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Abstract
We present a biomechanical model based simulation method for examining the patient lung
deformation induced by respiratory motion, given only one CT scan input. We model the lung
stress-strain behavior using a sophisticated hyperelastic model, and solve the lung deformation
problem through finite element (FE) analysis.We introduce robust algorithms to segment out
the diaphragm control points and spine regions to carefully define the boundary conditions and
loads. Experimental results through comparing with the manually labeled landmark points
in real patient 4DCT data demonstrate that our lung deformation simulator is accurate.
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Biomechanical Simulation of Lung Deformation
from One CT Scan

Feng Li and Fatih Porikli

Abstract We present a biomechanical model based simulation method for exam-
ining the patient lung deformation induced by respiratory motion, given only one
CT scan input. We model the lung stress-strain behavior using a sophisticated hy-
perelastic model, and solve the lung deformation problem through finite element
(FE) analysis. We introduce robust algorithms to segment out the diaphragm control
points and spine regions to carefully define the boundary conditions and loads. Ex-
perimental results through comparing with the manually labeled landmark points in
real patient 4DCT data demonstrate that our lung deformation simulator is accurate.

1 Introduction

The use of four-dimensional computed tomography (4DCT) has becoming a com-
mon practice in radiation therapy, especially for treating tumors in thoracic areas.
There are two alternative methods for 4DCT acquisition, namely retrospective slice
sorting and prospective sinogram selection. No matter which method is used, the
prolonged acquisition time results in a considerably increased radiation dose. For
example, the radiation dose of a standard 4DCT scan is about 6 times of that of a
typical helical CT scan and 500 times of a chest X-ray. Moreover, 4DCT acquisition
cannot be applied to determine the tumor position in-situ. These facts have become
a major concern in the clinical application of 4DCT, motivating development of
advanced 4DCT simulators.

Towards this goal, various approaches have been proposed to model lung infla-
tion/deflation. The first category of methods discretize the soft tissues (and bones)
into masses (nodes) and connect them using springs and dampers (edges) based on
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mass-spring-damper system and CT scan values for spline-based MCAT phantoms
[16], augmented reality based medical visualization [15], respiration animation [23],
tumor motion modeling [21], and etc. Conventionally, they apply affine transforma-
tions to the control points to simulate respiratory motion. Lungs and body outline
are linked to the surrounding ribs, such that they would have the synchronized ex-
pansion and contraction [16]. These approaches can only provide approximate de-
formations.

The second category of methods use hyperelastic models to describe the non-
linear stress-strain behavior of the lung. The straightforward way to simulate lung
deformation between two breathing phases (Ti,Ti+1) is to use the lung shape at Ti+1
as the contact/constraint surface and deform the lung at Ti based on the predefined
mechanical properties of lung [18, 10]. In this case, a negative pressure load on the
lung surface is applied and Finite Element (FE) analysis is used to deform tissues
[22]. The lung will expand according to the negative pressure and slide against the
contact surface to imitate the pleural fluid mechanism [3]. This pressure can be
estimated from the patient’s pleural pressure vs. lung volume curve, which in turn
are measured from pulmonary compliance test [20]. Along this line, patient-specific
biomechanical parameters on the modeling process for FE analysis using 4DCT
data are learned in [19]. A deformable image registration of lungs study to find the
optimum sliding characteristics and material compressibility using 4DCT data is
presented in [1].

Besides lung deformation, the displacements of rib cage and diaphragm are also
very important to design a realistic 4DCT simulator. Didier et al. [6] assume the rib
cage motion is a rigid transformation and use finite helical axis method to simulate
the kinematic behavior of the rib cage. They develop this method into a chest wall
model [7] relating the ribs motion to thorax-outer surface motion for lung simula-
tion. Saadé et al. [14] build a simple diaphragm model consisting of central tendon
and peripheral muscular fibre. They apply cranio-caudal (CC) forces on each node
of the muscular fibre to mimic the diaphragm contraction and use Gauchy-Green
deformation tensor to describe the lung deformation. Hostettler et al.[11] consider
internal organs inside the rib cage as a convex balloon and estimate internal defor-
mation field directly through interpolation of the skin marker motions.

