transitions
from S11 to S2, and from S2 to S12 are allowed. Also
the optimal trajectory always starts with a S11 type of
sub-trajectory.

11
S

2
S

12
S

Start

Fig. 1. State transition diagram between S11,S2,S12

Before proving Theorem 9, we first show the following
proposition.

Proposition 10 The costate λ2 of the optimal trajec-
tory of Problem 1 is either monotonically increasing or
decreasing over a S2 type of sub-trajectory.

Proof: We recall that the costate dynamics over a S2 type
of sub-trajectory, denoted by S2, is written as follows

λ̇1 = 0,

λ̇2 =

{
−λ1 + dλ2, unconstrained arcs,

−λ1, negative acceleration constrained arcs.
(25)

In the beginning of S2, if −λ1(t1) + dλ2(t1) < 0, then

λ̇2 < 0 over the entire S2, i.e., λ2 monotonically de-
creases. If −λ1(t1) + dλ2(t1) > 0, then λ̇2 > 0 over the
entire S2, i.e., λ2 monotonically increases. For negative
acceleration constrained arcs, we already show λ1 can-
not be zero in the proof of Proposition 7. Hence, we have
λ2 monotonically increases if λ1 < 0, decreases if λ1 > 0.
This completes the proof of the proposition. �

Next we provide the proof of Theorem 9.

Proof: Proof of (I). An optimal trajectory cannot be-
gin with a S12 type of sub-trajectory because the decel-
eration over S12 at the initial time leads to a negative
velocity, thus the velocity constraint is violated. Alter-
natively, if the optimal trajectory begins with a S2 type
of sub-trajectory, the velocity constraint will not be vi-
olated only if the plant maintains zero velocity over the
entire S2 sub-trajectory. Such a trajectory which does
not make full use of tracking time is not energy opti-
mal. 2

Proof of (II). Assume that a S11 type of sub-trajectory
S11 is part of the optimal trajectory, and the sub-
trajectory is followed by other sub-trajectories. We
denote a S12 and a S2 type of sub-trajectories as S12, S2

respectively. Sub-trajectories S11, S2, S12 correspond to
Hamiltonian H11, H2, H12 respectively. Contradiction is
used to show that S11 cannot be followed by S12. Assume
that S11 is followed by S12. The Weierstrass-Erdmann
corner condition between S11 and S12 is written as (22),
where t1 is the transition time from S11 to S12. From
λ2(t

−
1 ) = λ2(t

+
1 ) and the continuity of state at t1, we

can verify that 0 ≤ u+(t
−
1 ) ≤ u−(t

+
1 ), where u+ and

u− are solved from (9) and (10) respectively. This con-
tradicts the fact that S12 is a type of S12. Hence, a S11

type of sub-trajectory S11 can only be followed by a S2

type of sub-trajectory.

We next show (III). The Weierstrass-Erdmann cor-
ner condition between S2 and S11 is used to derive a
contradiction to show the claim (III). The Weierstrass-
Erdmann corner condition between S2 and S11 is written
as follows

P1(x, u) + bλ2(t
+
1 )u(t

+
1 ) = bλ2(t

−
1 )u(t

−
1 ), (26)

where t1 is the transition time from S2 to S11, and
λ2(t

−
1 ) = λ2(t

+
1 ). Equation (26) can be rewritten as

0 ≤ P (x, u) = bλ2(t
−
1 )(u(t

−
1 )− u(t+1 )).

Claim (I) means there exists a S11 switching to S2 at t0,
and λ2(t

−
0 ) = λ2(t

+
0 ). By Proposition 10, if λ2 increases

over S2, we know by the end of S2, λ2(t
+
1 ) > λ2(t

+
0 ).

Hence, the solution of (9), denoted by u+(t
+
1 ), is nega-

tive. This contradicts the fact that control over S11 has
to be positive. On the other hand, if λ2 decreases over
S2, we have u(t

−
1 ) = 0, and rearrange (26)

P1(x, u) = −bλ2(t
−
1 )u(t

+
1 ), u(t+1 ) > 0. (27)

2 Assume an optimal trajectory has a zero control over[0, t1],
and a positive control over [t1, t2]. It is not difficult to con-
struct a new trajectory with the positive control defined over
[t1 − δt, t2] based on the original trajectory and verify that
the new trajectory yields a lower cost.
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Equation (27) can be reduced to

Ru+Kex
2
2u+Khx2u

γ−1 +Ks +Kτx2 + bλ2 = 0,

which gives a solution u(t+1 ) > u+(t
+
1 ). A contradiction

is derived, thus (III) is shown.

