
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Global Optimization of Multi-period
Optimal Power Flow

Gopalakrishnan, A.; Raghunathan, A.U.; Nikovski, D.; Biegler, L.T.

TR2013-066 June 2013

Abstract

In this work, we extend the algorithm proposed in [1] to solve multi-period optimal power flow
(MOPF) problems to global optimality. The multi-period version of the OPF is time coupled
due to the integration of storage systems into the network, and ramp constraints on the gener-
ators. The global optimization algorithm is based on the spatial branch and bound framework
with lower bounds on the optimal objective function value calculated by solving a semidefinite
programming (SDP) relaxation of the MOPF. The proposed approach does not assume convexity
and is more general than the ones presented previously for the solution of MOPF. We present a
case study of the IEEE 57 bus instance with a time varying demand profile. The integration of
storage in the network helps to satisfy loads during high demands and the ramp constraints en-
sure smooth generation profiles. The SDP relaxation does not satisfy the rank condition, and our
optimization algorithm is able to guarantee global optimality within reasonable computational
time.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Global Optimization of Multi-period Optimal Power Flow

Ajit Gopalakrishnan1,2, Arvind U. Raghunathan2, Daniel Nikovski2 and Lorenz T. Biegler1

Abstract— In this work, we extend the algorithm proposed in
[1] to solve multi-period optimal power flow (MOPF) problems
to global optimality. The multi-period version of the OPF is
time coupled due to the integration of storage systems into
the network, and ramp constraints on the generators. The
global optimization algorithm is based on the spatial branch
and bound framework with lower bounds on the optimal
objective function value calculated by solving a semidefinite
programming (SDP) relaxation of the MOPF. The proposed
approach does not assume convexity and is more general than
the ones presented previously for the solution of MOPF. We
present a case study of the IEEE 57 bus instance with a
time varying demand profile. The integration of storage in
the network helps to satisfy loads during high demands and
the ramp constraints ensure smooth generation profiles. The
SDP relaxation does not satisfy the rank condition, and our
optimization algorithm is able to guarantee global optimality
within reasonable computational time.

I. INTRODUCTION

Electric power grids worldwide are currently undergoing
radical changes in the face of increasing demand and un-
certainty caused by the integration of intermittent renewable
energy sources, and deregulation of the industry [2], [3], [4].
Distributed energy storage is considered to be an effective
approach for addressing the operational challenges associated
with these trends [5]. Grid-integrated storage technologies
can defer the need for new electricity capacity, improve
load following, provide spinning reserve, correct frequency,
voltage, and power factors [6]. Although the benefits of such
storage schemes are widely accepted, the appropriate storage
technology along with the required capacity and rates of
charge/discharge are a continuing research topic, see e.g.
[7]. Some important criteria for an effective storage strategy
are: (i) dispatchability response to fluctuations in electricity
demand; (ii) interruptibility reaction to the intermittency in
energy supplies like wind and solar; and (iii) efficiency in
recovering energy that is otherwise wasted [8].

The Optimal Power Flow (OPF) problem for alternating
current (AC) circuits concerns the problem of determining
bus voltages and generator power levels to minimize a cost
function. The cost functions employed include generator
cost, resistive losses or tertiary voltage control. The con-
straints for OPF include (i) the AC power flow constraints,
(ii) bounds on power generation, (iii) bounds on bus voltage
magnitudes, (iv) bounds on thermal losses, and (v) limits on
power transfer on lines. The OPF problem, first introduced
by Carpentier [9], is a nonconvex optimization problem
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with quadratic constraints and quadratic objective function
(QCQP). In recent years, considerable progress has been
made in obtaining globally optimal solutions to the OPF.
We provide a short survey of the recent progress on the OPF
with emphasis on papers related to MOPF.

A. Literature Survery

A survey of the approaches for solving the OPF prior to
2008 are provided in [10], [11], [12]. Recently there has been
an effort at obtaining globally optimal solutions to the non-
convex problems through second order cone programming
(SOCP) and SDP relaxations. We refer the interested reader
to works of Jabr [13], [14], [15], Sojoudi and Lavaei [16],
Farivar and Low [17] and Lavaei et. al. [18] on using SOCP.
SDP relaxation were employed by Bai and co-workers in
[19], [20]; Low and co-workers in [21], [22] and Tse and
co-workers in [23].

