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Abstract—The problem in which one of three pairwise inter-
acting parties is required to securely compute a function of the
inputs held by the other two, when one party may arbitrarily
deviate from the computation protocol (active behavioral model),
is studied. An information-theoretic characterization of uncondi-
tionally secure computation protocols under the active behavioral
model is provided. A protocol for Hamming distance computation
is provided and shown to be unconditionally secure under both
active and passive behavioral models using the information-
theoretic characterization. The difference between the notions
of security under the active and passive behavioral models is
illustrated by examining a protocol for computing quadratic and
Hamming distances that is secure under the passive model, but
is insecure under the active model.

I. INTRODUCTION

The subject of secure multiparty computation (SMC) is

concerned with the design and analysis of distributed pro-

tocols that allow a mutually untrusting group to securely

compute functions of their private inputs while not reveal-

ing any more information than must be inherently revealed

by the computation itself. In this broad domain (see [1]

for a detailed overview) one can consider computational or

unconditional (information-theoretic) definitions of security,

active or passive behavioral models, and the utilization of

additional communication primitives, e.g., shared randomness

via multi-terminal sources and/or channels. In this paper, we

study secure computation involving three parties that can

communicate via pairwise authenticated and error-free bitpipes

where one party is required to compute a function of the inputs

held by the other two. Our focus is on unconditional security

and the active behavioral model with up to one party arbitrarily

deviating from the protocol.

The scenario of three-party computation with one actively

deviating party is interesting since no security guarantees

are available in this scenario for the general SMC protocols

of [2], [3]. For the active behavioral model with only pairwise

communication, the protocols of [2], [3] are secure only if

strictly less than a third of the parties are compromised. Thus,

non-trivial security guarantees are only available for a mini-

mum of four parties. Conversely, certain computations, such as
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Byzantine agreement [4], are provably impossible in a three-

party setting. However, other non-trivial computations may be

possible, but require specialized techniques. A characterization

of all functions that can be securely computed in a three-

party setting with one actively deviating party is currently

unavailable.

The formulation of security in the active behavioral model

requires careful consideration of the notions of correctness and

privacy since a party may arbitrarily deviate from the protocol.

A deviating party can always affect the integrity of the

computation by simply changing its input data. This, however,

should not be considered a security weakness since such an

attack could also be mounted against a “trusted genie” who can

receive all inputs, perform all computations, and deliver the

results to the designated parties. A deviating party’s ability to

influence the computation or affect the privacy should, ideally,

not exceed what could be done against such a trusted genie.

Therefore, in the active behavioral model, a protocol is said

to be secure if it adequately simulates a trusted genie that

facilitates the computation. This is formalized in the literature

as the real versus ideal model simulation paradigm for SMC

(see [5]). The passive behavioral model, in contrast, assumes

that all parties will adhere to the protocol, but may attempt to

infer additional information from the “view” available to them

from the protocol. To assess the security of a protocol in the

passive behavioral model, one only needs to check that the

protocol correctly computes the function while revealing no

more information than what can be inherently inferred from

the result of the computation.

In our three-party problem setup, Alice has input X , Bob

has input Y , and Charlie wants to compute the function

f(X,Y ). In Section II, we define security based on the real

versus ideal model simulation paradigm and develop an equiv-

alent information-theoretic characterization that generalizes

conditions developed for two parties in [6]. In Section III,

we present a simple finite-field arithmetic-based protocol for

computing Hamming distance and show that it is uncondition-

ally secure under both active and passive behavioral models

using the information-theoretic characterization. In Section IV,

we illustrate the difference between the notions of security

under active and passive behavioral models by constructing a

protocol with the techniques of [2] for computing the quadratic

and Hamming distances. This protocol is designed for and



secure under the passive behavioral model, but is shown to be

insecure under the active behavioral model.

II. INFORMATION-THEORETIC SECURITY CONDITIONS

We first define security for the active behavioral model,

then derive equivalent information-theoretic conditions, and

finally present information-theoretic conditions for the passive

behavioral model. For convenience, our development is suited

to the specific case where only Alice and Bob have inputs

and Charlie computes an output. However, one could also

generalize this development to a scenario with all parties

contributing an input and computing an output.

