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training of time series pattern analysis especially for speech processing. The regression parame-
ters are usually shared among sets of Gaussians in HMMs where the Gaussian clusters are rep-
resented by a tree. This paper realizes a fully Bayesian treatment of linear regression for HMMs
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ing them as tuning parameters. Experiments on large vocabulary continuous speech recognition
confirm the generalizability of the proposed approach, especially when the amount of adaptation
data is limited.
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(HMM) parameters is widely used for the adaptive train-
ing of time series pattern analysis especially for speech

processing. The regression parameters are usually shared
among sets of Gaussians in HMMs where the Gaus-
sian clusters are represented by a tree. This paper real-

izes a fully Bayesian treatment of linear regression for
HMMs considering this regression tree structure by us-
ing variational techniques. This paper analytically de-

rives the variational lower bound of the marginalized
log-likelihood of the linear regression. By using the vari-
ational lower bound as an objective function, we can

algorithmically optimize the tree structure and hyper-
parameters of the linear regression rather than heuristi-
cally tweaking them as tuning parameters. Experiments

on large vocabulary continuous speech recognition con-
firm the generalizability of the proposed approach, es-
pecially when the amount of adaptation data is limited.
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1 Introduction

Hidden Markov Models (HMM) have been widely used
for time series analysis (e.g., speech, text, and image
processing). HMM parameters can be estimated by sta-

tistical methods, effectiveness of which depends on the
quality and quantity of available data that should dis-
tribute according to the statistical feature of intended

signal space or conditions. As there is no sure way of col-
lecting sufficient data to cover all conditions, adaptive
training of HMM parameters from a set of previously

obtained parameters to a new set that befits a specific
environment with a small amount of new data is an
important research issue.

In speech recognition, one approach is to view the
adaptation of model parameters to new data as a trans-

formation problem; that is, the new set of model param-
eters is a transformed version of the old set: λn+1 =
f(λn, {x}n), where {x}n denotes the new set of data

available at moment n for the existing model param-
eters λn to adapt to. Most frequently and practically,
the function f is chosen to be of an affine transforma-

tion type [1, 2]: λn+1 = Aλn + b, when various parts
of the model parameters, e.g., the mean vectors or the
variances, are envisaged in a vector space. The adap-

tation algorithm therefore involves deriving the affine
map components, A and b, from the adaptation data
{x}n. A number of algorithms have been proposed for

this purpose. (See [3,4] for detail. There are many vari-
ants of transformation types for HMMs, e.g., [5–9]).
Some techniques bear the name ”linear regression”, and

our paper also uses this name by convention. In addi-
tion to speech recognition, there are many other appli-
cations of the adaptive training of HMMs than speech

recognition (e.g., speech synthesis [10], speaker recog-
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Fig. 1 Gaussian tree representation of liner regression pa-
rameters.

nition [11], face recognition [12] and activity recogni-

tion [13]).

The linear regression method for HMM parameters

estimates the affine transformation parameters from a
set of adaptation data, usually limited in size. The trans-
formation with the estimated parameters is then ap-

plied to the previously trained HMMs, resulting in the
set of ”adapted models”. Note that for automatic speech
recognition, the number of the Gaussian distributions

or simply Gaussians, which are used as component dis-
tributions in forming state-dependent mixture distri-
butions, is typically in the thousands or more. If each

mean vector in the set of Gaussians is to be modi-
fied by a unique transformation matrix, the number of
”adaptation parameters” can therefore be quite large.

The main problem of this method is thus how to im-
prove ”generalization capability” by avoiding the over-
training problem when the amount of adaptation data

is small. To solve the problem, there are mainly two
approaches: 1) model selection and 2) prior knowledge
utilization.

The model selection approach is originally proposed
within the estimation of linear transformation param-

eters by using the maximum likelihood EM algorithm
(called Maximum Likelihood Linear Regression (MLLR)).
MLLR proposes to share one linear transformation in

a cluster of many Gaussians in the HMM set, thereby
effectively reducing the number of free parameters that
can then be trained with a small amount of adaptation

data. The Gaussian clusters are usually constructed as
a tree structure, as shown in Figure 1, which is pre-
determined and fixed throughout adaptation. This tree

(called regression tree) is constructed based on a cen-
troid splitting algorithm, described in [14]. This algo-
rithm first makes two centroid vectors from a random

perturbation of the global mean vector computed from

Gaussians assigned to a target leaf node. Then, it splits

a set of these Gaussians according to the Euclidean dis-
tance between Gaussian mean vectors and two centroid
vectors. Obtained two sets of Gaussians are assigned to

child nodes, and this procedure is continued to finally
build a tree.

The utility of the tree structure is commensurate
with the amount of adaptation data; namely, if we have

a small amount of data, it uses only coarse clusters
(e.g., the root node of a tree in the top layer of Figure
1) where the number of free parameters in the linear

transformation matrices is small. On the other hand,
if we have a sufficiently large amount of data, it can
use fine clusters where the number of free parameters
in the linear transformation matrices is large, poten-

tially improving the precision of the estimated parame-
ters. This framework needs to select appropriate Gaus-
sian clusters according to the amount of data, i.e., it

needs an appropriate model selection function. Usually,
the model selection is performed by setting a threshold
value manually (e.g., the total number of speech frames

assigned to a set of Gaussians in a node)

While the regression tree in MLLR can be consid-
ered one form of prior knowledge, i.e., how various Gaus-
sian distributions are related, another approach is to ex-

plicitly construct and use prior knowledge of regression
parameters in an approximated Bayesian paradigm. For
example, Maximum A Posteriori Linear Regression (MAPLR)

[15] and quasi-Bayes linear regression [16] replace the
ML criterion with the MAP and quasi-Bayes criteria,
respectively, in the estimation of regression parameters.

With the explicit prior knowledge acting as a regular-
ization term, MAPLR appears to be less susceptible to
the problem of over-fitting. The MAPLR is extended

to the structural MAP (SMAP) [17] and the structural
MAPLR (SMAPLR) [18], both of which fully utilize
the Gaussian tree structure used in the model selec-

tion approach to efficiently set the hyper-parameters in
prior distributions. In SMAP and SMAPLR, the hyper-
parameters in the prior distribution in a target node are

obtained by the statistics in its parent node. Since the
total number of speech frames assigned to a set of Gaus-
sians in the parent node is always larger than that in the

target node, the obtained statistics in the parent node
is more reliable than that in the target node, and these
can be good prior knowledge for transformation param-

eter estimation in the target node. Another extension
of MAPLR is to replace MAP approximation to a fully
Bayesian treatment of latent models, called variational

Bayes (VB). VB has been developed in the machine
learning field based on a variational technique [19–23],
and has been successfully applied to HMM training in

speech recognition [24–31]. VB is also applied to the
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estimation of the linear transformation parameters of

HMMs [32, 33] to achieve further generalization capa-
bilities.

This paper also employs VB for the linear regression
problem, but we focus on the model selection and effi-
cient prior utilization at the same time, in addition to

the estimation of the linear transformation parameters
of HMMs proposed in previous work [32,33]. In partic-
ular, we consistently use the variational lower bound as

the optimization criterion for the model structure and
hyper-parameters, in addition to the posterior distribu-
tions of the transformation parameters and the latent

variables1. Since this optimization leads the approxi-
mated variational posterior distributions to the true
posterior distributions theoretically in the sense of min-

imizing Kullback Leibler divergence between them, the
above consistent approach yields to improve the gen-
eralization capability [20, 22, 23]. To do this, this pa-

per provides an analytical solution to the variational
lower bound by marginalizing all possible transforma-
tion parameters and latent variables introduced in the

linear regression problem. The solution is based on a
variance-normalized representation of Gaussian mean
vectors to simplify the solution as normalized domain

MLLR. As a result of variational calculation, we can
marginalize the transformation parameters in all nodes
used in the structural prior setting. This is a part of

the solution of the variational message passing algo-
rithm [34], which is a general framework of variational
inference in a graphical model. Furthermore, the opti-

mization of the model topology and hyper-parameters
in the proposed approach yields an additional benefit
to the improvement of the generalization capability. For

example, the proposed approach infers the linear regres-
sion without controlling the Gaussian cluster topology
and hyper-parameters as the tuning parameters. Thus

linear regression for HMM parameters is accomplished
without excessive parameterization in a Bayesian sense.