Proof of (IV). The proofs of (II) and (III) show that
the transitions from S11 to S12, and from S2 to S11 are
not allowed. We only need to show that another two
transitions, from S12 to S2, and from S12 to S11, are
impossible.We first assume the transition from S12 to S2

at time t1. The Weierstrass-Erdmann corner condition
is written as

P2(x, u) + bλ2(t
−
1 )u(t

−
1 ) = bλ2(t

+
1 )u(t

+
1 ), (28)

where λ2(t
−
1 ) = λ2(t

+
1 ). We know λ2(t

−
1 ) is necessary

positive to ensure (10) gives a negative solution. Since
u−(t

−
1 ) from (10) is always greater than u(t−1 ) satisfy-

ing (13b), the left hand side of (28) is non-negative.
Meanwhile, since λ2(t1) > 0, we have u(t+1 ) < 0 over S2,
and the right hand side is negative. A contradiction is
derived, and the transition from S12 to S2 is not allowed.
To show that the transition from S12 to S11 at time t1 is
impossible, we also use contradiction. The Weierstrass-
Erdmann corner condition is written as (22). Over S12,
λ2(t

−
1 ) > 0, on the other hand, over S11, λ2(t

+
1 ) < 0. A

contradiction to the Weierstrass-Erdmann corner condi-
tion is resulted. We therefore prove that the transition
from S12 to S11 at time t1 is impossible. �

Applying Theorem 9 leads to the following conclusions.

Theorem 11 An optimal trajectory of Problem 1 takes
one of the following structures

(I) a S11 type of sub-trajectory;
(II) a S11 type of sub-trajectory followed by a S2 type

of sub-trajectory;
(III) a S11 type of sub-trajectory followed by a S2 type

of sub-trajectory and a S12 type of sub-trajectory
sequentially.

4.1 Structures of a Sub-Trajectory S11

Prior to showing the structure of the sub-trajectory S11,
we first prove some useful results.

Proposition 12 The optimal control over the sub-
trajectory S11 is continuous.

Proof: We have verified the Hamiltonian H11, corre-
sponding to S11, is convex in u, thusH11 is regular. From
(Hartl et al., 1995, Lem. 4.3), one concludes the conti-
nuity of u. �

Remark 13 Similar to Proposition 12, one can show
that the optimal control over the sub-trajectory S12 is
continuous.

The optimal control discussed in Section 3 implies that
the S11 sub-trajectory could consist of three types of
arcs: positive acceleration constrained arc S+

pa, uncon-

strained positive control arc S+
pu, and velocity con-

strained arc S+
pv. We have the following proposition

about the structure of the sub-trajectory S11.

Proposition 14 The last arc of the sub-trajectory S11

has to be a unconstrained positive control arc;

Proof: If the optimal trajectory only consists of the sub-
trajectory S11, the last arc cannot be a velocity con-
strained arc since it violates the terminal state condi-
tions. Also, the last arc cannot be a positive acceleration
constrained arc in order to avoid the violation of the pos-
itive velocity constraint. This is because from the con-
tinuity of state and control contradictory, and the zero
velocity condition at the final time, the positive acceler-
ation control at the final time implies the existence of a
left neighborhood B−(tf , ǫ) : {t ∈ (tf − ǫ, tf)} such that
the velocity in B−(tf , ǫ) is negative. This fact violates
the velocity constraint.

If the optimal trajectory includes a S2 sub-trajectory,
contradiction is used to show that only a unconstrained
positive control arc can precede the sub-trajectory S2.
Assume a positive acceleration constrained arc is the last
arc of S11. The Weierstrass-Erdmann corner conditions
between S11 and S2 are written as (22), which gives

P1(t
−
1 ) + bλ2(t

−
1 )u(t

−
1 ) = bλ2(t

+
1 )u(t

+
1 ), (29)

where λ2(t
−
1 ) is clearly negative to ensure the positive ac-

celeration constrained control. Thus λ2(t
+
1 ) < 0, which,

according to the established expression of the optimal
control in S2, implies u(t+1 ) = 0. Hence, (29) is rewritten
as follows

P1(t
−
1 ) + bλ2(t

−
1 )u(t

−
1 ) = 0, (30)

which can be further reduced to

Ru+Kex
2
2u+Khx2u

γ−1+Ks+Kτx2+ bλ2 = 0. (31)