All of the above approaches can show zero duality gap
under the satisfaction of sufficient conditions for their relax-
ations. The sufficient conditions (rank condition) only hold
under restrictive assumptions on the network topology and
constraints on the OPF. Further, the above approaches pro-
vide no recourse when sufficient conditions are not satisfied.
The work of Lesieutre et al [24] and Gopalakrishnan et al [1]
provide examples that fail to satisfy the sufficient conditions.

Recently the authors [1] proposed to solve the OPF
problem using a branch and bound (B & B) algorithm with
SDP based lower bounds. The proposed approach does not
make assumptions on the network topology or the type of
bounds. It was also shown that this approach outperforms
the Lagrangian duality based B & B approach suggested by
Phan [25].

Gayme and Topcu [26] considered OPF problems with
storage by extending the work of Lavaei and Low [21] to
multiple periods. Warrington et al [27] consider the solution
of MOPF problems using a Lagrangian dual based decom-
position, in the presence of storage and ramp constraints.
Both of these papers assume the satisfaction of the sufficient
conditions for SDP formulations of the OPF problem.

B. Our Contribution

In this work, we are interested in extending the algorithm
in [1] for the solution of MOPF. The MOPF is time coupled
due to the presence of storage at various buses in the network.
Further, we also consider ramp constraints on the power
generation at buses. As a result, we obtain a series of OPF
problems for different times that are coupled through the
storage difference equation and ramps between successive
time points. We employ a B & B algorithm with SDP



relaxation providing lower bounds to solve the MOPF. This
has been shown to work well in the context of OPF problems
[1]. In contrast to recent approaches of [26], [27], we do not
make any restrictive assumptions on the satisfaction of the
rank condition. In spite of the generality, the algorithm is
computationally efficient and the approach holds promise.

The paper is organized as follows. Section II formulates
the MOPF problem and also its SDP relaxation. Section
III outlines our SDP based B & B algorithm. Section IV
provides the results and some directions for future work.

C. Notation

In the following, we use j to denote the imaginary root of
−1. For a complex variable z, Re(z) and Im(z) will denote
the real and imaginary parts of the complex variable z; |z|
will denote the magnitude of the complex variable and z∗

will denote the Hermitian conjugate. For a symmetric matrix
A its trace will be denoted as Tr(A) which is the sum of the
diagonal entries.

II. MOPF PROBLEM

We start with a given graph G = (N , E) of the power
network, where the nodes i ∈ N , j ∈ N represent the
buses and the edges in E represent branches connecting an
ordered pair of buses (i, j). NG ⊆ N denotes the set of
buses connected to generators. Further we introduce L to
denote the set in which the edges in E are duplicated, i.e.
(i, j) ∈ E ⇒ (i, j), (j, i) ∈ L. For a bus i, k ∼ i denotes the
set of buses k which are connected to i. The line admittance
is given by yij = gij + jbij , (i, j) ∈ L, with yij = 0 for
i 6∼ j. The bus admittance matrix, which relates the current
injections to the bus voltages, is formed as

Ybus,i =

−yij , i 6= j

yii +
∑
k∼i

yik, i = j (1)

where yii denotes the admittance-to-ground at bus i.
We are interested in solving the multi-period OPF

problem over time periods t ∈ T = {1, · · · , T}.
Let v(t) = (V1(t), V2(t), · · · , V|N |(t)) denote the com-
plex bus voltages, and i = (I1(t), I2(t), · · · , I|N |(t))
denote the bus injection currents. Then by Ohm’s and
Kirchoff’s laws applied on the entire network, i(t) =
Ybusv(t). Let PG(t) = (PG1 (t), · · · , PG|N |(t)), QG(t) =

(QG1 (t), · · · , QG|N |(t)) denote the power generations at each
bus, with (PGi (t), QGi (t)) = 0,∀i 6∈ NG,∀t ∈ T . The
power flowing from bus i to j is calculated as, Sij(t) =
Pij(t) + jQij(t) = Vi(t)|Vi(t)− Vj(t)|∗y∗ij .

Further, let N S ⊆ N denote the set of buses with storage
capability. Let B(t) = (B1(t), · · · , B|N |(t)) denote the
energy stored and R(t) = (R1(t), · · · , R|N |(t)), the rate of
charge/discharge of real power to/from storage at each bus,
with (Bi(t), Ri(t)) = 0,∀i 6∈ NS ,∀t ∈ T .