Patient-customized deformation approaches often assume a 4DCT of the patient
is already available. We note that simulating deformations without any 4DCT has
many challenges as lung motion changes considerably depending on health condi-
tion (with or without cancer), breathing pattern (abdomen vs. chest wall), age and
many other factors. Nevertheless, 4DCT simulation without any prior (e.g. 4DCT
of the same patient) is useful for developing treatment strategy in image-guided ra-
diotherapy and generating controlled data to design and evaluate X-ray video based
medical solutions.

In this paper, we present a biomechanical model based thoracic 4DCT simula-
tion method that can faithfully simulate the deformation of lung and nearby organs
for the whole breathing cycle. Our method takes only one CT scan as input, and
defines the loads on the rib cage and the diaphragm to constrain the lung deforma-
tion. This differentiates our method from conventional continuum mechanics based
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Fig. 1 Processing pipeline of our biomechanical simulation of lung deformations from one CT
scan. The tetrahedra on the cutting plane of the volume mesh are colored in purple. Red points
indicate imposed automatic boundary constraints.

algorithms. In the extended version of this paper, we also simulate the passive mass-
spring model based deformation of abdominal organs due to lung inflation/deflation.
Conversion from density to mass assumptions for mass-spring model are supported
by clinical data. To evaluate the accuracy of our simulator, we perform both qual-
itative image visual examination and quantitative comparison on expert annotated
lung interior point pairs between multiple breathing phases, and demonstrate that
our biomechanical model based simulation is very accurate. Fig. 1 shows the pro-
cessing pipeline of our 4DCT simulator based on biomechanical model.
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Fig. 2 Gaussian curve fitting for spine region estimation: (a)2D Gaussian curve fitting on a CT
slice, (b) and (c) the different views of our 3D curve fitting results, and (d) final curve fitting result
after outliers are removed.

2 Methods

2.1 Boundary Constraints Definition

For simplicity of notation, we use x, y, and z to represent lateral, anterioposterior
(AP), and superoinferior (SI) direction respectively. Since we do not assume we
have a 4DCT of the patient available, it is not possible to use the actual lung surfaces
of different breathing phases to define the deformation boundary constraints.
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Instead, we define boundary constraints on the lung surface based on the anatomy
and function of the human respiratory system [17] for the lung deformation. First,
considering that the upper lobes of the lung are well constrained by the ribs, the
displacement vectors (x, y and z components) of the tip surface region of upper
lobes are fixed to avoid a pure translation of the lung when simulating the diaphragm
contracting on the bottom of the lung. We take the clinical study in [9] as a basis for
these constraints.

During inspiration, the lung sliding against the rib cage mainly occurs in the pos-
terior/spine region, while in the anterior region, the lung expands with the increasing
of thoracic cavity and the relative sliding between them is much smaller [4, 5]. This
phenomenon can also be observed in the DIR-Lab 4DCT dataset [2], which is one of
the most recent clinical studies with expert annotations for this problem. Therefore,
we define the boundary conditions for both the front and the back parts of the lung
surface in order to simulate the different sliding actions. As shown in the bound-
ary constraints box of Fig. 1, our system fixes the z displacement for all surface
mesh vertices marked in red to simulate the coherent motion of lung with the thorax
expansion on the axial plane. The selection of the vertices is based on empirical evi-
dence [2]. These vertices satisfy all these heuristics that they are on/near the convex
hull of the lung surface, around the lateral sides of the middle and lower lobes, and
have small (< 20◦) normal variations.

