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Abstract

We introduce an efficient measure for estimating the degree of in-focus within an image region.
This measure, harmonic mean of variances, is computed from the statistical properties of
the image in its bandpass filtered versions. We incorporate the harmonic variance into a
graph Laplacian spectrum based segmentation framework in order to accurately align the
in-focus measure responses on the underlying image structure. Our results demonstrate the
effectiveness of this novel measure for determining and segmenting in-focus regions in low
depth-of-field images.
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Abstract

We introduce an efficient measure for estimating the degree of in-focus within an im-
age region. This measure, harmonic mean of variances, is computed from the statistical
properties of the image in its bandpass filtered versions. We incorporate the harmonic
variance into a graph Laplacian spectrum based segmentation framework in order to ac-
curately align the in-focus measure responses on the underlying image structure. Our
results demonstrate the effectiveness of this novel measure for determining and segment-
ing in-focus regions in low depth-of-field images.

1 Introduction

Detecting in-focus regions in a low depth-of-field (DoF) image has important applications
in scene understanding, object-based coding, image quality assessment and depth estimation
because such regions may indicate semantically meaningful objects.

Many approaches consider image sharpness as an in-focus indicator and attempt to detect
such regions directly from the high-frequency texture components, e.g. edges [10]. How-
ever, in-focus edges with low intensity magnitudes and defocus edges with high intensity
magnitudes may give similar responses. As a remedy, some early work [27, 29] normalize
the edge strength with the edge width assuming the in-focus edges have steeper intensity
gradients and smaller widths than the defocus edges.

In addition to edges, various statistical and geometric features, such as local variance
[31], variance of wavelet coefficients [30], higher order central moments [8], local contrast
[28], multi-scale contrast [17], difference of histogram of oriented gradients [ 18], local power
spectrum slope [16], gradient histogram span, maximum saturation, and local autocorrelation
congruency are exploited to measure the degree of in-focus. These features often generate
sparse in-focus boundaries, which are then propagated to the rest of the image. For instance,
[4] determines a center line of edges and blur responses in a sparse focus map by using the
first and second order derivatives from a set of steerable Gaussian kernel filters. To maintain
smoothness, a Markov Random Field (MRF) and a cross-bilateral filter based interpolation
scheme are described in [1]. Similarly, [28] imposes the ratio of maximum gradient to the
local image contrast as a prior to the MRF label estimation for refinement while [20] applies
an inhomogeneous inversion heat diffusion for the same purpose.

(© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Alternatively, a number of methods analyze the difference between the filtered versions
of the original image to estimate the degree of in-focus. For this purpose, [32] uses a Gaus-
sian blur kernel to compute the ratio between the gradients of the original and blurred im-
ages. In a similar manner, [15] determines the blur extent by matching the histograms of
the synthesized and defocus regions. [9] identifies in-focus regions by iterating over a lo-
calized blind deconvolution with frequency and spatial domain constraints starting with a
given initial blur estimate. By sequentially updating the point spread function parameters,
[14] applies bilateral and morphological filters to defocus map generated from a reblurring
model, then uses an error control matting to refine the boundaries of in-focus regions.

In-focus detection can also be viewed as a learning task. [23] proposes a supervised
learning approach by comparing the in-focus patches and their defocus versions on a training
set to learn a discriminatively-trained Gaussian MRF that incorporates multi-scale features.
[17] extracts multi-scale contrast, center surround histogram, and color spatial distribution
for conditional random field learning. [16] proposes several features to classify the type of
the blur.

There also exist approaches that use coded aperture imaging [11], active refocus [19] and
multiple DoF images [13] for in-focus detection.

For accuracy, conventional approaches rely heavily on accurate detection of meaningful
boundaries. However, object boundary detection has its own inherent difficulties. Besides,
many methods require high blur confidence, i.e. considerably blurred backgrounds for a
reliable segmentation of in-focus regions. In case the background features are not severely
blurred, the existing statistic measures still give strong response. Dependence on blind mor-
phology, initial segmentation, noise model heuristics, and training data bias are also among
other shortcomings.

We note that natural images are not random patterns and exhibit consistent statistical
properties. A property that has been used to evaluate the power spectrum of images is the
rotationally averaged spatial power spectrum y(®), which can be approximated as

k
©) =L v(@,0)= (M

where 7 is the slope of the power spectrum and £ is a scaling factor. Eq.(1) demonstrates a
linear dependency of log y on logw. The value of y varies from image to image, but lies
within a fairly narrow range (around 2) for natural images, which could be used for blur
identification as a defocus metric [16, 24].