Denoting the optimal control solved from (31) as u(t−1 )
and the optimal control solved from H11u = 0 as ū(t−1 ),
and comparing (31) to H11u = 0, we know u(t−1 ) >
ū(t−1 ) > upacc. This is impossible because ū(t−1 ) violates

the acceleration constraint and u(t−1 ) can be taken as
the optimal control over the positive acceleration con-
strained arc. The contradiction means the last arc of S11

cannot be a positive acceleration constrained arc.
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Assume a velocity constrained arc is the last arc of S11.
Equations (30) and (31) also hold. We can solve λ2 from
(31) and substitute the solution into (17), and have

µ1 =
−1

b
{2Ru+ 2Kex

2
2u+ γKhx2u

γ−1 +Ks +Kτx2−

(Ru+Kex
2
2u+Khx2u

γ−1 +Ks +Kτx2)}

=
−1

b
{Ru+Kex

2
2u+ (γ − 1)Khx2u

γ−1} < 0.

The fact µ1 < 0 contradicts the necessary condition:
µ1 ≥ 0 over the velocity constrained arc. The proposition
is shown. �

It is quite difficult to derive a complete list of feasible
structures of sub-trajectory S11 for Problem 1 with (3).
We consider a simplified cost function to get more ele-
gant results. For the rest of paper, we consider Problem 1
with the following simplified cost function, though some
results still hold for Problem 1 with (3)

E =

∫ T

0

max(0, Ru2 +Ks|u|+Kτx2u) dt. (32)

Theorem 15 An S11 type of sub-trajectory, which is a
part of an optimal solution of Problem 1 with the cost
function (32), only admits the following transitions be-
tween arcs:

(I) from a positive acceleration constrained arc S+
pa to

a unconstrained control arc S+
pu;

(II) from a unconstrained control arc S+
pu to a velocity

constrained arc S+
pv;

(III) from a velocity constrained arc S+
pv to a uncon-

strained control arc S+
pu.

+

paS
+

puS
+

pvS
Start

Start

Fig. 2. State transition diagram between arcs in S11

Theorem 15 can be illustrated by the state transition
diagram in Figure 2. A sub-trajectory S11 can start with
S+
pa or S+

pu, but can only exit from S+
pu. We readily know

that a S11 sub-trajectory can only have at most one
S+
pa. On the other hand, the loop between S+

pu and S+
pv

requires further analysis.

Proof: A sub-trajectory S11 could consist of three types
of arcs, which yields 6 possible transitions. Theorem 15
includes three possible transitions.We therefore use con-
tradiction to show that the other three transitions are
impossible. Clearly we can verify that the transitions
between positive acceleration constrained and velocity
constrained arcs are impossible because the discontinu-
ity of control at the transition time is resulted.

We next focus on the derivation of a contradiction if a
transition from unconstrained control arc to positive ac-
celeration constrained arc is assumed at time t1. Con-
sider the costate dynamics over a unconstrained control
arc as in (12), where µ = ν = 0. Since ν1 is taken s.t.
(13a) holds, and the unconstrained control at t1 satisfies

H11u = 0, we have ν1(t1) = 0. Hence, λ̇2(t1) is continu-
ous. Next we show at t1,

λ̇2(t1) < ρ = −
1

b

(
damaxR

b
+Kτamax

)

. (33)

Since the optimal control at t1 also satisfies H11u = 0
which is obviously continuous differentiable, we take its
time derivative and haveRu̇+Kτ ẋ2+bλ̇2 = 0. The time
derivative of u at t1 is written as

u̇ = −
Kτ ẋ2 + bλ̇2

R
. (34)

From (34), we know u̇(t1) > u̇pacc = damax/b, otherwise,
no switch from the unconstrained arc to the positive
acceleration constrained arc could happen. This requires

λ̇2(t1) ≤ ρ < 0. (35)

As we shown previously, the positive acceleration con-
strained arc has to switch to another positive uncon-
strained control arc. Assume this switch happens at time
t2, with t2 > t1. The switch from a positive acceleration
constrained arc to a positive unconstrained arc happens
because u̇(t2) ≤ u̇pacc, where u(t2) satisfies H11u = 0.
Similarly, we have

λ̇2(t2) ≥ ρ < 0. (36)

Combining (35) and (36), we have

λ̇2(t2) ≥ λ̇2(t1), (37)

which is the necessary condition to enable to switches
from positive unconstrained arc to positive acceleration
constrained arc at t1, and from positive acceleration con-
strained arc to positive unconstrained arc at t2. On the
other hand, it is straightforward to verify u(t2) > u(t1).
Combining the fact that x2(t2) > x2(t1), the costate dy-

namics (12) at t1, t2 implies λ̇2(t2) < λ̇2(t1).This contra-
dicts (37). We therefore prove the switch from a positive
unconstrained arc to a positive acceleration constrained
arc is impossible. �

Proposition 16 An optimal sub-trajectory S11 com-
prises at most one velocity constrained arc.