This paper is organized as follows. It first intro-
duces the conventional MLLR framework in Section 2.
Then, we provide a formulation of the Bayesian linear

regression framework in Section 3. Based on the for-

1 Strictly speaking, since transformation parameters are
not observables and are marginalized in this paper, these
can be regarded as latent variables in a broad sense, similar
to HMM states and mixture components of Gaussian Mix-
ture Models (GMMs). However, these have different proper-
ties, e.g., transformation parameters can be integrated out
in the VB-M step, while HMM states and mixture compo-
nents are computed in the VB-E step, as discussed in Section
3. Therefore, to distinguish transformation parameters from
HMM states and mixture components clearly, this paper only
treats HMM states and mixture components as latent vari-
ables, which follows a terminology in variational Bayes frame-
work [22]

mulation, Section 4 introduces a practical model selec-

tion and hyper-parameter optimization scheme in terms
of optimizing the variational lower bound. Section 5
reports unsupervised speaker adaptation experiments

for a large vocabulary continuous speech recognition
task, and confirms the effectiveness of the proposed ap-
proach. The mathematical notations used in this paper

are summarized in Table 1.

2 Linear regression for hidden Markov models

based on variance normalized representation

This section briefly explains a solution for the linear
regression parameters for HMMs within a maximum
likelihood EM algorithm framework. This paper uses

a solution based on a variance normalized representa-
tion of Gaussian mean vectors to simplify the solution2.
In this paper, we only focus on the transformation of

Gaussian mean vectors in HMMs.

2.1 Maximum likelihood solution based on EM
algorithm and variance normalized representation

First, we explain the basic EM algorithm of the con-
ventional HMM parameter estimation to set the no-
tational convention and to align with the subsequent

development of the proposed approach. Let O , {ot ∈
R

D|t = 1, · · · , T} be a sequence of D dimensional fea-
ture vectors for T speech frames. The latent variables

in a continuous density HMM are composed of HMM
states and mixture components of GMMs. A sequence
of HMM states is represented by S , {st|t = 1, · · · , T},
where the value of st denotes an HMM state index at
frame t. Similarly, a sequence of mixture components is
represented by Z , {zt|t = 1, · · · , T}, where the value

of zt denotes a mixture component index at frame t.
The EM algorithm deals with the following auxiliary
function as an optimization function instead of directly

using the model likelihood:

Q(Θ; Θ̂) , 〈log p(O,S,Z|Θ)〉p(S,Z|O;Θ̂) , (1)

where Θ is a set of HMM parameters. The brackets

〈〉 denote the expectation i.e. 〈g(y)〉p(y) ≡
∫
g(y)p(y)dy

for a continuous random variable y and 〈g(n)〉p(n) ≡∑
n g(n)p(n) for a discrete random variable n. p(O,S,Z|Θ)

is a complete data likelihood given Θ. p(S,Z|O; Θ̂) is

the posterior distribution of the latent variables given

2 This is first described in [35] as normalized domain
MLLR. The structural Bayes approach [17] for bias vector
estimation in HMM adaptation also uses this normalized rep-
resentation.
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Table 1 Notation list

t : Speech frame index
T : The number of speech frames
ot ∈ R

D : D dimensional feature vector at t

O = {ot|t = 1, · · · , T} : Sequence of feature vectors for T frames
S = {st|t = 1, · · · , T} : Sequence of HMM states for T frames
Z = {zt|t = 1, · · · , T} : Sequence of mixture components in a GMM for T frames
V = {{st, zt}|t = 1, · · · , T} : Joint event sequence of s and v

Q(·; ·) : Auxiliary function used in the EM algorithm
Θ : Set of HMM parameters
m : Model structure index of a pruned Gaussian tree
Jm : Set of leaf nodes with m

j : leaf node index
Wj ∈ R

D×(D+1) : Regression matrix at j

ΛJm
= {Wj |j = 1, · · · , |Jm|} : Subset of regression matrices for leaf nodes with m

i : node index
Im : Set of nodes with m

ΛIm
= {Wi|i = 1, · · · , |Im|} : Subset of regression matrices for nodes with m

p(i) : Parent node of i
l(i) : Left child node of i
r(i) : Right child node of i
k : mixture component index for all Gaussians
ζk,t ∈ [0, 1] : Posterior probability of mixture component k at t

µk ∈ R
D : Gaussian mean vector at k

Σk ∈ R
D×D : Gaussian covariance matrix at k

N (·|µ,Σ) : Gaussian distribution with µ and Σ

µad
k : Transformed mean vector

Ck ∈ R
D×D : Cholesky decomposition matrix of Σk

ξk ∈ R
D+1 : Augmented normalized vector at k

Ki : Set of Gaussians in node i

Ξj ∈ R
(D+1)×(D+1) : 0th order sufficient statistics for Wj

Zj ∈ R
D×D : 1st order sufficient statistics for Wj

ζk ∈ R>0 : 0th order sufficient statistics for kth Gaussian
νk ∈ R

D : 1st order sufficient statistics for kth Gaussian
Sk ∈ R

D×D : 2nd order sufficient statistics for kth Gaussian
Ψ : Set of hyper-parameters
F(m,Ψ) : Variational lower bound given Ψ and m

q(·) : Variational posterior distribution
Mj ∈ R

D×(D+1) : location matrix of matrix variate normal distribution at j

Ωj ∈ R
(D+1)×(D+1) : scale matrix of matrix variate normal distribution at j

Φj ∈ R
D×D : scale matrix of matrix variate normal distribution at j

ID : D ×D identity matrix
ρj ∈ R>0 : precision parameter at j

g(·) : normalization factor of Gaussian distribution
h(·) : normalization factor of matrix variate normal distribution

the previously estimated HMM parameters Θ̂. Eq. (1)
is an expected value, and is efficiently computed by us-

ing the forward-backward algorithm as the E-step of
the EM algorithm.

The M-step of the EM algorithm estimates HMM

parameters, as follows:

Θ̄ = argmax
Θ

Q(Θ; Θ̂). (2)

The E-step and the M-step are performed iteratively
until convergence, and finally we obtain the HMM pa-

rameters as a close approximate of the stationary point
solution.

Now we focus on the linear transformation param-

eters within the EM algorithm. We prepare a trans-

formation parameter matrix Wj for each leaf node j

in a Gaussian tree. Here, we assume that the Gaus-

sian tree is pruned by a model selection approach as
a model structure m, and the set of leaf nodes in the
pruned tree is represented as Jm. Hereinafter, we use

V to denote a joint event of S and Z (i.e., V , {S,Z}).
This will much simplify the following development per-
taining to the adaptation of the mean and the covari-

ance parameters. Similar to Eq. (1), the auxiliary func-
tion with respect to a set of transformation parameters
ΛJm

= {Wj |j = 1, · · · , |Jm|} can be represented as
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follows:

Q(ΛJm
; Λ̂Jm

) = 〈log p(O,V|ΛJm
;Θ)〉p(V|O;Θ,Λ̂Jm )

=

K∑

k=1

T∑

t=1

ζk,t logN (ot|µ
ad
k ,Σk),

(3)

k denotes a unique mixture component index of all
Gaussians in the target HMMs (for all phoneme HMMs

in a speech recognition case), and K is the total num-
ber of Gaussians. ζk,t , p(vt = k|O;Θ, Λ̂Jm

) is the
posterior probability of mixture component k at t, de-

rived from the previously estimated transformation pa-
rameters Λ̂Jm

3. µad
k is a transformed mean vector with

ΛJm
, and the concrete form of this vector is discussed

in the next paragraph. In the Q function, we disregard
the parameters of the state transition probabilities and
the mixture weights since they do not depend on the

optimization with respect to ΛJm
. N (·|µ,Σ) denotes a

Gaussian distribution with mean parameter µ and co-
variance matrix parameter Σ, and is defined as follows:

N (ot|µ
ad
k ,Σk)

, g(Σk) exp

(
−
1

2
tr
[
(Σk)

−1(ot − µad
k )(ot − µad

k )′
])

,

(4)

where tr[·] and ′ mean the trace and transposition op-
erations of a matrix, respectively. g(Σk) is a normaliza-

tion factor, and is defined as follows:

g(Σk) , (2π)−
D
2 |Σk|

− 1
2 . (5)

In the following paragraphs, we derive Eq. (3) as a func-

tion of ΛJm
to optimize ΛJm

, similar to Eq. (2).
We consider the concrete form of the transformed

mean vector (µad
k ) based on the variance normalized

representation. We first define Cholesky decomposition
matrix Ck as follows:

Σk , Ck(Ck)
′. (6)

Ck is a D ×D triangular matrix. If the Gaussian k is

included in a set of Gaussians Kj in leaf node j (i.e.,
k ∈ Kj), the affine transformation of a Gaussian mean
vector in a covariance normalized space (Ck)

−1µad
k is

represented as follows:

(Ck)
−1µad

k = Wj

(
1

(Ck)
−1µini

k

)
.