2 Harmonic Variance

Here, we introduce an efficient in-focus measure to estimate the degree of in-focus within
an image region. A harmonic mean of variances, which we call as harmonic variance, is
computed from the statistical properties of the given image in its bandpass filtered versions.

To find the bandpass responses, we apply the 2D discrete cosine transform (DCT). For a
given N xN image I, we construct the DCT response F as

N—1IN—-1

F(u,v) = a0 Z Zcos( 2x+1))cos (%(Zy—i—l))l(x,y) )

where the normalization factors o, ¢, are

_[1/N  u=0 _[1/N v=0
_{\ﬁ/N else ’ay_{ﬁ/N else


Citation
Citation
{Zhou and Sim} 2011

Citation
Citation
{Lin and Chou} 2012

Citation
Citation
{Kovacs and Sziranyi} 2002

Citation
Citation
{Li and Ngan} 2007

Citation
Citation
{Saxena, Chung, and Ng} 2005

Citation
Citation
{Liu, Sun, Zheng, Tang, and Shum} 2007

Citation
Citation
{Liu, Li, and Jia} 2008

Citation
Citation
{Levin, Fergus, Durand, and Freeman} 2007

Citation
Citation
{Moreno-Noguer, Belhumeur, and Nayar} 2007

Citation
Citation
{Li, Sun, Wang, and Yu} 2010

Citation
Citation
{Liu, Li, and Jia} 2008

Citation
Citation
{Schaaf and Hateren} 1996


LI, PORIKLI: HARMONIC VARIANCE 3

foru,v=1,...,N. A bandpass filter g, retains frequencies in a desired range and attenuates
frequencies below and above in the transform domain, i.e., g,,(F) = F(u,v) if u,v is in the
bandpass range uv € 3, and g, (F) = 0 otherwise. We obtain set of bandpass filtered images
I, m =1,..,M by applying the inverse DCT to g,

Ly =F "{gu(F)}. )

Setting F = ):%21 gm(F), the summation of the bandpass filtered images becomes equal to
the given image [ = 2%11 I,. Obviously, the number of the bands can at most be the number
of DCT coefficients M < N>. We apply the DCT bandpass filtering within separate 8x8
image patches with M = 64. In other words, the DCT transform of a patch around each pixel
is individually bandpass filtered then the responses for all pixels are aggregated to find Z,,,.

Let us recall that the process of image blurring at a pixel x = (x,y) can be formulated as
an image convolution, that is,

Ip(x) = 1(x) ®K(x) , 3)

where I is the blurred version of the image / and K is the spatially varying blur kernel. We
consider defocus blurring' and use a 2D isotropic Gaussian function with stand deviation &
to represent the blur kernel K at pixel position x. From Fourier analysis, we know that this
convolution is a low-pass filtering in the frequency domain with the cutoff frequency ¢!
for the patch centered at x.

For defocus blurred patches, there at least exists a limited number of DCT filtered chan-
nels I, below the cutoff frequency with large variances. Because the variance is the squared
deviation, a few large variance values would greatly increase the estimated variance of the
patch.

Note that, even if most of the variances G,% of a defocus region may have small values,
one large variance estimate in a low-frequency channel, which is quite common for textured
yet blurry regions, could still make the arithmetic mean of the variances larger than that of
in-focus regions, causing the defocus region to be falsely considered as in-focus.

Our intuition is that, a competent in-focus measure should not be sensitive to such outliers
of the standard deviation in the DCT filtered channels 1,,. Thus, we use the harmonic mean
instead of other possible first order statistics to combine the variances 6,%,. For a given patch
centered at x, we define the in-focus measure as the harmonic mean of the variances 62 (x)
omitting the variance of the zero-frequency channel Gg

M—1 -1
h(x)zl 1 ‘ ] . @

M—1 = 02 (x)

For positive data sets containing at least one pair of unequal values, the harmonic mean is
always the smallest of the three means, while the arithmetic mean is the greatest, and the
geometric mean is in between.

Harmonic mean has two advantages. First, an arithmetic mean estimate can be distorted
significantly by the large variances 62 of the blurred patches, while the harmonic mean is
robust. Second, the harmonic mean considers reciprocals, hence it favors the small 0',%, and
increases their influence in the overall estimation. For the blurred patches, a large number of
small variances would keep / at a low level and the effect of a few of large G,% is mitigated

"Motion blur kernels are also low-pass filters with multiple zero crossings.
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by the use of harmonic mean. On the other hand, for the in-focus patches, 4 still gives larger
estimates since most DCT channels have large variances.