Proof: Assuming there exists a switch from a velocity
constrained arc to a positive unconstrained control arc
at t1, we need to show there does not exist a switch from
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the positive unconstrained control arc to another veloc-
ity constrained arc at t2 > t1. We have the time deriva-
tive of H11u = 0 as in (34). Also, we have ẋ2(t1) ≤ 0,
otherwise the velocity constraint will be violated over
the succeeding unconstrained arc. Due to the interior
point constraints, we also know that at the exit point
of the velocity constrained arc, the velocity trajectory
has to be tangential which means u̇(t1) = 0. Hence, we

know λ̇2(t1) ≥ 0. But ẋ2 cannot remain zero over uncon-
strained arc, because ẋ2 = 0 means the trajectory is still
on the velocity constrained arc. Hence, ẋ2 becomes nega-
tive in the neighborhood B(t1, ǫ) : t1 < t < t1+ ǫ, ǫ > 0.
Combining this observation with the costate dynamics
over unconstrained arc, we know λ̇2(t) > λ̇2(t1)0 for
time t > t1 since 2K2x2u

2 +Kh|u|
γ +Kτu decreases as

x2 decreases. λ̇2(t) > 0 over the positive unconstrained
arc implies λ2(t) > λ2(t1). Given λ2(t) > λ2(t1), it is
impossible to have u(t) over the positive unconstrained
arc s.t. u(t) = uvel. �

Given Theorem 15 and Proposition 16, we are able to
establish the set of feasible structures of S11.

Theorem 17 Given a S11 sub-trajectory as a part of
an optimal trajectory of Problem 1 with the cost func-
tional (32), its structure must belong to the following set

(I) a positive unconstrained arc;
(II) a positive acceleration constrained arc followed by

a positive unconstrained arc;
(III) a positive unconstrained arc followed by a velocity

constrained arc and a positive constrained arc;
(IV) a positive acceleration constrained arc followed by

a positive unconstrained arc and a velocity con-
strained arc and a positive unconstrained control
arc.

4.2 Structures of a Sub-Trajectory S2

As shown in Section 3, a sub-trajectory S2 can include
three types of arcs: zero control arc S−

0 , negative accel-
eration constrained arc S−

na, and negative unconstrained
control arc S−

nu. Following Proposition 14, we have the
following observation about the structure of S2.

Proposition 18 A sub-trajectory S2 always begins with
a zero control arc.

Proof: Proposition 14 shows S11 ends with a positive
unconstrained control arc. Assume the transition time
is t1. We have λ2(t

−
1 ) ≤ 0, u(t−1 ) ≥ 0, and P1(t

−
1 ) ≥ 0.

Meanwhile, the optimal control over S2 is non-positive,
i.e., u(t+1 ) ≤ 0. Given these facts, the switching condition
between S11 and S2, denoted by (29), holds if and only
if u(t−1 ) = u(t+1 ) = 0. Proposition is shown. �

Proposition 18 allows us to enumerate the complete list
of possible structures of a S2 type sub-trajectory.

Theorem 19 Assume the optimal solution of Problem 1
comprises of a S2 sub-trajectory. The S2 sub-trajectory
must take one of the following structures

(I) a zero control arc;
(II) a zero control arc followed by a negative accelera-

tions constrained arc;
(III) a zero control arc followed by a negative uncon-

strained control arc;
(IV) a zero control arc followed by a negative accelera-

tion constrained arc and a negative unconstrained
control arc respectively;

−

0
S

−

naS

−

nuS
Start

Fig. 3. State diagram of transitions between arcs in S2

Theorem 19 can be summarized by the state transition
diagram in Figure 3, where three types of transitions are
allowed. Proof of Theorem 19 is omitted because of space
limitation and the similarity to that of Theorem 15.

4.3 Structures of a Sub-Trajectory S12

A sub-trajectory S12 can include two types of arcs: neg-
ative unconstrained control arc S+

nu, and negative ac-
celeration constrained arc S+

na. Similar to the structure
analysis of S11, we consider Problem 1 with the simpli-
fied cost functional (32). We have the following result
about the structure of a sub-trajectory S12.