A. Real versus Ideal Model Simulation Paradigm

A protocol Π for three-party computation is a triple of

algorithms (A,B,C) that are intended to be executed by Alice,

Bob, and Charlie, respectively. These algorithms may include

instructions for processing inputs (X for Alice and Y for Bob),

generating local randomness, performing intermediate local

computations, sending messages to and receiving/processing

messages from other parties, and producing local outputs. The

outputs produced by Alice, Bob, and Charlie will be denoted

by U, V , and W , respectively. A protocol Π is the “real model”

for three-party computation (cf. Figure 1(a)).

(a) Real Model (b) Ideal Model

Fig. 1. A protocol is secure if any attack against it in the real model (a) can
be equivalently mounted against the trusted genie in the ideal model (b).

In the “ideal model” for three-party computation, there

is an additional fourth party: a trusted genie that facilitates

the computation (cf. Figure 1(b)). An ideal model protocol

ΠI is a triple of algorithms (AI , BI , CI) that have a very

specific structure: Alice’s algorithm AI consists solely of

an independent random functionality that takes as an input

only X and outputs UI and XI , and can be modeled as a

conditional distribution PUI ,XI |X
. Likewise, Bob’s algorithm

BI is an independent random functionality that takes as an

input only Y and outputs VI and Y I , and can be modeled

as a conditional distribution PVI ,Y I |Y
. The random variables

XI and Y I represent the inputs that Alice and Bob give to

the trusted genie, and UI and VI respectively represent Alice

and Bob’s outputs. The trusted genie receives (XI , Y I) from

Alice and Bob, computes f(XI , Y I) and sends this to Charlie.

If either Alice or Bob refuse to send their input to the trusted

genie or send an invalid input, e.g., inputs not belonging to

the proper alphabets X or Y , then the genie assumes a valid

default input. Charlie’s algorithm CI is a random functionality

that takes f(XI , Y I) as input and produces WI as output, and

can be modeled as a conditional distribution PWI |f(XI ,Y I)
.

Definition 1 (Honest Ideal Model Protocol): The ideal

model protocol ΠI = (AI , BI , CI) is called “honest” if UI =
VI = ∅, XI = X,Y I = Y,WI = f(XI , Y I) = f(X,Y ).

In our problem, at most one party may actively deviate

from the protocol, and no collusions form between any parties.

This motivates the following definition that captures the active

behavioral model of interest.

Definition 2 (Admissible Deviation): A protocol Π =
(A,B,C) is an admissible deviation of Π = (A,B,C) if at

most one of (A,B,C) differs from (A,B,C).
In the real versus ideal model simulation paradigm, a real

model protocol is considered to be secure if it can be shown

that for every attack against the protocol – captured through

the above notion of an admissible deviation of a protocol –

a statistically equivalent attack can be mounted against the

honest ideal model protocol in the ideal model. The following

definition makes this notion precise.

Definition 3 (Security Against Active Behavior): A three-

party protocol Π = (A,B,C) securely computes f(X,Y )
under the active behavioral model if, for every real model

protocol Π = (A,B,C) that is an admissible deviation of Π
and for any distribution PX,Y on inputs (X,Y ) ∼ PX,Y , there

exists an ideal model protocol ΠI = (AI , BI , CI) that is an

admissible deviation of the honest ideal model protocol ΠI ,

where the same players are honest, such that

PU,V,W |X,Y = PUI ,VI ,WI |X,Y , (1)

where (U, V,W ) are the outputs of the protocol Π in the real

model with inputs (X,Y ) and (UI , VI ,WI) are the outputs of

the protocol ΠI in the ideal model with inputs (X,Y ).
Contained within the above definition of security is the

requirement that a secure protocol must ensure that Charlie

will correctly compute the function if none of the parties

deviate from the protocol. This is because no deviation is

an admissible deviation and corresponds to the honest ideal

model protocol which results in correct computation of the

function. Privacy requirements against a deviating party are

also contained within this security definition since the deviat-

ing party may include arbitrary additional information in its

output. The above security definition precludes this additional

output information from containing any information that could

not be obtained by the party deviating in the ideal model.

This definition provides perfect security, however one could

weaken the definition with the equality of (1) replaced by an

“ǫ-closeness” requirement, as done in [7] for two parties.