⇒ µad
k = CkWj

(
1

(Ck)
−1µini

k

)
, CkWjξk.

(7)

3 k denotes a combination of all possible HMM states and
mixture components. In the common HMM representation, k
can be represented by these two indexes.

ξk is an augmented normalized vector of an initial (non-

adapted) Gaussian mean vector µini
k . Wj is a D×(D+

1) affine transformation matrix. j is a leaf node index
that holds a set of Gaussians. Namely, transformation

parameter Wj is shared among a set of Gaussians Kj .
The clustered structure of the Gaussians is usually rep-
resented as a binary tree where a set of Gaussians be-

longs to each node.

The Q function of ΛJm
is represented by substitut-

ing Eqs. (7) and (4) into Eq. (3) as follows:

Q(ΛJm
; Λ̂Jm

)

=
∑

j∈Jm

∑

k∈Kj

T∑

t=1

ζk,t logN (ot|CkWjξk,Σk)

=
∑

j∈Jm

(
∑

k∈Kj

ζk log g(Σk)−
1

2
tr

[
W′

jWjΞj

− 2W′
jZj +

∑

k∈Kj

Σ−1
k Sk

])
,

(8)

where Ξj and Zj are 0th and 1st order statistics of

linear regression parameters defined as:





Ξj ,
∑

k∈Kj

ξk(ξk)
′ζk.

Zj ,
∑

k∈Kj

(Ck)
−1νk(ξk)

′.
(9)

Here Zj is a D× (D+1) matrix and Ξj is a (D+1)×
(D + 1) symmetric matrix. ζk, νk, and Sk are defined
as follows:





ζk =

T∑

t=1

ζk,t

νk =

T∑

t=1

ζk,tot

Sk =

T∑

t=1

ζk,toto
′
t

(10)

These are the 0th, 1st, and 2nd order sufficient statistics
of Gaussians in HMMs, respectively.

Since Eq. (8) is represented as a quadratic form with
respect to Wj , we can obtain the optimal W̄j , similar

to Eq. (2). By differentiating the Q function with re-
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spect to Wj , we can derive the following equation4

∂

∂Wj
Q(ΛJm

; Λ̂Jm
) = 0. ⇒ Zj − W̄jΞj = 0. (11)

Thus, we can obtain the following analytical solution:

W̄j = ZjΞ
−1
j . (12)

Therefore, the optimized mean vector parameter is rep-

resented as:

µad
k = CkZjΞ

−1
j ξk. (13)

Therefore, µad
k is analytically obtained by using the

statistics (Zj and Ξj in Eq. (9)) and initial HMM pa-
rameters (Ck and ξk). This solution corresponds to the
M-step of the EM algorithm, and the E-step is per-

formed by the forward-backward algorithm, similarly
to that of HMMs, to compute these statistics.

3 Bayesian Linear Regression

This section provides an analytical solution for Bayesian
linear regression by using a variational lower bound.

The previous section only considers a regression ma-
trix in leaf node j ∈ Jm, we also consider a regres-
sion matrix in leaf or non-leaf node i ∈ Im in the

Gaussian tree given model structure m. Then, we fo-
cus on a set of regression matrices in all nodes ΛIm

=
{Wi|i = 1, · · · , |Im|}, instead of ΛJm

, and marginal-

ize ΛIm
in a Bayesian manner. This extension involves

the structural prior setting as proposed in SMAP and
SMAPLR [17,18].

In this section, we mainly deal with:

– the prior distribution of model parameters p(ΛIm
;m,Ψ)

– the true posterior distribution of model parameters
and latent variables p(ΛIm

,V|O;m,Ψ)

– the variational posterior distribution of model pa-
rameters and latent variables q(ΛIm

,V|O;m,Ψ)
– the output distribution p(O,V|ΛIm

;Θ)

For simplicity, we omit some conditional variables in
these distribution functions, as follows:
4 We use the following matrix formulate for the derivation:

∂

∂X
tr[X′A] = A

∂

∂X
tr[X′XA] = 2XA (A is a symmetric matrix)

p(ΛIm
;m,Ψ) → p(ΛIm

)
p(ΛIm

,V|O;m,Ψ) → p(ΛIm
,V|O)

q(ΛIm
,V|O;m,Ψ) → q(ΛIm

,V)
p(O,V|ΛIm

;Θ) → p(O,V|ΛIm
)

3.1 Variational lower bound

With regard to the variational Bayesian approaches, we
first focus on the following marginalized log-likelihood

p(O;Θ,m,Ψ) with a set of HMM parameters Θ, a set
of hyper-parameters Ψ, and a model structure5,6.

log p(O;Θ,m,Ψ)

= log

(∫ ∑

V

p(O,V|ΛIm
;Θ)p(ΛIm

;m,Ψ)dΛIm

)
.

(14)

where p(O,V|ΛIm
;Θ) is the output distribution of the

transformed HMM parameters with transformed mean
vectors µad

k . p(ΛIm
;m,Ψ) is a prior distribution of trans-

formation matrices ΛIm
. In the following explanation,

we omit Θ, m, and Ψ in the prior distribution and
output distribution for simplicity, i.e., p(ΛIm

;m,Ψ) →
p(ΛIm

), and p(O,V|ΛIm
;Θ) → p(O,V|ΛIm

).

The variational Bayesian approach focuses on the
lower bound of the marginalized log likelihood F(m,Ψ)

with a set of hyper-parametersΨ and a model structure
m, as follows:

log p(O;Θ,m,Ψ)

= log

(∫ ∑

V

p(O,V|ΛIm
)p(ΛIm

)

q(ΛIm
,V)

q(ΛIm
,V)dΛIm

)

≥

〈
log

p(O,V|ΛIm
)p(ΛIm

)

q(ΛIm
,V)

〉

q(ΛIm ,V)︸ ︷︷ ︸
,F(m,Ψ)

.

(15)

The inequality in Eq. (15) is supported by the Jensen’s
inequality: log(〈X〉p(X)) ≥ 〈log(X)〉p(X). q(ΛIm

,V) is

an arbitrary distribution, and is optimized by using a
variational method to be discussed later. For simplic-
ity, we omit m, Ψ, and O from the distributions. The

variational lower bound is a better approximation of the
marginalized log likelihood than the auxiliary functions
of maximum likelihood EM and maximum a posteriori

5 Ψ and m can also be marginalized by setting their dis-
tributions. This paper point-estimates Ψ and m by a MAP
approach.
6 We can also marginalize the HMM parameters Θ. This

corresponds to jointly optimize HMM and linear regression
parameters.
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EM algorithms that point-estimate model parameters,

especially for small amount of training data [21–23].
Therefore, the variational Bayes can mitigate the sparse
data problem that the conventional approaches must

confront with.

The variational Bayes regards the variational lower

bound F(m,Ψ) as an objective function for the model
structure and hyper-parameter, and an objective func-
tional for the joint posterior distribution of the trans-

formation parameters and latent variables [22, 23]. In
particular, if we consider the true posterior distribution
p(ΛIm

,V|O) (we omit conditional variables m and Ψ

for simplicity), we obtain the following relationship:

KL [q(ΛIm
,V)||p(ΛIm

,V|O)] =

log p(O;Θ,m,Ψ)−F(m,Ψ)
(16)

This equation means that maximizing the variational
lower bound F(m,Ψ) with respect to q(ΛIm

,V) corre-
sponds to minimizing the Kullback-Leibler (KL) diver-

gence between q(ΛIm
,V) and p(ΛIm

,V|O) indirectly.
Therefore, this optimization yields to find q(ΛIm

,V),
which approaches to the true posterior distribution7.