The multiperiod OPF problem with storage (MOPF) can
be stated as,

min

t=T∑
t=1

∑
i∈NG

c2i(P
G
i (t))2 + c1iP

G
i (t) + c0i

s.t. PGi (t)− PDi (t)−Ri(t) = x(t)TYix(t), i ∈ N (2a)

QGi (t)−QDi (t) = x(t)T Ȳix(t), i ∈ N (2b)

Pij(t) = x(t)TYijx(t), (i, j) ∈ L (2c)

Qij(t) = x(t)T Ȳijx(t), (i, j) ∈ L (2d)

Pmin
i ≤ PGi (t) ≤ Pmax

i (t), i ∈ NG (2e)

Qmin
i ≤ QGi (t) ≤ Qmax

i , i ∈ NG (2f)

(V min
i )2 ≤ x(t)TMix(t) ≤ (V max

i )2, i ∈ N (2g)

P 2
ij(t) +Q2

ij(t) ≤ (Smax
ij )2, (i, j) ∈ L (2h)

x(t)TMijx(t) ≤ Lmax
ij , (i, j) ∈ L (2i)

Bmin
i ≤ Bi(t) ≤ Bmax

i , i ∈ NS (2j)

Rmin
i ≤ Ri(t) ≤ Rmax

i , i ∈ NS (2k)

Bi(t) = Bi(t− 1) + ηRi(t), i ∈ NS (2l)

Bi(0) = B0
i , Bi(T ) ≥ B∗i , i ∈ NS (2m)

∆Pmin
i ≤ PGi (t+ 1)− PGi (t),

PGi (t+ 1)− PGi (t) ≤ ∆Pmax
i

}
i ∈ NG (2n)

∆Qmin
i ≤ QGi (t+ 1)−QGi (t),

QGi (t+ 1)−QGi (t) ≤ ∆Qmax
i

}
i ∈ NG (2o)

where x(t) :=
[
Re(v(t))T Im(v(t))T

]T
. Equations (2a) -

(2l) apply for ∀t ∈ T and Equations (2n)-(2o) for ∀t ∈
T /{T}. The matrices Yi, Ȳi, Yij , Ȳij ,Mi are as defined in
Appendix I. Equations (2a), (2b) represent the real and
reactive power balances at each bus. Equations (2c), (2d) are
the real and reactive branch power flows, which are limited
by constraint (2h). Constraints (2e), (2f) and (2n), (2o) are
limits on power generation and ramps on power generation
respectively. (2g) is the voltage magnitude limit and (2i) is
the thermal limit. Constraints (2j) represents a bound on the
energy stored, and (2k) is a bound on rate of charge/discharge
of energy from the storage system. In (2l) the parameter η
represents the round trip efficiency of the storage system.
Constraint (2m) represents the initial and terminal condition
for the above multi-period optimization problem. Since we
are approximating an infinite horizon problem by a finite
horizon solution, the terminal constraint is necessary to avoid
the problem of storage depletion. This helps to ensure that
there is sufficient energy to meet future requirements beyond
the time horizon considered, and avoids a myopic solution.
Only the constraints (2l), (2n), (2o) are coupled in time, while
the rest of the model is decoupled in time.

A. SDP Relaxation of MOPF

We introduce the following convex formulation with a
lifting of the quadratic voltage terms x(t)xT (t) to a 2|N |×
2|N | symmetric matrix W(t) while retaining the remaining
variables. This is done so as to only relax the variables that
appear in a nonconvex fashion in the constraints. Further,
we eliminate the line flow variables Pij(t), Qij(t) to obtain



a more compact formulation. However, the apparent power
line limit constraint (2h) will have to reformulated to a
second order cone constraint as shown in (3k). Dropping the
rank(W(t)) = 1 condition, we formulate the SDP relaxation
as follows,

min

t=T∑
t=1

∑
i∈NG

ai(t) (3a)

s.t. W(t) � 0 [Z(t)] (3b)

∀ i ∈ NG :[
ai0(t) ai1(t)
ai1(t) −1

]
� 0,

[
1 r1i (t)

r1i (t) r2i (t)

]
(3c)

Pmin
i ≤ PGi (t) ≤ Pmax

i , [λPi (t), λ
P

i (t)] (3d)

Qmin
i ≤ QGi (t) ≤ Qmax

i , [λQi (t), λ
Q

i (t)] (3e)