B. Security Conditions for the Active Behavioral Model

The following theorem describes information-theoretic con-

ditions that are equivalent to the security conditions given

by Definition 3. These conditions provide an alternative way

to test whether a given protocol is secure under the active

behavioral model directly in the real model without explicit



reference to an ideal model or a trusted genie. In contrast,

Definition 3 needs to refer to an ideal model.
Theorem 1: A real-model three-party protocol Π =

(A,B,C) securely computes f(X,Y ) under the active be-

havioral model if, and only if, for every real model protocol

Π = (A,B,C) that is an admissible deviation of Π, and

for any distribution PX,Y on inputs (X,Y ) the algorithms

(A,B,C) respectively produce outputs (U, V,W ), such that

the following conditions are satisfied:

• (Correctness) If Π = Π, then

Pr[(U, V,W ) = (∅, ∅, f(X,Y ))] = 1. (2)

• (Security against Alice) If (B,C) = (B,C), then ∃ X :

I(U,X;Y |X) = 0, (3)

Pr[(V,W ) = (∅, f(X,Y ))] = 1. (4)

• (Security against Bob) If (A,C) = (A,C), then ∃ Y :

I(V, Y ;X|Y ) = 0, (5)

Pr[(U,W ) = (∅, f(X,Y ))] = 1. (6)

• (Security against Charlie) If (A,B) = (A,B) then

I(W ;X,Y |f(X,Y )) = 0, (7)

Pr[(U, V ) = (∅, ∅)] = 1. (8)

Proof: We sketch the proof here and refer to [8] for details.
To show that the conditions are necessary, we must show

that if the protocol Π securely computes f(X,Y ), then the

information-theoretic conditions must hold. Since the protocol

Π is secure, for any admissible deviation Π, there must exist an

ideal model protocol ΠI (that is an admissible deviation from

the honest ideal model protocol ΠI , where the same players are

honest), such that (1) holds. Due to the structure of the ideal

model protocols, we can easily verify that the information-

theoretic conditions (2-8) hold when (X,Y , U, V,W ) are

replaced with (XI , Y I , UI , VI ,WI). Since (1) holds, it follows

that (2), (4), (6), and (8) also hold. Further, due to (1), since

XI and Y I exist with respect to PUI ,VI ,WI |X,Y , there must

exist X and Y with respect to PU,V,W |X,Y such that (3), (5),

and (7) hold.
For sufficiency we will show that if the conditions are

satisfied, then the protocol Π securely computes f(X,Y ). We

will show this by constructing, for any admissible deviation

Π of Π, a corresponding ideal model protocol ΠI (that is

an admissible deviation from the honest ideal model protocol

ΠI where the same players are honest) that satisfies (1). For

the case Π = Π (all players are honest) we have ΠI = ΠI .

Then by (2) and the definition of ΠI , condition (1) holds.

For the case A 6= A (Alice is dishonest) we can choose

her corresponding ideal model algorithm AI to be defined

by PUI ,XI |X
:= PU,X|X , where X is the random variable

found to satisfy conditions (3) and (4). From this it follows

that condition (1) holds. The reasoning is symmetric for the

case where Bob is dishonest. For the case C 6= C (Charlie

is dishonest), we can choose the corresponding ideal model

algorithm CI to be defined by PWI |f(XI ,Y I)
:= PW |f(X,Y ),

which, by (7) and (8), leads to condition (1) holding.

C. Security Conditions for the Passive Behavioral Model

In the passive behavioral model, all parties correctly follow

the protocol, but may still attempt to learn as much new

information as they can from the messages that they receive

from other parties during the execution of the protocol. A

protocol is secure against passive behavior if it produces

correct computation results and reveals no more information

to any party than what can be inherently inferred from their

own input or computation result. Thus, security against passive

behavior is a statement about the correctness and the informa-

tion leakage properties of a protocol. We directly state the

information-theoretic conditions for security under the passive

behavioral model, which one can similarly derive from a real

versus ideal model definition.

Definition 4 (Security Against Passive Behavior): A three-

party protocol Π = (A,B,C) securely computes f(X,Y )
under the passive behavioral model (with no collusions) if after

Alice, Bob, and Charlie execute the protocol, the following

conditions are satisfied:

• (Correctness) Pr[(U, V,W ) = (∅, ∅, f(X,Y ))] = 1.
• (Privacy against Alice) I(M1;Y, f(X,Y )|X) = 0, where

M1 denotes the “view” of Alice, consisting of all the local

randomness generated, local computations performed,

and messages sent and received by Alice.