Thus, in principle, we can straightforwardly obtain
the (sub) optimal model structure, hyper-parameters,

and posterior distribution, as follows:

m̃ = argmax
m

F(m,Ψ).

Ψ̃ = argmax
Ψ

F(m,Ψ).

q̃(ΛIm
,V) = argmax

q(ΛIm ,V)

F(m,Ψ).

(17)

This optimization steps are performed alternately, and

finally lead to local optimum solutions, similar to the
EM algorithm. However it is difficult to deal with the
joint distribution q(ΛIm

,V) directly, and we propose to

factorize them by utilizing a Gaussian tree structure. In
addition, we also set a conjugate form of the prior dis-
tribution p(ΛIm

). This procedure is a typical recipe of

VB to make a solution mathematically tractable similar
to that of the classical Bayesian adaptation approach.

7 The following sections assume factorization forms of
q(ΛIm

,V) to make solutions mathematical tractable. How-
ever, this factorization assumption weakens the relationship
between the KL divergence and the variational lower bound.
For example, if we assume q(ΛIm

,V) = q(ΛIm
)q(V), and

focus on the KL divergence between q(ΛIm
) and p(ΛIm

|O),
we obtain the following inequality:

KL [q(ΛIm
)||p(ΛIm

|O)] ≤ log p(O;Θ,m,Ψ)−F(m,Ψ).

Compared with Eq. (16), the relationship between the KL
divergence and the variational lower bound are less direct due
to the inequality relationship. In general, the factorization
assumption distances optimal variational posteriors from the
true posterior within the VB framework.

3.2 Structural prior distribution setting in a binary

tree

We utilize a Gaussian tree structure to factorize the

prior distribution p(ΛIm
). We consider a binary tree

structure, but the formulation is applicable to a general
non-binary tree. We define the parent node of i as p(i),

the left child node of i as l(i), and the right child node of
i as r(i), as shown in Figure 2, where a transformation
matrix is prepared for each corresponding node i. If

we define W1 as the transformation matrix in the root
node, we assume the following factorization for the prior
distribution p(ΛIm

),

p(ΛIm
) = p(W1, · · · ,W|Im|)

= p(W1)p(Wl(1)|W1)p(Wr(1)|W1)

p(Wl(l(1))|Wl(1))p(Wr(l(1))|Wl(1))

p(Wl(r(1))|Wr(1))p(Wr(r(1))|Wr(1)) · · ·

=
∏

i∈Im

p(Wi|Wp(i)).

(18)

To make the prior distribution a product form in the
last line of Eq. (18), we define p(W1) , p(W1|Wp(1)).

As seen, the effect of the transformation matrix in a
target node propagates to its child nodes.

This prior setting is based on an intuitive assump-

tion that the statistics in a target node is highly corre-
lated with the statistics in its parent node. In addition,
since the total number of speech frames assigned to a

set of Gaussians in the parent node is always larger
than that in the target node, the obtained statistics in
the parent node is more reliable than that in the tar-

get node, and these can be good prior knowledge for
the transformation parameter estimation in the target
node.

With a Bayesian approach, we need to set a practi-
cal form of the above prior distributions. A conjugate

distribution is preferable as far as obtaining an analyt-
ical solution is concerned, and we set a matrix variate
normal distribution similar to Maximum A Posteriori

Linear Regression (MAPLR [15]). A matrix variate nor-
mal distribution is defined as follows:

p(Wi) = N (Wi|Mi,Φi,Ωi)

,
exp

(
− 1

2 tr
[
(Wi −Mi)

′Φ−1
i (Wi −Mi)Ω

−1
i

])

(2π)D(D+1)/2|Ωi|D/2|Φi|(D+1)/2
,

(19)

where Mi is a D × (D + 1) location matrix, Ωi is a
(D + 1) × (D + 1) symmetric scale matrix, and Φi is
a D ×D symmetric scale matrix. Ωi represents corre-

lation of column vectors, and Φi represents correlation
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Fig. 2 Binary tree structure with transformation matrices. If
we focus on node i, the transformation matrices in the parent
node, left child node, and right child node are represented as
Wp(i), Wl(i), and Wr(i), respectively.

of raw vectors. These are hyper-parameters of the ma-
trix variate normal distribution. There are many hyper-

parameters to be set, and this makes the implementa-
tion complicated. In this paper, we try to find another
conjugate distribution with fewer hyper-parameters than

Eq. (19). To obtain a simple solution for the final ana-
lytical results, we use a spherical Gaussian distribution
that has the following constraints on Ωi and Φi:

Φi ≈ ID,

Ωi ≈ ρ−1
i ID+1,

(20)

where ID is the D × D identity matrix. ρi indicates a
precision parameter. Then, Eq. (19) can be rewritten
as follows:

N (Wi|Mi, ID, ρ−1
i ID+1)

= h(ρ−1
i ID+1) exp

(
−
1

2
tr [ρi(Wi −Mi)

′(Wi −Mi)]

)
,

(21)

where h(ρ−1
i ID+1) is a normalization factor, and de-

fined as

h(ρ−1
i ID+1) ,

( ρi

2π

)D(D+1)
2

. (22)

This approximation means that matrix elements do not

have any correlation each other. This can produce sim-
ple solutions for Bayesian linear regression8

8 Matrix variate normal distribution in Eq. (19) is also
represented by the following multivariate normal distribu-

Based on the spherical matrix variate normal distri-

bution, the conditional prior distribution p(Wi|Wp(i))
in Eq. (18) is obtaining by setting the location matrix
as the transformation matrix Wp(i) in the parent node

with the precision parameter ρi as follows:

p(Wi|Wp(i)) = N (Wi|Wp(i), ID, ρ−1
i ID+1) (23)

Note that in the following sections Wi and Wp(i) are
marginalized. In addition, we set the location matrix
in the root node as the deterministic value of Wp(1) =

[0, ID]. Since µad
k = CkWp(1)ξk = µini

k from Eq. (7),
this hyper-parameter setting means that the initial mean
vectors are not changed if we only use the prior knowl-

edge. This makes sense in the case of small amount
of data by fixing the HMM parameters as their ini-
tial values; this in a sense also inherits the philosoph-

ical background of Bayesian adaptation, although the
objective function has been changed from a posteriori
probability to a lower bound of the marginalized likeli-

hood. Therefore, we just have {ρi|i = 1, · · · , |Im|} as a
set of hyper-parametersΨ, which will be also optimized
in our framework.

3.3 Variational calculus

In VB, we also assume the following factorization form
to the posterior distribution q(V,ΛIm

):

q(V,ΛIm
) = q(V)q(ΛIm

) = q(V)
∏

i∈Im

q(Wi) (24)

Then, from the variational calculation for F(m,Ψ) with
respect to q(Wi), we obtain the following (sub) optimal
solution for q(Wi):

log q̃(Wi)

∝
〈
〈log p(O,V|ΛIm

)〉q(V) p(ΛIm
)
〉
∏

i′ 6=i∈Im

q(Wi′ )

∝
∑

i′∈Im

〈
log p(Wi′ |Wp(i′))

〉
∏

i′ 6=i∈Im

q(Wi′ )

+
〈
〈log p(O,V|ΛIm

)〉q(V)

〉
∏

i′ 6=i∈Im

q(Wi′ )
,

(25)

tion [36]:

N (Wi|Mi,Φi,Ωi)

∝ exp

(

−
1

2
vec(Wi −Mi)

′(Ωi ⊗Φi)
−1 vec(Wi −Mi)

−1

)

,

where vec(Wi−Mi) is a vector formed by the concatenation
of the columns of (Wi −Mi), and ⊗ denotes the Kronecker
product. Based on this form, a VB solution in this paper
could be extended without considering the variance normal-
ized representation used in this paper according to [16].
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where we use Eqs. (18) and (24) to rewrite the equa-

tion. Operation ∝ denotes the proportional relationship
between the left and the right hand sides of the prob-
abilistic distribution functions. It is a useful expression

since we do not have to write normalization factors ex-
plicitly, which are disregarded in the following calcu-
lations. In Eq. (25), ∝ is also used in the logarithmic

domain where normalization factors can be represented
as constant terms.