∆Pmin
i ≤ PGi (t+ 1)− PGi (t),

PGi (t+ 1)− PGi (t) ≤ ∆Pmax
i

} [
ρ
i
(t)

ρi(t)

]
(3f)

∆Qmin
i ≤ QGi (t+ 1)−QGi (t),

QGi (t+ 1)−QGi (t) ≤ ∆Qmax
i

} [
σi(t)
σi(t)

]
(3g)

∀ i ∈ N :

PGi (t)− PDi (t)−Ri(t) = Tr(YiW(t)), [αi(t)] (3h)

QGi (t)−QDi (t) = Tr(ȲiW(t)), [βi(t)] (3i)

(V min
i )2 ≤ Tr(MiW(t)),

Tr(MiW(t)) ≤ (V max
i )2

} [
λVi (t)

λ
V

i (t)

]
(3j)

∀ (i, j) ∈ L :∥∥∥∥Tr(YijW(t))
Tr(ȲijW(t))

∥∥∥∥
2

≤ Smax
ij ,

[∥∥∥∥r1ij(t)r2ij(t)

∥∥∥∥
2

≤ λij(t)
]

(3k)

Tr(MijW(t)) ≤ Lmax
ij , [µij(t)] (3l)

∀ i ∈ NS :

Bmin
i ≤ Bi(t) ≤ Bmax

i , [λBi (t), λ
B

i (t)] (3m)

Rmin
i ≤ Ri(t) ≤ Rmax

i , [λRi (t), λ
R

i (t)] (3n)

Bi(0) = B0
i , Bi(T ) ≥ B∗i , [τ0i , τ

∗
i ] (3o)

Bi(t) = Bi(t− 1) + ηRi(t) [τi(t)] (3p)

where,

ai0(t) = ci0 + ci1P
G
i (t)− ai(t), ai1(t) =

√
ci2P

G
i (t)

The dual multipliers corresponding to the constraints in the
SDP relaxation are indicated in brackets [·]. Note that for
constraint in (3c) the multiplier is a matrix while for (3k)
the mulitplier is expressed as the dual second order cone.
Though the SDP solvers are based on a primal-dual interior
point algorithm, we prefer solving the dual of the SDP as
it results in a smaller internal representation for the SDP
solvers (Z is treated as a matrix, but W is parametrized by
scalars). We utilize these multipliers to pose the dual of the

SDP relaxation as,

max−
t=T∑
t=1

gU (t)−
t=T−1∑
t=1

gC(t) + (τ∗i b
∗
i − τ0i b0i ) (4a)

s.t. i ∈ N :

hW (t) = −Z(t),Z(t) � 0,

λ
V

i (t), λVi (t) ≥ 0,

}
t ∈ T (4b)

i ∈ NG :

hPG(i, t) = 0, hQG(i, t) = 0,

λ
P

i (t), λPi (t), λ
Q

i (t), λQi (t) ≥ 0,[
1 r1i (t)

r1i (t) r2i (t)

]
� 0,

 t ∈ T (4c)

ρi(t), ρi(t), σi(t), σi(t) ≥ 0, t ∈ T /{T} (4d)

i ∈ NS :

hB(i, 0) = 0, τ0i free, τ∗i ≥ 0, (4e)
hB(i, t) = 0, hR(i, t) = 0,

λ
B

i (t), λBi (t), λ
R

i (t), λRi (t) ≥ 0
τi(t) free,

 t ∈ T (4f)

(i, j) ∈ L :∥∥r1ij(t), r2ij(t)∥∥2 ≤ λij(t), µij(t) ≥ 0, t ∈ T (4g)

where gU (t), gC(t), hW (t), hB(t), hR(t), hPG(i, t), hQG(i, t)
are defined in Appendix II.

B. Rank deficiency of SDP relaxations in the single period
case

In [1] the authors presented case studies where the SDP
relaxation of the single period OPF problem failed to satisfy
the rank condition. These case studies were arrived at by
modifying some of the parameters of the standard IEEE test
cases (real and reactive power demands, bounds on power
generation or line flow limits). The SDP rank condition was
also violated non-trivially in some cases, i.e. adding the sug-
gested 10−5 p.u. perturbation term ([21]) to ensure resistive
connectivity of the power network was not sufficient.