• (Privacy against Bob) I(M2;X, f(X,Y )|Y ) = 0, where

M2 denotes the view of Bob.

• (Privacy against Charlie) I(M3;X,Y |f(X,Y )) = 0,
where M3 denotes the view of Charlie.

In general, security of a protocol under the active behavioral

model does not necessarily imply security of a protocol under

the passive behavioral model [9]. This may seem counterintu-

itive at first since possible attacks by active parties are surely

expected to subsume the possible “passive attacks”. This can

be resolved by observing that the definition of security under

the active behavioral model compares admissible deviations

(active attacks) in the real model to possible active attacks in

the ideal model. This comparison to a benchmark involving

active attacks in the ideal model potentially results in more

permissive privacy conditions than the information leakage

conditions required in the passive behavioral model. To illus-

trate this difference, consider the following two-party example

(from [9]): Alice and Bob each have a bit and Bob wishes to

compute the Boolean AND of the bits, while Alice computes

nothing. A protocol where Alice simply gives Bob her bit and

he computes his desired function is clearly insecure under the

passive behavioral model since Alice directly reveals her bit,

whereas the AND function should only reveal her bit if Bob’s

bit is one. However, this protocol would be considered secure

in the active behavioral model since a deviating Bob could

change his input to one to always reveal the value of Alice’s

bit from the trusted genie, and thus the apparent insecurity is

inherent to the computation.

III. A SECURE PROTOCOL FOR HAMMING DISTANCE

We now present and analyze a simple finite-field arithmetic-

based protocol HamDist that securely computes the Hamming



distance for finite-field sequences under both passive and

active behavioral models. The security of this protocol will be

proved using the information-theoretic conditions for security

under (i) the active behavioral model (Theorem 1) and (ii) the

passive behavioral model (Definition 4). We assume that Alice

and Bob have finite-field sequences X := Xn and Y := Y n,

respectively, with Xn, Y n ∈ Fn
pk , where Fpk is the finite-

field of prime-power order pk. Charlie wishes to compute the

Hamming distance f(Xn, Y n) :=
∑n

i=1 1{Xi}(Yi). Protocol

HamDist proceeds as follows:

1) Alice randomly chooses two independent sequences

Rn, Zn ∈ Fn
pk , where Rn is uniform over all sequences and

Zn is uniform over (Fpk \{0})n. Alice also randomly chooses

a permutation π of {1, . . . , n}, uniformly and independently

of (Xn, Y n, Rn, Zn).
2) Alice sends Rn, Zn and π to Bob.

3) Alice sends An := π(Zn⊗(Xn⊖Rn)) to Charlie, where ⊖
and ⊗ respectively denote element-wise field subtraction and

multiplication, and π(·) denotes sequence permutation via π.

4) Bob sends Bn := π(Zn ⊗ (Rn ⊖ Y n)) to Charlie.

5) Charlie combines the messages from Alice and Bob, via

element-wise field addition, and outputs the Hamming weight

of the sequence (An ⊕Bn).
During the execution of the protocol, if any party fails to

send a message or sends an invalid message to another party, a

valid default message is assumed by the receiving party. Also,

any extraneous messages are simply ignored. For example, in

step two, Bob expects to receive two sequences and a per-

mutation from Alice. If Alice omits or sends invalid messages

(e.g., Rn or Zn are not finite-field sequences of the appropriate

length, Zn contains a zero, π is not a valid permutation), Bob

would interpret an invalid or missing sequence as, for instance,

an all-one sequence, and an invalid or missing permutation as

the identity permutation. The specific default message assumed

in the case of invalid or missing messages is unimportant and

could be replaced by any other valid fixed message.

Theorem 2: Protocol HamDist is secure under the active

behavioral model.

Proof: We sketch the proof here and refer to [8] for details.

(Correctness) When all parties follow the protocol, Charlie

computes An⊕Bn = π(Zn⊗(Xn⊖Y n)) which has Hamming

weight equal to the Hamming distance between Xn and Y n.

Since any invalid or missing messages are interpreted by

the receiver as some default message, we can assume, without

loss of generality, that the arbitrarily modified algorithms send

well-formed messages in the prescribed message alphabets.