In this expectation, we can consider the following

two cases of variational posterior distributions:

1) Leaf node

We first focus on the prior term of Eq. (25). If i is a
leaf node, we can disregard the expectation with respect

to
∏

i′ 6=i∈Im
q(Wi′) in the other nodes than the parent

node p(i) of the target leaf node. Thus, we obtain the
following simple solution:

log q̃(Wi) ∝
〈
log p(Wi|Wp(i))

〉
q(Wp(i))

+
〈
〈log p(O,V|ΛIm

)〉q(V)

〉
∏

i′ 6=i∈Im

q(Wi′ )

(26)

2) Non-leaf node (with child nodes)

Similarly, if i is a non-leaf node, in addition to the par-
ent node p(i) of the target node, we also have to con-
sider the child nodes l(i) and r(i) of the target node for

the expectation, as follows:

log q̃(Wi) ∝
〈
log p(Wi|Wp(i))

〉
q(Wp(i))

(27-1)

+
〈
log p(Wl(i)|Wi)

〉
q(Wl(i))

(27-2)

+
〈
log p(Wr(i)|Wi)

〉
q(Wr(i))

(27-3)

+
〈
〈log p(O,V|ΛIm

)〉q(V)

〉
∏

i′ 6=i∈Im

q(Wi′ )

(27-4)

In both cases, the posterior distribution of the trans-

formation matrix in the target node depends on those
in the parent and child nodes. Therefore, the posterior
distributions are iteratively calculated. This inference is

known as a variational message passing algorithm [34],
and Eqs. (26) and (27) are specific solutions of the varia-
tional message passing algorithm to a binary tree struc-

ture. The next section provides a concrete form of the
posterior distribution of the transformation matrix.

3.4 Posterior distribution of transformation matrix

We first focus on Eq. (27), which is a general equation of

Eq. (26) that has additional terms based on child nodes

to Eq. (26). Eq. (27-4) is based on the expectation with

respect to
∏

i′ 6=i∈Im
q(Wi′) and q(V). The term with

q(V) is represented as the following expression similar
to Eq. (8):

〈log p(O,V|ΛIm
)〉q(V)

=
∑

i∈Im

(
∑

k∈Ki

ζk log g(Σk)

−
1

2
tr
[
W′

iWiΞi − 2W′
iZi +

∑

k∈Ki

Σ−1
k Sk

])
.

(28)

Here sufficient statistics (ζk, Sk, Ξi, and Zi in Eqs.
(9) and (10)) are computed by the VB-E step (e.g.,

ζk,t = q(vt = k)), which is described in the next section.
This equation form means that the term can be factor-
ized by node i. This factorization property is important

for the following analytic solutions and algorithm. Ac-
tually, by considering the expectation with respect to∏

i′ 6=i∈Im
q(Wi′), we can integrate out the terms that

do not depend on Wi, as follows:

〈
〈log p(O,V|ΛIm

)〉q(V)

〉
∏

i′ 6=i∈Im

q(Wi′ )

∝ −
1

2
tr [W′

iWiΞi − 2W′
iZi] .

(29)

Next, we consider Eq. (27-1). Since we use a conju-
gate prior distribution, q(Wp(i)) is also represented by
the following matrix variate normal distribution as the

same distribution family with the prior distribution.

q(Wp(i)) = N (Wp(i)|Mp(i), ID,Ωp(i)) (30)

Note that the posterior distribution has a unique form
that the first covariance matrix is an identity matrix
while the second one is a symmetric matrix. We discuss

about this form with the analytical solution, later.

By substituting Eqs. (18) and (30) into Eq. (27-1),
Eq. (27-1) is represented as follows:

〈
log p(Wi|Wp(i))

〉
q(Wp(i))

=

∫ (
logN (Wi|Wp(i), ID, ρ−1

i ID+1)
)

N (Wp(i)|Mp(i), ID,Ωp(i))dWp(i)

(31)

To solve the integral, we use the following matrix dis-

tribution formula:

∫
N (Wp(i)|Mp(i), ID,Ωp(i))dWp(i) = 1

∫
Wp(i)N (Wp(i)|Mp(i), ID,Ωp(i))dWp(i) = Mp(i)
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(32)

Then, by disregarding the terms that do not depend

on Wi, Eq. (31) can be solved as the logarithmic func-
tion of the matrix variate normal distribution that has
the posterior distribution parameter Mp(i) as a hyper-

parameter.

〈
log p(Wi|Wp(i))

〉
q(Wp(i))

∝ ρi

∫
tr
[
W′

iWp(i)

]
N (Wp(i)|Mp(i), ID,Ωp(i))dWp(i)

−
ρi

2

∫
tr [W′

iWi]N (Wp(i)|Mp(i), ID,Ωp(i))dWp(i)

∝ ρitr
[
W′

iMp(i)

]
−

ρi

2
tr [W′

iWi]

∝ logN (Wi|Mp(i), ID, ρ−1
i ID+1)

(33)

Similarly, Eqs. (27-2) and (27-3) are solved as follows:
〈
log p(Wl(i)|Wi)

〉
q(Wl(i))

∝ logN (Wi|Ml(i), ID, ρ−1
l(i)ID+1)

〈
log p(Wr(i)|Wi)

〉
q(Wr(i))

∝ logN (Wi|Mr(i), ID, ρ−1
r(i)ID+1)

(34)

Thus, the expected value terms of the three prior dis-
tributions in Eq. (27) are represented as the following
matrix variate normal distribution:
〈
log p(Wi|Wp(i))

〉
q(Wp(i))

+
〈
log p(Wl(i)|Wi)

〉
q(Wl(i))

+
〈
log p(Wr(i)|Wi)

〉
q(Wr(i))

∝ logN (Wi|Mp(i), ID, ρ−1
i ID+1)

+ logN (Wi|Ml(i), ID, ρ−1
l(i)ID+1)

+ logN (Wi|Mr(i), ID, ρ−1
r(i)ID+1)

∝ logN

(
Wi

∣∣∣∣∣
ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i)

ρi + ρl(i) + ρr(i)
,

ID, (ρi + ρl(i) + ρr(i))
−1ID+1

)

(35)

It is an intuitive solution, since the location parameter
of Wi is represented as a linear interpolation of the lo-

cation values of the posterior distributions in the parent
and child nodes. The precision parameters control the
linear interpolation ratio.

Similarly, we can also obtain the expected value
term of the prior term in Eq. (26), and we summarize
the prior terms of the non-leaf and leaf node cases as

follows:

q̂(Wi) = N (Wi|M̂i, ID, ρ̂−1
i ID+1) (36)

where

M̂i =

{
ρiMp(i)+ρl(i)Ml(i)+ρr(i)Mr(i)

ρi+ρl(i)+ρr(i)
Non-leaf node

Mp(i) Leaf node

ρ̂i =

{
ρi + ρl(i) + ρr(i) Non-leaf node

ρi Leaf node

(37)

Thus, the effect of prior distributions becomes differ-
ent depending on whether the target node is a non-leaf

node or leaf node. The solution is different from our pre-
vious solution [37] since the previous solution does not
marginalize the transformation parameters in non-leaf

nodes. In the Bayesian sense, this solution is stricter
than the previous solution.