Theorem 20 Assume the optimal solution of Problem
1 with the cost function (32) comprises of a S12 sub-
trajectory. The S12 sub-trajectory must take one of the
following structures

(I) a negative unconstrained control arc;
(II) a negative unconstrained control arc followed by a

negative acceleration constrained arc;
(III) a negative acceleration constrained arc.

+

nuS
+

naS
Start Start

Fig. 4. State diagram of transitions between arcs in S12

Theorem 20 can be summarized by the state transition
diagram in Figure 4. Proof of Theorem 20 is omitted
because of space limitation and the similarity to that of
Theorem 15.

5 Computation of Optimal Trajectories

Section 3 establishes necessary conditions as a set of
ordinary differential equations and nonlinear algebraic
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equations which are piecewisely defined. Given the struc-
ture of the optimal trajectory, necessary conditions can
be formulated a Multi-Point Boundary Value Problem
(MBVP). Section 4 analyzes the feasible structures of
optimal trajectories for Problem 1 with the cost func-
tional (32), which enables the use of indirect methods
for this particular problem. Since there are only finite
number of elements in the structure set, it is not expen-
sive to identify the structure of the optimal trajectory
by either performing exhaustive enumeration or iterative
active-set type of searches. Hence, this section only con-
centrates on a customized algorithm to solve an MBVP,
i.e., the knowledge of the structure of the optimal tra-
jectory is assumed and the MBVP to be solved is well-
defined. Interested readers are referred to Ascher et al.
(1987); Pesch (1994) for details about MBVPs.

5.1 A Decomposition-Based Shooting Algorithm

An MBVP can be effectively solved by multiple shoot-
ing methods Bock and Plitt (1984); Pasic (1999);
Fraser-Andrews (1999). A shooting algorithm generally
includes defining parameters and boundary conditions,
generating initial guess of parameters, and iteratively
updating parameters until boundary conditions are
satisfied. Different techniques are proposed to update
parameters e.g. Newton methods Nocedal and Wright
(2006), continuation method Ohtsuka (2004). Com-
pared to conventional multiple shooting methods, the
proposed method introduces a different parameteriza-
tion scheme of MBVPs, and a decomposition-based
algorithm to update parameters. As for the parame-
terization, we only treat the state and costate values
at switches between arcs and switch times as parame-
ters. Thus the proposed method is a mix of single and
multiple shooting methods. The goal of this parameter-
ization is to reduce the computation load by reducing
the number of parameters. Clearly, the proposed param-
eterization scheme scarifies the convergence property
compared to conventional multiple shooting methods,
for instance, more sensitive to initial guesses. This
motivates the decomposition-based parameter update
algorithm given in Figure 5.

The proposed parameter update algorithm relies on the
partition of parameters into at least two sets. Similarly,
boundary conditions are partitioned into at least two
sets. A typical choice of parameter partition scheme is:
take the state and costate values as the first set, and
switch times as the second set. Accordingly, the first set
of boundary conditions is chosen to update the first set
of parameters, and generally comprises the continuity
conditions of state and costate; the second set of bound-
ary conditions is used to update switch times, and usu-
ally comprises of continuity conditions of control, the
Weierstrass-Erdmann corner condition etc. Introducing
decomposition technique is based on the realization that
boundary conditions are much more sensitive to switch
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Initial Guess of 

Parameters

N

Y

Update the 

First Set of 

Parameters 

Output the 

Trajectory

Solve Initial 

Value Problem

BC1=0?

BC2=0?

 Update the 

Second Set of 

Parameters

N

Y

Fig. 5. the decomposition-based algorithm

times, thus it is desirable to remove the coupling-effect
of bad state and costate initial guess before adjusting
switch times. Simulation shows the decomposition en-
joys much better convergence property than the conven-
tional one-step parameter update algorithm. As a com-
parison, a solver using conventional parameter update
algorithm fails to converge at most cases.