Instead of the harmonic mean of variances, the median absolute deviation (MAD) can be
substituted. Nevertheless, MAD disregards the contributions of the variances with small val-
ues by pulling the estimate towards the higher values especially when multiple large outliers
exist.

2.1 Relation to Noise in Natural Images

It is intuitive to draw connections between the proposed in-focus measure and noise analysis
of natural images reflecting the super-Gaussian marginal statistics in the bandpass filtered
domains.

We assume the local image noise 1)(x) is characterized as a Gaussian random variable
with zero mean and 6,2] (x) variance’. The noise contaminated image is then I (x) = I(x) +
1(x). Based on the observation that noise tends to have more energy in the high frequency
bands than natural images, estimation of the global noise variance in an image is usually
based on the difference image between the noisy image and its low-pass filtered response.

The traditional methodology is to use the relationship between noise variance and other
higher-order statistics of natural images to obviate the low-pass filtering step. In [26], a noise
variance estimation function is learned by training samples and the Laplacian model for the
marginal statistics of natural images in bandpass filtered domains.

Another family of methods uses the relationship between noise variance and image kur-
tosis in bandpass filtered domains. Kurtosis is a descriptor of the shape of a probability
distribution and defined as k = y/(0%)? — 3. It can also be viewed as a measure of non-
normality. Due to the independence of noise 1 to 1, and the additive property of cumulants,
for each bandpass filtered image I,,, we have

2
ﬁ@#@)) “

G;(X)

Ko (X) = Kin(X) (

where &, (x) and x;,(x) represent the kurtosis value of the latent and the noisy I, at x for
channel m.

For natural images, kurtosis has the concentration property in the bandpass filtered do-
mains, thus, the kurtosis of an image across the bandpass filtered channels can be approxi-
mated by a constant x(x) ~ &, (x) [21, 33]. In other words, we can estimate the optimal local

noise variance G% (x) and the kurtosis k by designing a simple least squares minimization
problem as

oK m m(X)

20\ <2 2
%inZ[\/Km(X)—\/K(X)<W>‘| , (6)

According to [21], a closed form solution exists

G% (x) = a(x)-h(x), 7
where
X) — A (X
o(x) = K(x) M’;(f)m VK ). ®

2We omit shot noise and other types of noise here. Shot noise follows a Poisson distribution, which can be
approximated by a Gaussian distribution for adequately illuminated images.
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‘ kurtosis value for each channel image patch variance for each channel
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Figure 1: Three regions, defocused (black, red) and focused (blue) from a low DoF image. The

corresponding kurtosis and variance distributions of blue and red regions in their power spectrum using
2D DCT (vectorized, horizontal axis from low-to-high frequencies).

Eqgs.(7) and (8) indicate that the noise variance c% is related to the in-focus measure / by the
factor «.

As we show next, the noise variance estimation algorithms in [21, 33] are limited and do
not apply to low DoF images.

Let us take a closer look at o in Eq.(8). Suppose we are given two different patches from
a single image, one extracted from the in-focus region at x; and the other from the defocused
region at x;. Since they are extracted from the same image, their local noise variance should
be the same, i.e., 0;(x1) = 07 (x2)’. Moreover, e should be close to 0 for both in-focus
and defocused patches since the arithmetic mean of «;, is a close estimate of k regardless of
patch locations, that is, a(x;) &~ o(x2) ~ 0. Since x; is from the in-focus region, it is very
straightforward that h(x;) > h(x,). Therefore, by Eq.(7), we have G% (x1) > G% (x2), which
is inconsistent with our previous assumption. This explains that why the kurtosis estimation
in [21, 33] fails for low DoF images and their quadratic formulation shifts high frequency of
the latent image into noise variance estimations.

This discrepancy can be seen in Fig. 1. As shown, we can easily compute the o and A for
both in-focus region x; (blue rectangle) and defocused region x; (red rectangle), and we have
o(x1) = 0.075, h(x1) = 97.12, and a(xz) = 0.016, h(xz) = 0.17, which is consistent with
our discussion before. And by Eq.(7) we have 0'% (x1)=7.316 and 0'72] (x2) = 0.003, contrary
to the assumption of the kurtosis-based noise estimation algorithm. To see our harmonic
variance as a powerful in-focus metric, we mark another defocused region (black) that con-
tains slightly more high frequency information than x,. Then we compute the ratio between
the in-focus patch x; and this region for our harmonic variance: 97.12/0.121 = 802, and
the arithmetic mean of the DCT channel variances: 1297.4/84.375 = 15, which intuitively
shows that our harmonic variance can competently differentiate the defocus background from
the in-focus foreground (For clarity, we also show the kurtosis and the variance distributions
for the blue and red regions in Fig.1).