Based on Eqs. (28) and (36), we can finally derive

the quadratic form of Wi as follows:

log(q̃(Wi))

∝ −
1

2
tr
[
ρ̂iW

′
iWi +W′

iWiΞi − 2ρ̂iW
′
iM̂i − 2W′

iZi

]

= −
1

2
tr
[
W′

iWi(ρ̂iID+1 +Ξi)− 2W′
i(ρ̂iM̂i + Zi)

]
,

(38)

where we disregard the terms that do not depend on
Wi. Thus, by defining the following matrix variables

Ω̃i = (ρ̂iID+1 +Ξi)
−1

,

=

{(
(ρi + ρl(i) + ρr(i))ID+1 +Ξi

)−1
Non-leaf node

(ρiID+1 +Ξi)
−1

Leaf node

M̃i =
(
ρ̂iM̂i + Zi

)
Ω̃,

=





(
ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i) + Zi

)
Ω̃

Non-leaf node(
ρiMp(i) + Zi

)
Ω̃

Leaf node

(39)

we can derive the posterior distribution of Wi analyti-

cally. The analytical solution is expressed as

q̃(Wi) = N (Wi|M̃i, ID, Ω̃i)

= h(Ω̃i) exp

(
−
1

2
tr
[
(Wi − M̃i)

′(Wi − M̃i)Ω̃
−1
i

])
,

(40)

where

h(Ω̃i) , (2π)−
D(D+1)

2 |Ω̃i|
−D

2 . (41)

The posterior distribution also becomes a matrix vari-

ate normal distribution since we use a conjugate prior
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distribution for Wi. From Eq. (39), M̃i are linearly in-

terpolated by hyper-parameter M̂i and the 1st order
statistics of the linear regression matrix Zi. ρ̂i controls
the balance between the effects of the prior distribution

and adaptation data. This solution is the M-step of the
VB EM algorithm and corresponds to that of the ML
EM algorithm in Section 2.1.

Compared with Eq. (21), Eq. (40) keeps the first
covariance matrix as a diagonal matrix, while the sec-

ond covariance matrix Ω̃ has off diagonal elements. This
means that the posterior distribution only considers the
correlation between column vectors in W. This unique

property comes from the variance normalized represen-
tation introduced in Section 2, which makes multivari-
ate Gaussian distributions in HMMs uncorrelated, and

this relationship is taken over to the VB solutions.

Although the solution for a non-leaf node would

make the prior distribution robust by taking account of
the child node hyper-parameters, this structure makes
the dependency of the target node with the other linked
nodes complex. Therefore, in the implementation step,

we approximate the hyper-parameters of the posterior
distribution for a non-leaf node to those for a leaf node
by M̂i ≈ Mp(i) and ρ̂i ≈ ρi in the Eq. (37), to make an

algorithm simple. We would evaluate the effect of the
non-leaf node solution in future work.

Next section explains the E-step of the VB EM al-
gorithm, which computes sufficient statistics ζk, Sk, Ξi,
and Zi in Eqs. (9) and (10). These are obtained by us-

ing q̃(Wi), of which mode M̃i is used for the Gaussian
mean vector transformation.

3.5 Posterior distribution of latent variables

From the variational calculation of F(m,Ψ) with re-
spect to q(V), we also obtain the following posterior

distribution:

log q̃(V) ∝ 〈log p(O,V|ΛIm
)〉q(ΛIm ) . (42)

By using the factorization form of the variational pos-
terior (Eq. (24)), we can disregard the expectation with

respect to the other variational posteriors than that of
the target node i. Therefore, to obtain the above VB
posteriors of latent variables, we have to consider the

following integral.

∫
q(Wi) logN (ot|CkWiξk,Σk)dWi. (43)

Since the Gaussian mean vectors are only updated in

the leaf nodes, node i in this section is regarded as a

leaf node. By substituting Eqs. (40) and (4) into Eq.

(43), the equation is represented as (see Appendix A):
∫

q(Wi) logN (ot|CkWiξk,Σk)dWi

= logN (ot|µ̃k,Σk)−
1

2
tr
[
ξkξ

′
kΩ̃i

]
.

(44)

where

µ̃k = CkM̃iξk (45)

The analytical result is almost equivalent to the E-step

of conventional MLLR, which means that the computa-
tion time is almost the same as that of the conventional
MLLR E-step.

Note that the Gaussian mean vectors are updated in
the leaf nodes in this result, while the posterior distri-

butions of the transformation parameters are updated
for all nodes.

3.6 Variational lower bound

By using the factorization form (Eq. (24)) of the varia-

tional posterior distribution, the variational lower bound
defined in Eq. (15) is decomposed as follows:

F(m,Ψ)

=

〈
log

p(O,V|ΛIm
)p(ΛIm

)∏
i∈Im

q(Wi)

〉

∏
i∈Im

q(Wi)

q(V)︸ ︷︷ ︸
,L(m,Ψ)

− 〈log q(V)〉q(V) .

(46)

The second term, which consists of q(V), is an entropy
value and is calculated at the E-step in the VB EM al-
gorithm. The first term (L(m,Ψ)) is a logarithmic ev-

idence term for m and Ψ = {ρi|i = 1, · · · |Im|} and we
can obtain an analytical solution of L(m,Ψ). Because
of the factorization forms in Eqs. (24), (18), and (28),

L(m,Ψ) can be represented as the summation over i,
as follows:

L(m,Ψ) =
∑

i∈Im

Li(ρi, ρl(i), ρr(i)), (47)

where

Li(ρi, ρl(i), ρr(i))

,
∑

i∈Im

〈
log

p(O,V|Wi)p(Wi|Wp(i))

q(Wi)

〉

q(Wi)
q(V)

(48)

Note that this factorization form has some dependen-
cies from parent and child node parameters through

Eqs. (37) and (39). To derive an analytical solution,
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we first consider the expectation with respect to only

q(V) for cluster i. By substituting Eqs. (8), (21), and
(40) into Li(ρi, ρl(i), ρr(i)), and by using Eq. (39), the
expectation can be rewritten, as follows:

〈
log

p(O,V|Wi)p(Wi|Wp(i))

q(Wi)

〉

q(V)

=
∑

k∈Ki

ζk log g(Σk) + log
g(ρ̂−1

i ID+1)

g(Ω̃i)

−
1

2
tr

[
ρ̂iM̂

′
iM̂i − M̃′

iM̃iΩ̃
−1
i +

∑

k∈Ki

Σ−1
k Sk

]
.

(49)

The obtained result does not depend on Wi. Therefore,
the expectation with respect to q(Wi) can be disre-
garded in Li(ρi, ρl(i), ρr(i)). Consequently, we can obtain

the following analytical result for the lower bound:

Li(ρi, ρl(i), ρr(i))

= −
D

2
log(2π)

∑

k∈Ki

ζk −
1

2

∑

k∈Ki

ζk log |Σk|

+
D(D + 1)

2
log ρ̂i +

D

2
log |Ω̃i|

−
1

2
tr

[
ρ̂iM̂

′
iM̂i − M̃′

iM̃iΩ̃
−1
i +

∑

k∈Ki

Σ−1
k Sk

]
.

(50)

The first line of the obtained result corresponds to the

likelihood value given the amount of data and the co-
variance matrices of the Gaussians. The other terms
consider the effect of the prior and posterior distribu-

tions of the model parameters. This is used as an opti-
mization criterion with respect to the model structure
m and the hyper-parameters Ψ.

Note that the objective function can be represented
as a summation over i because of the factorization form

of the prior and posterior distributions. This represen-
tation property is used for our model structure opti-
mization in Section 4.2 for a binary tree structure rep-

resenting a set of Gaussians used in the conventional
MLLR.

4 Optimization of hyper-parameters and model

structure

In this section, we describe how to optimize hyper-

parameters Ψ and model structure m by using the vari-
ational lower bound as an objective function. Once we
obtain the variational lower bound, we can obtain an

appropriate model structure and hyper-parameters at

the same time that maximize the lower bound as fol-

lows:

{Ψ̃, m̃} = argmax
m,Ψ

F(m,Ψ) (51)

In this paper, we use two approximations for the vari-
ational lower bound to make the inference algorithm
practical. First, we fix latent variables V during the

above optimization. Then, 〈log q(V)〉q(V) in Eq. (46) is
also fixed for m and Ψ, and can be disregarded in the
objective function. Thus, we can only focus on L(m,Ψ)

in the optimization step, which reduces computational
cost greatly, as follows:

{Ψ̃, m̃} ≈ argmax
m,Ψ

L(m,Ψ) (52)

This approximation is widely used in acoustic model

selection (likelihood criterion [38] and Bayesian crite-
rion [26]). Second, as we discussed in Section 3.4, the
solution for a non-leaf node (Eq. (36)) makes the de-

pendency of the target node with the other linked nodes
complex. Therefore, we approximate Li(ρi, ρl(i), ρr(i)) ≈
Li(ρi) by ρ̂i ≈ ρi and so on, where Li(ρi) is defined in

the next section. Therefore, in the implementation step,
we approximate the posterior distribution for a non-leaf
node to that for a leaf node to make an algorithm sim-

ple.