(Security Against Alice) Since Alice only sends messages,

the only attack she can mount is to independently change

the sequences and permutation that she sends to Bob and

Charlie. However, any changes to those messages effectively

just changes her input to X
n
= R

n
⊕ (π−1(A

n
)⊘Z

n
), where

(R
n
, Z

n
) and A

n
are the modified sequences sent to Bob and

Charlie respectively, π−1(·) denotes the inverse application of

the modified permutation π, and ⊘ denotes element-wise field

division. The random variable X
n

can be shown to satisfy the

conditions corresponding to security against Alice given by

(3) and (4).

(Security Against Bob) Bob receives the random sequences

(Rn, Zn) and permutation π from Alice, which are indepen-

dent of her input Xn. The only attack that Bob can mount is to

change the sequence that he sends to Charlie. However this ef-

fectively just changes his input to Y
n
= Rn⊖(π−1(B

n
)⊘Zn),

where B
n

is the modified sequence that he sends to Charlie.

The random variable Y
n

can be shown to satisfy the conditions

corresponding to security against Bob given by (5) and (6).

(Security Against Charlie) Since Charlie only receives mes-

sages, the only attack that he can mount is to attempt to infer

and output additional information about Xn and Y n that is

not already revealed by the Hamming distance. However, the

messages that he receives, An from Alice and Bn from Bob,

are only sufficient to reveal An⊕Bn = π(Zn⊗ (Xn⊖Y n)),
which reveals no more information about Xn and Y n than the

Hamming distance, since the multiplication of each (Xi−Yi)
by an independent, uniform, and non-zero Zi conceals the

difference, only revealing whether Xi is equal to Yi. Further,

the random permutation conceals the locations where the two

sequences differ, preserving only the count.

As previously discussed, security of a protocol under the

active behavioral model does not necessarily imply security

of a protocol under the passive behavioral model [9]. We,

however, have the following result.

Theorem 3: Protocol HamDist is secure under the passive

behavioral model.

Proof: We sketch the proof here and refer to [8] for details.

(Correctness) The protocol is correct by the same argument

as for the active behavioral model. (Privacy against Alice)

The protocol is private against Alice since she does not receive

any information from other parties. (Privacy against Bob) The

protocol is private against Bob since the only message from

Alice that he receives is independent of Xn, Y n,W . (Privacy

against Charlie) The protocol is private against Charlie by the

same argument as for the active behavioral model.

IV. INADEQUACY OF BGW FOR QUADRATIC DISTANCE

Under the passive behavioral model (with no collusions),

any function can be securely computed amongst three parties

using the secure computation methods of [2] that are based on

homomorphic polynomial secret sharing [10] and popularly

called the BGW protocol. However, for three parties, the

techniques proposed in [2] for active adversaries require a

minimum of four parties. To illustrate the differing notions of

security between the active and passive models, we consider

the BGW protocol for three-party quadratic and Hamming

distance computation under the passive behavioral model and

demonstrate how it is insecure under the active behavioral

model. The question as to whether there exist protocols that

securely compute the quadratic distance under the active

behavioral model remains open.

We assume that Alice and Bob respectively have integer

sequences Xn, Y n ∈ Zn
s , where Zs := {0, 1, . . . , s − 1}. We

embed the set Zs in a finite-field ZN of prime order N > n(s−
1)2 with modulo-N field arithmetic. This ensures that ZN is



large enough to simulate the necessary integer arithmetic for

computing the quadratic distance f(Xn, Y n) =
∑n

i=1(Xi −
Yi)

2 while avoiding overflow (modulo) effects. Protocol BGW

for computing the quadratic distance proceeds as follows:

1) Alice randomly chooses α1, . . . , αn ∼ iid Unif(ZN )
independently of (Xn, Y n). For each i ∈ {1, . . . , n}, Alice

creates a polynomial pi : ZN → ZN , via pi(j) := αij +Xi.

Alice sends Bob (party j = 2) the values (p1(2), . . . , pn(2)),
and Charlie (party j = 3) the values (p1(3), . . . , pn(3)),
while retaining (p1(1), . . . , pn(1)) for herself (party j = 1).