To simulate the pleural sliding in the spine region, our simulator automatically
locates the lung surface vertices in the vicinity of the thoracic vertebrae, and fixes
the x and y displacements of these points as the third boundary constraint. Notice
that our goal is to find surface vertices close to the spine, therefore we design a
simple Gaussian curve fitting algorithm to locate these points instead of adopting
a complicated thoracic vertebrae segmentation approach. The idea is to fit a set
of Gaussian curves such that the area cut out by each curve is maximized. This
provides a good global approximation to the spine shape and the constraint points
can be accurately located. For simplicity, considering a sample 2D axial view, our
algorithm maximizes the light blue region A covered by the blue Gaussian curve

f (x) = ae−
(x−b)2

2c2 , as shown in Fig. 2(a).
We formulate it as a constrained multi-variable optimization problem as :

max
a,b,c

xmax

∑
x=xmin

f (x), s.t. f (x)−g(x)≤ 0,∀x ∈ [xmin,xmax], (1)

where the parameter a, b and c represent the scaling factor, expected value, and
standard variance of f (x), xmin and xmax are the lung limits in the lateral direction,
and g(x) is the upper limit for f (x) and is the minimum y value of the lung slice
at each x. In our simulator, this constrained optimization problem is solved very
efficiently by a sequential quadratic programming method, specifically active-set
algorithm, which computes a quasi-Newton approximation to the Hessian of the
Lagrangian at each iteration. We extend this 2D algorithm to the 3D CT volume
by simply applying this algorithm slice by slice, as can be seen in Fig. 2 (b) and
(c). Outliers occur in the top and bottom of the lung where g(x) is only partial
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Fig. 3 Weight map calculation for diaphragm point segmentation. (a) The line direction definition
of our LDD measure. (b) Sample blocks on the lung surface to illustrate our weight calculation
algorithm. The orange region d1 of B1 has the highest LDD value out of the three sample blocks.
(d) The weight map corresponding to the input point cloud (c).

constraints for the curve fitting. Our simulator removes these outliers by computing
their difference to the mean Gaussian curve of the set, therefore correct fittings of
the thoracic vertebrae are retained. The missing curves can be estimated by linear
interpolation of the remaining curves.

2.2 Loads Definition

Since we are given one input CT scan and there is no bounding surface at the second
breathing phase, we design an extra traction applied on the diaphragm area of the
lung besides the negative intra-pleural surface pressure. The pressure force inflates
the lung in all directions during inspiration, while the traction allows additional
displacement in z direction to mimic the diaphragm contraction and pleural sliding.

Note that the pressure force can be well defined from the simulator input, there-
fore we focus on how to accurately locate the points (faces) that are close to the
diaphragm for the definition of the traction. We model this as a graph search prob-
lem and solve it by our modified shortest closed-path algorithm. Our simulator first
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computes a dense 3D point cloud by finding the lung voxels at every (x,y) loca-
tion with the largest z value, as shown in Fig. 3(c), then converts the point cloud
into a weight map, Fig. 3(d), based on the local geometry information, and finally
locates the diaphragm points (Fig. 4(f)) through our modified shortest closed-path
algorithm. The left and right lower lobe are treated separately.

Weight Map Definition: We consider the 3D point cloud as an 2D image with
intensity value from the z value of the corresponding point, and run the local Line
Direction Discrepancy (LDD) computation on this image to generate the weight
map W . Thus our weight map computation can also be viewed as a special type of
image filtering. As shown in Fig. 3(a), for each line di(x,y) of a block centering at
(x,y), we build up two sub-lines d1

i (x,y) and d2
i (x,y) from (p3

i , p2
i , p1

i ) and (p3
i , p4

i ,
p5

i ) respectively, (i = 1, . . . ,4), and compute the LDD as the minimum intersection
angle of the four sub-line pairs. Alternatively, we compute the maximum of the co-
sine value of these angles to represent the weight, which can be efficiently calculated
through dot product as

W (p) = max
i=1,...,4

{ d1
i ·d2

i

‖ d1
i ‖ · ‖ d2

i ‖
} , (2)

where p represents pixel position (x,y), and the block size is set as 5× 5 for sim-
plicity. Intuitively, regions with high curvature would high/positive LDD value, for
example, d1 of B3 in Fig. 3(b), while flat regions would have low/negative LDD
values, for instance, B1 and B2.