We illustrate this with the IEEE 57 bus single period case
by considering line flow limits, Smax

ij ∀(i, j) ∈ L, and modify-
ing the demands by a factor f : fPD+jfQD, and varying the
resistive perturbation δ p.u. In the following table, (λ1, λ2)
denote the largest two eigenvalues of the semidefinite matrix
W and the reported gap is (UB − LB)/UB ∗ 100 where
UB is the optimal objective value obtained by solving the
OPF problem with a local NLP solver and LB is optimal
objective value of the SDP relaxation.

# f Smax
ij δ Rank(W) (λ1, λ2) gap

1. 1 - 0 2 (28.76, 0.000) 0.000 %
2. 1 100 0 4 (28.35, 0.009) 0.010 %
3. 1 100 10−4 4 (28.35, 0.007) 0.009 %
4. 1.06 - 0 2 (28.74, 0.000) 0.000 %
5. 1.06 100 0 4 (28.91, 0.049) 3.440 %
6. 1.06 100 10−4 4 (28.91, 0.048) 3.447 %

TABLE I: Modified test cases



At the nominal demand (f = 1), the test case satisfied
the SDP rank condition. On adding a line flow limit of 100
MVA on all the lines (# 2), the second largest eigenvalue
(λ2) becomes non-negligible and the semidefinite matrix W
violates the rank condition. The constraint on one of the line
flow limits is active in this case. Ensuring the network is
resistively connected by adding δ = 10−4 p.u. perturbation
(# 3) was insufficient to reduce λ2 to 0. However, the SDP
objective function value was still within 0.01 % of the local
solution found using an NLP solver, as indicated by the gap.

When the demands are increased (f = 1.06), the SDP rank
condition is satisfied in the absence of line flow constraints
(# 4). When a line limit is introduced, λ2 is not negligible
anymore and consequently a gap of 3.44 % results between
the NLP local solution and the SDP relaxation (# 5). The
resistive perturbation was not sufficient to reduce λ2 to 0 in
this case as well (# 6). We refer the interested reader to [23]
for an understanding of nonconvexities in the OPF, and [28]
for a recent detailed analysis on the same.

III. GLOBAL OPTIMIZATION BY BRANCH AND BOUND

The branch and bound method is a general purpose
global optimization technique for a wide class of nonconvex
problems. It solves the problem P by constructing a convex
relaxation R, that is easy to solve and provides a lower
bound (L) on the optimal objective function value (Figure
1a). The upper bound (U ) can be arrived at by using
local minimization, which also yields a feasible solution.
If U − L is sufficiently small, the procedure terminates
with the current upper bounding solution. Otherwise, the
feasible region is recursively partitioned, and the procedure
is repeated (Figure 1b) until the gap U − L is sufficiently
small. Nodes are fathomed if the lower bound L is greater
than the current best upper bound (Figure 1c). We refer the
interested reader to [29] for additional information.

Objective

Variable

P

R

U

L

(a) Lower and Upper
Bounding

Objective

Variable

P

R

R1

R2U

L

(b) Domain Subdivi-
sion

R

R1 R2

Subdivide

Fathom

(c) Search tree

Fig. 1: Branch and Bound Schematic

In this work, the upper bounding problem is done through
CONOPT [30], a local nonlinear programming (NLP) solver.
The lower bounding is done by solving the dual SDP
relaxation, implemenented in YALMIP [31]. If an optimality
gap exists, the algorithm proceeds by partitioning the feasible
region into two sub-regions and repeating the bounding
scheme. The partitioning is done as follows. At any node

n in the branch and bound tree, define ∀t ∈ T

Bn :=




PG(t)
QG(t)
v(t)
B(t)
R(t)

 :

P̄min
i (t) ≤ PGi ≤ P̄max

i (t), i ∈ NG

Q̄min
i (t) ≤ QGi ≤ Q̄max

i (t), i ∈ NG

V̄ min
i (t)2 ≤ |Vi(t)| ≤ V̄ max

i (t)2, i ∈ N
B̄min
i (t) ≤ Bi ≤ B̄max

i (t), i ∈ NG

R̄min
i (t) ≤ Ri ≤ R̄max

i (t), i ∈ NG


The search space is partitioned by either rectangular bi-

section on PGi (t), QGi (t), Bi(t), Ri(t) or radial bisection on
the voltage magnitudes |Vi(t)|. The newly generated bounds
replace the existing bounds in the upper bounding NLP (2)
and lower bounding dual SDP problem (4). The choice of
which variable to partition and at which time period is done
through a largest violation strategy, i.e. the variable that has
the largest difference between the solutions of upper and
lower bounding problems is picked to be bisected. For the
voltage variables in the lower bounding problem the square
root of the diagonal elements of W (t).