4.1 Hyper-parameter optimization

Even though we marginalize all transformation matrix

(Wi), we still have to set the precision hyper-parameters
ρi for all nodes. Since we can derive the variational
lower bound, we can optimize the precision hyper-parameter,

and can remove the manual tuning of the hyper-parameters
with the proposed approach. This is an advantage of
the proposed approach with regard to SMAPLR [18],

since SMAPLR has to hand-tune its hyper-parameters
corresponding to {ρi}i.

Based on the leaf node approximation for variational

posterior distributions, in addition to the fixed latent
variable approximation (F(m,Ψ) ≈ L(m,Ψ)), in this
paper the method we implement approximately opti-

mize the precision hyper-parameter as follows:

ρ̃i = argmax
ρi

L(m,Ψ)

=





argmaxρi

(
Li(ρi, ρl(i), ρr(i)) + Lp(i)(ρp(i), ρi, ρr(p(i)))

)

i is a left child node of p(i)

argmaxρi

(
Li(ρi, ρl(i), ρr(i)) + Lp(i)(ρp(i), ρl(p(i)), ρi)

)

i is a right child node of p(i)

≈ argmax
ρi

Li(ρi),
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(53)

where

Li(ρi) ,
D(D + 1)

2
log ρi +

D

2
log |Ω̃i|

−
1

2
tr
[
ρiM

′
p(i)Mp(i) − M̃′

iM̃iΩ̃
−1
i

]
.

(54)

This approximation makes the algorithm simple be-

cause we can optimize the precision hyper-parameter
within the target and parent nodes, and do not have
to consider the child nodes. Since we only have one

scalar parameter for this optimization step, we simply
used a line search algorithm to obtain the optimal pre-
cision hyper-parameter. If we consider a more complex

precision structure (e.g., a precision matrix instead of
a scalar precision parameter in the prior distribution
setting Eq. (20)), the line search algorithm may not

be adequate. In that case, we need to update hyper-
parameters by using some other optimization technique
(e.g., gradient decent).

4.2 Model selection

The remaining tuning parameter in the proposed ap-
proach is how many clusters we prepare. This is a model
selection problem, and we can also automatically obtain

the number of clusters by optimizing the variational
lower bound. In the binary tree structure, we focus on
a subtree composed of a target non-leaf node i and its

child nodes l(i) and r(i). We compute the following dif-
ference based on Eq. (54) of the parent and that of the
child nodes9

∆Li(ρi) , Ll(i)(ρl(i)) + Lr(i)(ρr(i))− Li(ρi). (55)

This difference function is used for a stopping criterion
in a top-down clustering strategy. Then, if the sign of
∆L is negative, the target non-leaf node is regarded as

a new leaf node determined by the model selection in
terms of optimizing the lower bound. Then, we prune
the child nodes l(i) and r(i). By checking the signs

of ∆Li for all possible nodes, and pruning the child
nodes when ∆Li have negative signs, we can obtain the
pruned tree structure, which corresponds to maximizing

the variational lower bound locally. This optimization
is efficiently accomplished by using a depth-first search.

9 Since we approximate the posterior distribution for a non-
leaf node to that for a leaf node, the contribution of the varia-
tional lower bounds from the non-leaf nodes to the total lower
bounds can be disregarded, and Eq. (55) is used as a pruning
criterion. If we don’t use this approximation, we just compare
the difference between the values Li(ρi, ρl(i), ρr(i)) of the leaf
and non-leaf node cases in Eq. (50).

Algorithm 1 Structural Bayesian linear regression.
1: Prepare an initial Gaussian tree with a set of nodes I
2: Initialize Ψ̃ = {ρ̃i, M̃i|i = 1, · · · |I|}
3: repeat

4: VB E-step
5: L(m,Φ) = Prune tree(root node) // prune a tree by

model selection
6: # of leaf nodes = Transform HMM(root node) //

Transform HMMs in the pruned tree
7: until Total lower bound is converged or a specified num-

ber of iterations has been reached.

Algorithm 2 Prune tree(node i)

1: if First iteration then

2: ρ̃i = argmaxρi
Li(ρi) // These are used as

3: Update q̃(Wi) // hyper-parameters of parent nodes
4: end if

5: if Node i has child nodes then

6: ρ̃i = argmaxρi
Li(ρi)

7: Update q̃(Wi)
8: ∆L = Prune tree(node left(i)) + Prune tree(node

right(i)) −Li(ρ̃i)
9: if ∆L < 0 then

10: Prune child nodes // this node becomes a leaf node
11: end if

12: return Li(ρ̃i)
13: else

14: ρ̃i = argmaxρi
Li(ρi)

15: Update q(Wi)
16: return Li(ρ̃i)
17: end if

Algorithm 3 Transform HMM(node i)

1: if Node i has child nodes then

2: return Transform HMM(node left(i)) + Trans-
form HMM(node right(i))

3: else

4: Update µ̃k = CkM̃iξk
5: return 1
6: end if

This approach is similar to the tree-based triphone clus-
tering based on VB [26].

Thus, by optimizing the hyper-parameters and model

structure, we can avoid setting any tuning parameters.
We summarize this optimization in Algorithm 1, 2, and
3. Algorithm 1 prepares a large Gaussian tree with

a set of nodes I, prunes a tree based on the model
selection (Algorithm 2), and transforms HMMs (Al-
gorithm 3). Algorithm 2 first optimizes the precision

hyper-parameters Ψ, and then the model structure m.
Algorithm 3 transforms Gaussian mean vectors in HMMs
at the new root nodes in the pruned tree Im obtained

by Algorithm 2.
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Table 2 Experimental setup for CSJ

Sampling rate 16 kHz
Feature type MFCC + Energy +∆+∆∆

(39 dim.)
Frame length 25 ms
Frame shift 10 ms
Window type Hamming
# of categories 43 phonemes
Context-dependent 5,000 HMM states
HMM topology (3-state left to right)

32 GMM components
Training method Discriminative training (MCE)
Language model 3-gram (Good-Turing smoothing)
Vocabulary size 100,808
Perplexity 82.4
OOV rate 2.3 %

5 Experiments

This section shows the effectiveness of the proposed ap-
proach through experiments with large vocabulary con-
tinuous speech recognition. We used a Corpus of Spon-

taneous Japanese (CSJ) task [39].

5.1 Experimental condition

The training data for constructing the initial (non-adapted)
acoustic model consists of 961 talks from the CSJ con-

ference presentations (234 hours of speech data), and
the training data for the language model construction
consists of 2,672 talks from the complete CSJ speech

data (6.8M word transcriptions). The test set consists
of 10 talks (2.4 hours, 26,798 words). Table 2 provides
information on acoustic and language models used in

the experiments [40]. We used context-dependent mod-
els with continuous density HMMs. The HMM param-
eters were estimated based on a discriminative training

(Minimum Classification Error: MCE) approach [41].
Lexical and language models were also obtained by em-
ploying all the CSJ speech data. We used a 3-gram

model with a Good-Turing smoothing technique. The
OOV rate was 2.3 % and the test set perplexity was
82.4. The acoustic model construction, LVCSR decod-

ing, and the following acoustic model adaptation proce-
dures were performed with the NTT speech recognition
platform SOLON [42].

5.2 Experimental result

To check whether the proposed approach steadily in-
crease the variational lower bound for each optimiza-
tion in Section 4, Figure 3 examines the values of the

variational lower bound for each condition. Namely, we

compare the proposed approach that optimizes both

model structure and hyper-parameters, as discussed in
Section 4 with those did not optimize each or any of
them, in terms of the L(m,Ψ) value. Figure 3 shows

that the proposed approach indeed steadily increases
the L(m,Ψ) value. Therefore, this result indicates that
the optimization works well by obtaining appropriate

hyper-parameters and model structure.
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Fig. 3 Variational lower bound for each optimization.