Diaphragm Point Segmentation: Notice that all outliers locate at the boundary
of the weight map, thus we formulate the diaphragm point segmentation as a short-
est closed-path (SCP) problem, which finds a optimal cut along the boundary that
separates the diaphragm points from the outliers. To build the graph for SCP, we
choose 4 neighborhood connection and set the edge weight Epq as W (q). Therefore,
Epq and Eqp may have different weights. Instead of using the entire weight map to
build the graph, we mask out the inner region through morphological operations and
limit the optimal cut (red curve) between the inner ∂Ω2 and outer boundary ∂Ω1
(blur curves), as shown in Fig. 4(a). If we directly adopt the idea from [12] to design
the SCP algorithm, some interior regions would be inevitably cut out to favor the
lowest cost, as shown in Fig. 4 (b) and (c).

To solve this problem, we first sample the outer boundary ∂Ω1 every 10 points
and find their corresponding points (in terms of Euclidean distance) on the inter
boundary ∂Ω2, as the green lines shown in Fig. 4(d). For the rest points on ∂Ω1, we
compute their matches on ∂Ω2 (purple lines) through linearly interpolation of the
previous matches (green lines), such that there are no crossing matches (lines) and
correct ordering could be maintained. In this way, we can unbend the ring region
between ∂Ω1 and ∂Ω2 into a ribbon belt by aligning up all the purple and green
lines in order, and set the length of the ribbon as the length of ∂Ω1 and the width
as the shortest distance between ∂Ω1 and ∂Ω2. We then build up a new adjacency
matrix/graph from the ribbon for the SCP algorithm. As we can see from Fig. 4(e-f),
this would give us the accurate diaphragm points for the traction definition.
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Fig. 4 Diaphragm point segmentation. (a) Masked out the inner region: the inner ∂Ω2 and outer
boundary ∂Ω1 (blue curves). (b) The optimal cut by conventional SCP algorithm (in red). (c) The
estimated diaphragm points. Our new SCP algorithm unbends the ring regions in (d) into ribbon
belts, and can accurately segment out the diaphragm points for traction definition in (e) and (f).

2.3 Finite Element Simulation

The final step for biomechanical simulation of lung deformation is to define the
material property of the lung and apply FE analysis. We assume the lung tissue is
homogeneous, isotropic, and use the first-order Ogden model [13] to describe its
non-linear strain energy density function as

W (λ1,λ2,λ3,J) =
µ1

α1
(λ α1

1 +λ
α1
2 +λ

α1
3 −3)+

K
2
(lnJ)2 , (3)
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Fig. 5 Finite element analysis of a left lung deformation during inspiration. The top row displays
the posterior view and the bottom row shows the inferior view. Color shows the degree of displace-
ment with red denoting maximum displacement.

where λ1,2,3 are the deviatoric principal stretches, µ1 and α1 are material constants,
J is the Jacobian of the lung deformation, and K is the bulk modulus chosen suffi-
ciently high to satisfy near-incompressibility. Here, we choose the Ogden parame-
ters from [8] for all our experiments, µ1 = 0.0329, and α1 = 6.82.

Next, we combine all the information (meshes, loads, and boundaries) defined in
the previous sections into a single script file and directly run a FE solver to simulate
the lung deformation. We integrate the open-source FEBio [8] into our simulator as
the FE solver, and a lung deformation example is shown in Fig. 5.

3 Results and Discussion

Figure 5 shows an example of FE analysis of a left lung deformation during inspi-
ration. The simulation results resemble the real 4DCT lung deformation with the
maximum displacement occurring in the posterior region along the SI direction.
The results also demonstrate realistic lung inflating effect due to the negative sur-
face pressure, which can be better viewed in the second row of the figure. In our FE
analysis, we define the simulation time for the inspiration phase is 2 seconds with
step size ∆ t = 0.1, pressure force -0.02 and traction 0.005. For other parameters, for
example, convergence tolerance, we use the default values in the FEBio solver.