We now state the SDP based branch and bound algorithm.
ALGORITHM for SDP-BB of MOPF

1. Set BestUB = inf, BestLB = -inf, nodes = {0}.
2. If (nodes 6= ∅ and (BestUB−BestLB)/BestUB >

tol), choose a live node to explore from nodes.
Else return best upper bounding solution as global
optimum and STOP.

3. Solve MOPF (2) with bounds Blive
(a) If MOPF is infeasible, fathom live. Go to Step

5.
(b) If MOPF is feasible with objective z∗live, update

BestUB = min(BestUB,z∗live).
4. Solve SDP (4) with bounds Blive.

(a) If SDP is infeasible, fathom live. Go to Step 5.
(b) If SDP is feasible with objective q∗live

(i) If q∗live > BestUB or (BestUB −
q∗live)/BestUB ≤ tol, fathom live.
Go to Step 5.

(ii) Partition Blive into two regions and update
nodes = {nodes, child1, child2}.
LB(child1) = LB(child2) = q∗live.
BestLB = min(LB(nodes)). Remove
live from nodes.

5. Set BestLB = min(LB(nodes)). Go to Step 2.

The proof of convergence of this algorithm can be found
in [1].

A. Decomposition for large scale MOPF problems

The efficiency of the above branch and bound algorithm
depends strongly on the tightness of the SDP relaxation
and also on the computational effort in solving the lower
bounding problem. The SDP relaxations of the MOPF tend to
be large scale problems and require decomposition methods
to address them effectively. We propose a Lagrangian decom-
position for the MOPF by dualizing only the time coupled



constraints (3f), (3g) and (3p) with their dual multipliers,

gSDP := min LP (5a)
s.t. Constraints (3b)− (3e), (3h)− (3o) (5b)

ξin(t) ≥ 0, ∀t ∈ T /{T} (5c)
ξeq(t) free, ∀t ∈ T (5d)

where ξin(t) := (ρi(t), ρi(t), σi(t), σi(t)), ξeq(t) := τi(t)
and

LP =
∑
t∈T

∑
i∈NS

τi(t)(Bi(t+ 1)−Bi(t)− ηRi(t))+∑
t∈T /{T}

∑
i∈NG

[
ρ
i
(t)(∆Pmin

i − PGi (t+ 1) + PGi (t))+

ρi(t)(P
G
i (t+ 1)− PGi (t)−∆Pmax

i )+

σi(t)(∆Q
min
i −QGi (t+ 1) +QGi (t))+

σi(t)(Q
G
i (t+ 1)−QGi (t)−∆Qmax

i )
]

+
∑
t∈T

∑
i∈NG

ai(t)

The above objective function (partial Lagrangian) can now
be decoupled in time in the space of the primal variables,
resulting in |T | small decoupled SDP’s, as opposed to one
large SDP. In order to get the best lower bound for MOPF
we need to solve,

max gSDP(ξin, ξeq) s.t. ξin ≥ 0, ξeq free (6)

This is a non-smooth concave maximization problem, which
can be solved using a projected subgradient method. At each
iteration of the subgradient method |T | smaller SDP’s are
solved and the multipliers ξ(·) are updated using a projected
subgradient update of the form,

ξ(k+1)
eq = ξ(k)eq + α(k)g(k)

eq , ξ
(k+1)
in =

[
ξ
(k)
in + α(k)g

(k)
in

]+
There are several ways to choose the stepsize α(k) and search
direction g(k). The method in [32] suggests choosing the step
size as α(k) = (q(k)− q̂∗)/||g(k)||22, where q̂∗ is an estimate
on the best dual value which can be set as z∗live, available
from Step 3 of the algorithm. The search direction g(k) is
computed through a conic combination of the subgradient
and the direction at the previous iteration,

g(k) = d(k) + β(k)g(k−1)

with β(k) = max(0,−1.5(g(k−1))Td(k)/||g(k−1)||22). One
element of the subgradient d(k) is simply the residual of
the constraint corresponding to its multiplier in the partial
Lagrangian, d(k) = ( ∂LP

∂ξ(·)
)(k).