Next, Figure 4 compares the proposed approach with
MLLR based on the maximum likelihood estimation,
and SMAPLR based on the approximate Bayesian esti-

mation, as regards the Word Error Rate (WER) for var-
ious amounts of adaptation data. With a small amount
of adaptation data, the proposed approach outperforms

the conventional approaches by about 1.0 %, while with
a large amount of adaptation data, the accuracies of
all approaches are comparable. This property is theo-

retically reasonable since the variational lower bound
would be tighter than the EM-based objective function
for a small amount of data, while would approach it for

a large amount of data asymptotically. Therefore, we
conclude that this improvement comes from the opti-
mization of the hyper-parameters and the model struc-

ture of the proposed approach, in addition to the mit-
igation of sparse data problem based on the Bayesian
approach.

Thus, from the values of the lower bound and the
recognition result, we show the effectiveness of the pro-

posed approach.

6 Summary and future work

This paper presents a fully Bayesian treatment of linear
regression for HMMs by using variational techniques.

The derived lower bound of the marginalized log-likelihood
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Fig. 4 Word error rates of conventional MLLR, SMAPLR,
and the proposed Bayesian Linear Regression (VBLR) for
various amounts (utterances) of adaptation data. The word
error rate of the non-adapted (speaker independent) model
was 17.9%.

can be used for optimizing the hyper-parameters and

model structure, which was confirmed by speech recog-
nition experiments. One promising extension is to apply
the proposed approach to advanced adaptation tech-

niques. Actually, [43, 44] provide a fully Bayesian solu-
tion for standard transformation parameters (not vari-
ance normalize representation in this paper), and apply

it to both the feature space and model parameter trans-
formations. The model structure and hyper-parameters
are also optimized automatically during adaptation. Thus,

feature space normalization and model space adapta-
tion are consistently performed based on a variational
Bayesian approach without tuning any parameters.

Another important plan for the future work is joint
optimization of HMM parameters and linear regres-

sion parameters in a Bayesian framework. This paper
assumes that the HMM parameters are fixed during
the estimation process of linear regression parameters.

These parameters depend on each other, and the varia-
tional approximation can deal with the problem (in the
sense of local optimum solutions). However, to consider

the model selection in this joint optimization, we have
to think of many possible combinations of HMM and
linear regression topologies. One promising approach to

this problem is to consider a non-parametric Bayesian
approach (e.g., variational inference for Dirichlet pro-
cess mixtures [45] in the VB framework), which can
efficiently search an appropriate model structure in the

many possible combinations.

Finally, how to integrate Bayesian approaches with

discriminative approaches theoretically and practically
is also important future work. One promising approach
for this direction is the marginalization of model param-

eters and margin variables to provide Bayesian inter-

pretations with discriminative methods [46]. However

applying [46] to acoustic models requires some exten-
sions to deal with large-scale structured data problems
[47]. This extension enables the more robust regulariza-

tion of discriminative approaches, and allows structural
learning by combining Bayesian and discriminative cri-
teria.
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A Derivation of posterior distribution of latent

variables

This section derives the posterior distribution of latent vari-
ables q̃(Vi), introduced in Section 3.5, based on the VB frame-
work. To obtain VB posteriors of latent variables, we consider
the following integral (this is the same equation as Eq. (43)).

∫

q̃(Wi) logN (ot|CkWiξk,Σk)dWi (A.1)

In this derivation, we omit indexes i, k, and t for simplic-
ity. By substituting the concrete form (Eq. (4)) of the multi-
variate Gaussian distribution into Eq. (A.1), the equation is
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represented as:

Eq. (A.1) = −
D

2
log(2π|Σk|)

−
1

2

∫

q̃(W)
(
(o−CWξ)′(Σ)−1(o−CWξ)

)

︸ ︷︷ ︸

(∗1)

dW
(A.2)

where we use
∫

q̃(W)dW = 1. (A.3)

Now, we focus on the quadratic form (∗1) of the third line
of Eq. (A.2). By considering Σ = C(C)′ in Eq. (6), (∗1) is
rewritten as follows:

(∗1) = ((C)−1o−Wξ)′((C)−1o−Wξ)

= tr
[
((C)−1o−Wξ)((C)−1o−Wξ)′

]

= tr [ΓW′W − 2WY′ +U]

(A.4)

where we use the cyclic and transpose properties of the trace,
as follows:

tr[A1A2A3] = tr[A2A3A1]) (A.5)

tr[A′] = tr[A] (A.6)

We also define (D+1)×(D+1) matrix Γ , D×(D+1) matrix
Y, and D ×D matrix U in Eq. (A.4) as follows:

Γ , ξξ′

Y , (C)−1oξ′

U , (Σ)−1oo′

(A.7)

The integral of Eq. (A.4) over W can be decomposed into
the following three terms:

∫

q̃(W)tr [ΓW′W − 2WY′ +U] dW

=

∫

q̃(W)tr [ΓW′W] dW

︸ ︷︷ ︸

(∗2)

−2

∫

q̃(W)tr [WY′] dW

︸ ︷︷ ︸

(∗3)

+tr [U]

(A.8)

where we use the following property:

tr[A1 +A2] = tr[A1] + tr[A3] (A.9)

and use Eq. (A.3) in the third term of the second line in Eq.
(A.8).

We focus on the integrals (∗2) and (∗3). Since q̃(W) is a
scalar value, (∗3) is rewritten as follows:

(∗3) =

∫

tr [q̃(W)WY′] dW

= tr

[∫

q̃(W)WY′dW

]

.

(A.10)

Here, we use the following matrix properties:

tr[aA] = a tr[A] (A.11)
∫

tr[f(A)]dA = tr

[∫

f(A)dA

]

(A.12)

Thus, the integral is finally solved as

(∗3) = tr

[(∫

q̃(W)WdW

)

Y′

]

= tr
[

M̃Y′
] (A.13)

where we use
∫

q̃(W)WdW = M̃. (A.14)

Similarly, we also rewrite (∗2) in Eq. (A.8) based on Eqs.
(A.11) and (A.12), as follows:

(∗2) =

∫

tr [q̃(W)ΓW′W] dW

= tr

[∫

q̃(W)ΓW′WdW

]

= tr

[

Γ

∫

q̃(W)W′WdW

]

.

(A.15)

Thus, the integral is finally solved as

(∗2) = tr
[

Γ
(

Ω̃+ M̃′M̃
)]

, (A.16)

where we use
∫

q̃(W)W′WdW = Ω̃+ M̃′M̃. (A.17)

Thus, we solve the all integrals in Eq. (A.8).
Finally, we substitute the integral results of (∗2) and (∗3)

(i.e., Eqs. (A.16) and (A.16)) into Eq. (A.8), and rewrite Eq.
(A.8) based on the concrete forms of Γ , Y, and U defined in
Eq. (A.7) as follows:

Eq. (A.8)

= tr
[

Γ
(

Ω̃+ M̃′M̃
)

− 2M̃Y′ +U
]

= tr
[

ξξ′(Ω̃+ M̃′M̃)− 2M̃ξo′((C)−1)′ + (Σ)−1oo′
]

(A.18)

Then, by using the cyclic property in Eq. (A.5) and Σ =
C(C)′ in Eq. (6), we can further rewrite Eq. (A.8) as follows:

Eq. (A.8)

= tr
[

ξξ′Ω̃+ (Σ)−1
(

ΣM̃ξξ′M̃′ − 2CM̃ξo′ + oo′
)]

= tr
[

ξξ′Ω̃+ (Σ)−1
(

o−CM̃ξ
)(

o−CM̃ξ
)′]

(A.19)

Thus, we obtain the quadratic form with respect to o, which
becomes a multivariate Gaussian distribution form. By recov-
ering the omitted indexes i, k, and t, and substituting integral
result in Eq. (A.19) into Eq. (A.2), we finally solve Eq. (43)
as:
∫

q̃(Wi) logN (ot|CkWiξk,Σk)dWi

= −
D

2
log(2π|Σk|)

−
1

2
tr

[

ξξ′Ω̃+ (Σ)−1
(

o−CM̃ξ
)(

o−CM̃ξ
)′]

= logN (ot|CkM̃iξk,Σk)−
1

2
tr

[

ξkξ
′
kΩ̃i

]

.

(A.20)

Here, we use the concrete form of the multivariate Gaussian
distribution in Eq. (4).
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