5.2 Simulation

We implemented the decomposition-based algorithm to
generate the optimal trajectory of Problem 1 with the
cost functional (32). Simulation results are shown in
Figures 6–9. Figure 6 shows the optimal trajectory for
case 1, which includes 5 arcs: positive acceleration con-
strained arc, positive unconstrained arc, zero control arc,
negative unconstrained arc, and negative acceleration
constrained arc. Figure 7 shows the optimal trajectory
with 7 arcs. Figure 8 shows the optimal trajectory with a
velocity constrained arc and other 5 arcs. Figure 9 shows
various control trajectories over iterations to determine
the structure of the optimal trajectory. Each control tra-
jectory is obtained by solving a particularMBVP at each
iteration. The structure candidate of the control trajec-
tory for next iteration will be updated by checking con-
straints along the computed control trajectory, then the
algorithm will solve a new MBVP corresponding to the
updated structure in the next iteration. The computa-
tion time for all cases are within 1 second. We bench-
mark the proposed algorithm and several prevailing di-
rect methods. The proposed solver gives much more ac-
curate solutions, and achieves at least 10 times faster
computation.
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Fig. 6. Case 1: the trajectories of control and velocity
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6 Experiments

The energy-saving performance of the optimal trajec-
tory is verified on a motion control system comprising

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−8

−6

−4

−2

0

2

4

6

Time (sec)

u
(A

)

Fig. 9. Iterations to determine the structure of u for Case 3.
Blue solid: no constraint; Green solid: acceleration con-
straint; Red solid: all constraints considered.

of a Mitsubishi Electric’s AC servomotor HF-MP43K,
an amplifier MR-J3-40A1, dSPACE ACE Kit 1104, and
Matlab/Simulink. The experimental system is illus-
trated by the block diagram shown in Figure 10, where
x∗
1 is the position trajectory, x1r, ẋ1r , ẍ1r are the refer-

ence position, velocity, and acceleration for a servomo-
tor to track, and x1, x2 are the measured position and
velocity of the servomotor. A position trajectory x∗

1 is

Trajectory 

generator

Low pass 

filter

Feedforward 

control

Feedback  

control
Plant

+
+

+

-

x∗
1

x1r, ẋ1r, ẍ1r

x1, x2

Fig. 10. the schematics of the experimental system

first generated given a motion positioning task data. A
low pass filter processes x∗

1 and produces the reference
position, velocity, and acceleration signals. Filtering
the trajectory x∗

1 helps to reduce the tracking error as
well as attenuate the vibration of the servomotor due
to the non-smoothness in the acceleration trajectory.
The tracking controller is composed of a feed-forward
controller and a feedback controller. The amplifier
MR-J3-40A1 works in the torque control mode, thus
receives torque command from the tracking controller,
and drives the servomotor with a flexible inertia load.
The voltage and current inputs to the amplifier are
measured to calculate the energy consumption of the
entire motion control system. The dSPACE interfaces
with the amplifier and the servomotor through AI/AO
ports. The dSPACE operates at a sampling frequency
of 10kHz. The energy efficiency of the motion control
system using an optimal trajectory is experimentally
validated by comparing to the case where a conven-
tional trajectory is used. The conventional trajectory
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is computed according to the method in Dodds (2008).
Figure 11 shows the reference velocity and control tra-
jectories of the servomotor for both cases, and Figure
12 shows the measured velocity and control trajecto-
ries of the servomotor. The energy trajectories for both
cases shown in Figure 13 demonstrate that in the end
of the tracking task, the optimal case saves more than
10% energy compared to the conventional case. Note
that the energy consumption plots in Figure 13 exhibit
periodic oscillation which inherits from the AC power
source. The periodic oscillation is further illustrated by
Figure 14 which shows time plots of voltage and cur-
rent inputs to MR-J3-40A1 for both cases. The main
takeout from experiment is that the optimal trajectory
reduces the energy consumption from two aspects: first,
smooth acceleration/deceleration; second, recycle of the
regenerative energy as much as possible to brake the
servomotor system.
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Fig. 11. the reference trajectories of controls and velocities.
Blue: conventional case; Red: optimal case.
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Fig. 12. the measured trajectories of controls and velocities.
Blue: conventional case; Red: optimal case.
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Fig. 13. the energy consumption curves: Blue solid: conven-
tional case (measured data); blue dash dot: conventional case
(curve fit); red solid: optimal case (measured data); red dash
dot: optimal case (curve fit).
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Fig. 14. the voltage and current curves: Blue solid: conven-
tional case; red solid: optimal case.

7 Conclusion

This paper discussed the energy optimal trajectory
generation of servomotor systems. Due to the switching
cost function, necessary conditions were established as
a combination of conditions over each sub-trajectories
and the Weierstrass-Erdmann corner condition between
sub-trajectories. The complete set of feasible structures
of optimal trajectories were derived and illustrated as
various state transition diagrams. A decomposition-
based shooting algorithm was proposed to solve resul-
tant multi-point boundary value problems. Simulation
and experiment validated the design methodology and
the energy efficiency.
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