The subgradient method however does not guarantee as-
cent, and it can take a large number of iterations before
the optimal multipliers ξ(·) are found. Hence it is usually
terminated after a fixed number of iterations (maxiter).
The solution of (6) replaces the solution of (4) in Step 4 of
the B & B algorithm. The performance of the decomposition
approach is also reported in the next section.

IV. RESULTS

We report the results from the branch and bound algorithm
applied on the IEEE 57 bus test case with T = 8 time
periods. A time varying demand profile is simulated by
scaling the nominal real and reactive power demands on
all 57 buses with f(t) as shown in Figure 2, i.e. demands
are f(t)(PD + jQD) for t ∈ T . A line limit constraint of
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 f 
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)

Time varying demands

Fig. 2: A sinusoidal time varying demand profile is used as
a forecast of the actual demand.

Smax
ij = 100 MVA, (i, j) ∈ L is imposed on all the lines. We

impose ramp constraints on all the generators of ∆Pmax
i = 15

MW, ∆Pmin
i = -15 MW, ∆Qmax

i = 15 MVA and ∆Qmin
i =

-15 MVA, ∀i ∈ NG.
We include storage capabilities in buses N S =
{5, 10, 15}. The limits on energy storage are set at Bmax

i =
50 MWh and Bmin

i = 0 MWh. The limits on rate of charging
and discharging of the storage system are set at Rmax

i = 25
MW and Rmin

i = −25 MW, along with a round trip efficiency
of η = 75 %. At initial time t = 1 the storage is assumed to
be fully depleted, i.e. b0i = Bmin

i . The value of the terminal
inequality constraint for storage b∗i , is set to 0.1 Bmax

i .
The optimal energy storage policy is shown in Figure 3.
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Fig. 3: Optimal energy storage policy ∀i ∈ NS

During the initial half of the time horizon when the
demands are low, energy is generated in excess and stored
in the storage systems. The storage systems reach their full
capacity at t = 4. During the latter half of the horizon, the
stored energy is used to meet the forecasted higher demands.



To illustrate the benefits of storage, we compare the above
solution with the case without any storage systems (N S =
{∅}). For this instance the problem turns out to be infeasible,
and in order to obtain a feasible solution the apparent power
line limit constraints had to be removed. The globally optimal
solution thus computed, violated the line limit of 100 MVA.
This demonstrates an additional role that storage systems can
play, that of decongesting power lines during peak demands.
In the current scenario where transmission capacities are
unable to cope up with growth in peak demands, storage can
be used to mitigate such congestion related costs as well.

The optimal power generation profiles for generators at
buses 1, 3, 6 and 8 are shown in Figure 4 (the other gener-
ators operate constantly at their maximum capacity). With
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Fig. 4: Real power generation for all i ∈ NG both with (cross
markers) and without ramp constraints (circle markers)

ramp constraints included (cross markers), the generation
profiles are smooth and the energy in the storage systems are
gradually built up. Without ramp constraints (circle markers),
generators at buses 1, 3 and 6 undergo significant jumps at
t = 6 when the demand is at its highest. A power generation
policy with large ramps is not desirable from an operational
point of view as it leads to wear and tear and reduction in
the lifetime of generators. The ramp constraints thus serve to
flatten out power generation profiles in the face of fluctuating
demands.

A. Computational experience

The algorithms were implemented in Matlab 7.10 and
executed on a machine with Intel Core i7 2.8 GHz running
under a Windows 7 operating system. All computations were
executed on a single processor. For this case study, there is
an optimality gap of 2.661 % at the root node. It requires
a further 10 nodes in the branch and bound tree to close
the optimality gap to within a 1 % tolerance. The following
reports the observations when MOPF is solved without any
decomposition.

For the MOPF problem even though the SDP rank con-
dition is not always satisfied, the SDP relaxations of the
MOPF problem continue to provide strong lower bounds on
the globally optimal solution. This is inferred from the low
gap at the root node of the B & B algorithm. However, as
the problem size grows, the time taken to solve the SDP
relaxations increases significantly. To explore 10 nodes in
the branch and bound tree, 283 secs of computational time
was required, of which 200 secs (70 %) were spent in solving
the SDP’s and the 23 % for upper bounding NLP’s . When
the demand curves were modified slightly, the root node gap
was less (1.6 %) but that case required 31 nodes and a total
of 18 minutes to close the gap to 1% tolerance. Again, close
to 75 % of the time was spent in the solution of the SDP’s.