2) Similarly, Bob randomly chooses β1, . . . , βn ∼
iid Unif(ZN ) independently of (Xn, Y n), and creates

polynomials qi(j) := βij + Yi. Bob sends Alice the values

(q1(1), . . . , qn(1)), and Charlie the values (q1(3), . . . , qn(3)),
while retaining (q1(2), . . . , qn(2)).
3) Alice, Bob, and Charlie each individually compute

samples of the polynomial r : ZN → ZN defined by

r(j) :=
∑n

i=1

[

p2i (j) + q2i (j)− 2pi(j)qi(j)
]

. Specifically,

Alice computes r(1) using {pi(1), qi(1)}
n
i=1. Likewise, Bob

and Charlie compute r(2) and r(3), respectively.

4) Alice and Bob send r(1) and r(2), respectively, to Charlie.

5) Charlie reconstructs the degree-2 polynomial r via

interpolation from r(1), r(2), and r(3). Finally, he obtains:

r(0) =

n
∑

i=1

[

p2i (0) + q2i (0)− 2pi(0)qi(0)
]

=

n
∑

i=1

[

X2
i + Y 2

i − 2XiYi

]

= f(Xn, Y n).

Since quadratic distance coincides with Hamming distance

for binary sequences (s = 2), the above protocol can also be

used to compute the Hamming distance for binary sequences.

Proposition 1: For quadratic and Hamming distance com-

putation, the BGW protocol is secure under the passive

behavioral model, but not under the active behavioral model.

Proof: The security of this protocol under the passive

behavioral model is well-known (see [11] for a rigorous

proof) and one can confirm that it satisfies the conditions of

Definition 4. To show insecurity under the active behavioral

model, it is sufficient to describe an attack that is able

to influence the computation beyond what can be achieved

against a trusted genie. For this, we demonstrate examples for

both the quadratic and Hamming distance below.

Quadratic Distance (s > 2): The range R(f) of the quadratic

distance, is a proper subset of Zn(s−1)2 since each function

value is a sum of n numbers from the set {x2 : x ∈ Zs}.

The finite-field ZN must have prime size N > n(s − 1)2 in

order to simulate integer arithmetic as finite-field arithmetic.

Hence, R(f) ( ZN , whereas ZN \ R(f) contains invalid

outputs for the function computation. In the ideal model, for

any attack by Alice (or symmetrically by Bob), the output

of Charlie would still remain in R(f), since Alice can only

affect it by changing her input. However, in the real model,

Alice can launch a simple attack, where she randomly chooses

the final message r(1) sent to Charlie independently and

uniformly over ZN . This causes Charlie’s output to uniformly

take values over ZN , including invalid values, due to the

polynomial interpolation in computing his output. For fixed

r(2) and r(3), each modified value of r(1) corresponds to a

unique interpolation result, since 3 samples uniquely determine

a degree-2 polynomial. Due to this one-to-one relationship, a

uniform distribution on r(1) induces a uniform distribution on

the computation result. Thus, the protocol is insecure as there

exists an attack in the real model (against the protocol) that

cannot be equivalently mounted in the ideal model. In addition

to creating the possibility of an invalid output, the attack also

makes the distribution of valid outputs uniform, which cannot

occur in an attack against a trusted genie.

Hamming Distance (s = 2): Suppose that Alice and Bob

have independent sequences of iid Bernoulli(1/2) bits. In the

ideal model, for any attack by Alice (or symmetrically by

Bob), the exclusive-OR of her string and Bob’s is an iid

Bernoulli(1/2) sequence since his string is iid Bernoulli(1/2)
and independent of Alice’s modified input. This means that

for any attack by Alice against a trusted genie, Charlie’s

output is always distributed over {0, 1, . . . , n} as a binomial

distribution with mean n/2. For the protocol in the real model,

if N = n+1 is prime, then ZN can be used without containing

any invalid outputs. However, Alice could launch a simple

attack by randomly choosing the final message r(1) sent to

Charlie uniformly over ZN , causing Charlie’s output to be

uniformly distributed over {0, 1, . . . , n}. Thus, the protocol is

insecure since there exists an attack in the real model that

influences the output in a manner that cannot be replicated by

an attack against a trusted genie.
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secure protocols,” in Proceedings of the ACM Symposium on Theory of

Computing, Chicago, IL, 1988, pp. 11–19.
[4] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the

presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
Apr. 1980.

[5] O. Goldreich, Foundations of Cryptography. Cambridge University
Press, 2004, vol. II: Basic Applications.
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