To demonstrate the accuracy of our FE simulation, we evaluate our simulator
on the DIR-Lab 4DCT dataset [2]. We use the cases with 512× 512 slice reso-
lution. Each test case has 300 manually labeled landmark points between Tex and
Tin. For instance, case-7, which has an average landmark displacement of 11.59 ±
7.87 (standard deviation) mm, and the observer error of 0.81 ± 1.32 mm. Detailed
specifications of the dataset can be found at http://www.dir-lab.com.
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In our experiments, we compute the error as the Euclidean distance between our
simulated displacement vectors and the manually labeled ones. We also implement
the deformation filed estimation algorithm proposed by Hostettler et al. [11], and
set its model parameters using the ground-truth marker displacement vectors. We
compare its simulation results with ours in Tab. 1, and the detailed distributions of
simulation errors for case-7 in Fig. 6. From the table, we can see that the accuracy
of our simulator improves roughly 40% compared with [11]. The reasons why our
simulator has larger errors in z direction are twofold. First, human lung generally has
strong respiratory motions in this direction. And more importantly, the CT volume
data has stronger artifacts and lower resolution in z than x and y, considering that
the spatial resolution of tested CT data is 0.97×0.97×2.5 mm.

We compute the error as the Euclidean distance between the simulated displace-
ment vectors and the manually labeled ones. In Fig. 7, we show the comparison be-
tween our FE analysis results and the ground-truth displacement vectors for case-7.
For better illustration, we only show the left lung, which has 153 landmark points.

Fig. 6 Mean error distributions of our simulation results and Hostettler et al. [11] for overall 3D,
and in x, y, and z directions for case7. Horizontal axes are the error magnitudes in mm. As visible,
our simulator has more accurate estimation.
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Case ID CT Dims Our Results Hostettler et al.[11]
case7 512×512×136 3.79 (1.80) 5.31 (3.35)
case8 512×512×128 6.15 (3.31) 10.81 (4.69)
case9 512×512×128 3.17 (1.37) 5.86 (1.83)
case10 512×512×120 4.37 (2.95) 6.93 (2.86)

Table 1 Mean error (and standard deviation) of the deformed lungs measured in 3D space and its
x, y, and z components in mm. This table demonstrates that our biomechanical simulation algorithm
for lung deformation is accurate and performs better than [11] on tested DIR-Lab 4DCT datasets
[2].

It can be seen that our simulator generates accurate results in the lower posterior
region where the nodal displacement is mostly prominent. We observe that our sim-
ulation results have some angular difference with the manually labeled data in the
upper anterior region. That is partially due to lack of other prior force definitions
for these elements in the simulator as it only uses the negative surface pressure. Be-
sides, it is possible that the manually identified landmark points contain large errors
since nodal displacement in this region is less than or around the z spatial resolution
of the CT dataset.

We implement the deformation filed estimation algorithm proposed by Hostettler
et al. [11], and set its model parameters using the ground-truth marker displacement
vectors. We compare its simulation results with ours in Table 1. From the table,
we can see that the accuracy of our simulator improves roughly 40% compared with
[11]. As indicated by [2], these test cases have very different patient lung shapes, tu-
mor sizes and locations, and breathing mechanisms. A simple interpolation between
axial lung envelopes adopted by Hostettler et al. [11] inevitably generates large er-
rors while our algorithm adapts to different patients, thus achieves comparably more
accurate results as shown in Table 1.

Our algorithm is a patient-customized lung deformation simulator. By provid-
ing more sophisticated constraints, the simulation quality will improve further. For
instance, the patient lung surface in case-8 is heavily curved in the back/posterior re-
gion, thus including extra constraints to maintain this curved lung shape may make
the simulation more precise.

4 Conclusions

We have present a biomechanical model based lung simulation method for exam-
ining the patient lung deformation induced by respiration given only one CT scan
input. We model the lung stress-strain behavior using a hyperelastic model, and
simulate the lung deformation by defining accurate boundary constraints and loads.
Extensive analysis and comparisons with the manually labeled DIR-Lab dataset
demonstrate that our lung deformation results are accurate.



12 Feng Li and Fatih Porikli

Fig. 7 Comparison between our simulated displacement vectors and ground-truth data at manually
identified landmark positions for case-7. The blue lines represent the ground truth displacement of
the landmark points between Tex and Tin, while the red lines represent our simulation results.
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