3 In-Focus Region Segmentation
Contrary to the conventional seeded segmentation algorithms, e.g. graph-cuts [2, 3] and ran-

dom walks [6], we use the estimated harmonic variance map A(x) to automatically partition
the in-focus regions without any user interaction. For more details please refer to [12].

3The assumption is that the input low DoF image is captured under good lighting condition, thus the image is
mainly of amplifier noise with Gaussian distribution.
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Algorithm 1: Segmentation Using Laplacian Spectrum

Input: Laplacian matrix L of I, harmonic mean h, penalty term 3
Output: segmentation f
W=ILt=1;
while 1 < iteryge & |[W(f—h)|> <edo
fr=BLTL+W)"'Wh;
update W according to Eq.(11) ;
t=t+1
return the optimal f

To incorporate the harmonic variance values, we compute a graph Laplacian matrix L
from the given image I and use it as a constraint. The graph Laplacian spectrum constraint
Lf = 0 enforces a given image structure on the prior information (in the data fidelity term
|lf — h||?). With this constraint, the optimal f should lie in the null-space of L, that is,
f should be constant within each connected component of the corresponding graph G. In
most cases, the binary segmentation results consist of several disconnected components and
segments. Since the estimated f can be represented by a linear combination of the 0 eigen-
vectors (the ‘ideal’ basis) of L we are still able to differentiate the foreground components
from the background. In this way, we avoid computing L’s nullity k and its basis, while still
can use the image structure to regularize the data fidelity term.

The Laplacian matrix L can be used to regularize an optimization formulation by laying
it on the structure inherent in /. This enables us to define the in-focus segmentation as a
least-squares constrained optimization problem as

rr}ian—th, s.t. Lf =0. )

From comparative analysis of the harmonic variance maps 4 and the optimal segmentation
£ itis clear that the residual 8(x) = | f — k| has many spatially continuous outliers. The least
squares fidelity team, however, applies quadratic cost function with equal weighting that
severely distorts the final estimate in case of outliers. One robust option is to weight large
outliers less and use the structure information from the Laplacian spectrum constraint to
recover the segmentation f. Therefore, we borrow existing principles from robust statistics
[7] and adapt a robust functional to replace the least squares term as

minp(f —h) +BIILFII* (10)

where p is the robust function. We use the Huber function

B if 5(x) < ¢
”(X)—{s/a(x) if5(x) > ()

for the reason that it is a parabola in the vicinity of 0 and increases linearly when § is
large. Thus, the effects of large outliers can be eliminated significantly. When written in
matrix form, we use a diagonal weighting matrix W to represent the Huber weight function.
Therefore, the data fidelity term can be simplified as |[W (f —h)||>. As a result, the problem
Eq.(10) can be solved efficiently in an iterative least square approach. At each iteration, the
optimal f is updated as

f=@BL'L+W) 'Wh. (12)

Our algorithm is shown in Alg. 1.
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input / harmonic variance segmentation GC
L —

optimal f

segmentation Lf =0

Figure 2: In-focus segmentation results using the proposed harmonic variance measure /.

4 Results

To test the performance of the proposed in-focus measure, we conducted experiments on
benchmark images. Fig. 2 shows a typical low DoF scene captured with a large aperture
lens. The input image [ has gradually changing defocus blurs and the background (fences,
farm houses, and etc.) contains strong edges. Our estimated harmonic variance measure ac-
curately identifies the in-focus regions (sheep and near grass), and generate nearly consistent
values for the foreground. When using our harmonic variance to initialize the data cost term
of the graph-cut algorithm, it can well model the probability for each pixel belonged to the
foreground. However, since our harmonic variance is a patch-based approach, it inevitably
gives strong response across the in-focus boundaries, which can cause some artifacts for the
graph-cuts algorithm, as shown in the center of Fig. 2. While the Laplacian based segmenta-
tion algorithm can robustly remove the effects of these outliers near the in-focus boundaries
and generate an accurate segmentation for this challenging input.

We also compare our method with [32] as shown in Fig. 3. We use a traditional graph
Laplacian based segmentation method using ¢, norm for a fair comparison instead of the
described robust approach in Eq.10. Our measure does not require an edge map (or weight
matrix) yet generates a more accurate defocus map.

Next, we compare our harmonic variance measure with the high-order statistics (HOS) [8],
the local power spectrum slope [16, 24], and a state-of-the-art visual saliency estimation al-
gorithm [5] for low depth-of-field image feature extraction and in-focus object segmentation.
We test the performance of these feature extraction algorithms using the same segmentation
algorithm described in the previous section. In Fig. 4, we show five different natural/man-
made scenes with varying defocus conditions and the corresponding defocus maps and seg-
mentation results for HOS, saliency, slope and the harmonic variance measure.

In our analysis, we compute the local power spectrum slope y(x) for a patch size 17 x 17
around each pixel. The local power spectrum slope basically can detect all the in-focus
regions, however, it also gives strong responses to complex background, which leads the
segmentation algorithm to mislabel some parts of the background as the foreground.

Instead of computing the image statistics in the frequency domain, HOS works on the
image spatial domain:

HOS(x) = min(C, u4(x)/D) ,

where p14(x) is the 4-th order central moment at pixel x computed with local support, and C
and D are empirical parameters for thresholding and scaling. The major drawback of these
statistic measurements is that they still give strong response if the background features are
not severely defocus blurred, which misleads the segmentation algorithm to label portions
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sparse features [32] harmonic variance our estimation

estimated f [32]

Figure 3: Comparison of the estimated focus maps of a layered depth scene by [32] and our algorithm.
As visible, [32] generates several incorrect depth regions such as the middle of clouds (depth incon-
sistency), tree (appears closer than the buildings), rooftop on the left (depth inconsistency), and etc.
Harmonic variance measure and the proposed segmentation method accurately determine the defocus
map for the input image.

of background as foreground. HOS performs well when the background of the input images
is severely defocus blurred. As shown in the first and the fourth column, it can capture the
majority of the in-focus objects, but still have some strong artifacts, such as disconnected
in-focus regions. When the background still has strong high-frequency signals, it can com-
pletely fail because of simple threshold and scaling, as indicated by other scenes.

The visual saliency algorithm uses regional covariances to integrate several different low-
level features for salient region detection. As demonstrated in Fig. 4, it is basically good
for salient object indication, and can detect the centers of in-focus objects. However, the
estimated saliency maps lacks the power to model the probability for segmentation, and the
segmentation results can only capture parts of the in-focus regions.

As shown in Fig. 4, the harmonic variance measure can discriminate the in-focus and
defocus regions efficiently. Its optimized version (second row) nicely aligns with the un-
derlying image structure indicating the proposed measure is a reliable prior for the graph
Laplacian based segmentation.

Table | presents the F-measure comparison scores of segmentation results for slope,
saliency, HOS and the harmonic variance. All these are applied to the graph Laplacian based
robust segmentation framework. F-measure is defined as 2 152’556 where Pr is the precision
TP/(TP+ FP) and Re is the recall TP/(TP+ FN) ratios. TP, FP, FN are true positives,
false negatives, and false negatives. As shown, the segmentation results using the harmonic
variance measure consistently have higher scores.

[ [ slope y[16] | saliency [5] [ HOS [8] [ Harmonic / |

paper 0.88 0.51 0.75 0.93
purple 0.37 0.79 0.34 0.87
can 0.60 0.61 0.40 0.86
Sflower 0.32 0.46 0.61 0.88
red 0.35 0.40 0.28 0.76

Table 1: F-measure scores for in-focus segmentation. All features are tested by the graph
Laplacian based segmentation method.

5 Conclusions

We have introduced a new in-focus measure for estimating the degree of blurriness for low
depth-of-field images. Compared with other low-level in-focus features, the harmonic vari-
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Harmonic

_ ./ - 7 74
Figure 4: Top-to-bottom: input images, the harmonic variance measure A results, the optimized focus
likelihood scores f of h, segmentation results. Other features: defocus maps and the corresponding
segmentation results. Unlike the conventional features, the harmonic variance is an accurate indicator
of in-focus regions. In addition, our method fits the underlying image structure.
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ance can robustly differentiate the in-focus regions from the defocused background even
when the background has strong high frequency responses. We also presented a segmenta-
tion algorithm derived from robust statistics and Laplacian spectrum analysis to accurately
partition out the in-focus regions. In the future, we plan to extend our work for defocus
matting and depth estimation.
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