It is worthwhile noting that the variable bounds which
change from node to node feature only as objective function
coefficients (4a) in the dual SDP relaxation. Thus, working
with the dual allows us to warm start the SDP’s at successive
nodes in the B & B tree using a solution obtained at
the parent node (this is a feasible initial point for the
child nodes). However, this warm start strategy gave us no
additional savings in computational time for this study, as
the topic of efficiently warm starting interior point methods
is still an open challenge.

B. Performance of the decomposition approach

When the number of time periods for the above case
study was doubled, SeDuMi failed to solve the problem due
to memory limitations. In order to test the performance of
a Lagrangian dual based decomposition, the method from
Section III-A was implemented for the above case study
(with 8 time periods). The decomposed subproblems were
not solved in parallel. The initial guess for all the multipliers
ξ(·) in (6) was chosen as the dual multipliers from the
local NLP solver in Step 3 of the algorithm. If (i) the SDP
relaxation satisfies the rank condition, and (ii) the local solver
finds the global solution at the root node, then such an
initialization strategy is guaranteed to close the gap at the
root node. In this case study however the root node gap was
3.282 % as the SDP rank condition was violated, and after
one hour of computational time, the optimality gap remained
the same with the decomposition approach.

The performance of the decomposition strategy is in
concordance with the authors’ initial observations in [1], that
the Lagrangian dual approach is effective in mitigating the
computational burden of solving large scale SDP’s only for
zero duality gap instances of the MOPF. Also, in these in-
stances, taking advantage of parallel computing can provide
further speedup. In the non zero gap cases however, it fails
to provide strong lower bounds due to the non-smooth nature
of the Lagrange dual function and lack of ascent properties
in the subgradient algorithm.

V. CONCLUSION

In this work, we presented a branch and bound algorithm
for global optimization of the multiperiod OPF problem. The
time coupling in the MOPF results from storage and ramp



constraints on generators. An SDP relaxation of the MOPF
is used to provide a lower bound for the global optimization
algorithm. The solutions indicate that the storage can be
effective in offsetting demand variations and also decon-
gesting transmission lines during peak demands. The ramp
constraints on the generators serve to flatten out generation
profiles. Our algorithm is able to find the globally optimal
solution for an 8 time period, 57 bus case with computational
times ranging from 5-20 minutes on a standard desktop
computer. Most of the computational effort is spent in solving
the SDP problems at each node.

A. Future work

In order to address larger global optimization problems
that arise in OPF, it is necessary to seek alternate branch and
bound methods that make use of the strength of SDP relax-
ations, without being affected by their slow solution times.
One possible avenue for exploration is the method of [33] to
solve the SDP as a semi-infinite LP. At each successive node
in the branch and bound tree, semi-definite cuts are generated
based on the solution of the LP relaxation along directions
that violate the positive semidefiniteness constraint. Another
possible avenue is to exploit sparsity in the power networks
through matrix completion techniques [34]. It is known that
SDP relaxations of nonconvex QCQP’s tend to be stronger
than SOCP or LP relaxations [35], but very little work has
been reported on SDP based branch and bound schemes
primarily because the computational burden of solving the
SDP relaxations do not make them worthwhile. Also, the
lack of efficient warm starting strategies (as opposed to a
dual simplex for LP-based branch and bound), make the
algorithms scale unfavourably in general. We will investigate
alternate solution strategies to mitigate this computational
effort.

APPENDIX I

Following Lavaei and Low [21] we introduce the matrices
that are introduced in the definition of the OPF problem
below. ζi denotes a vector of size |N | with a 1 at the i-
th component and zeros elsewhere.

Ybus,i := ζiζ
T
i Ybus

Ybus,ij := yijζiζ
T
i − yijζiζTj

Yi := 1
2

[
Re(Ybus,i + Y Tbus,i) Im(Y Tbus,i − Ybus,i)

Im(Y Tbus,i − Ybus,i) Re(Ybus,i + Y Tbus,i)

]
Ȳi := − 1

2

[
Im(Ybus,i + Y Tbus,i) Re(Ybus,i − Y Tbus,i)

Re(Ybus,i − Y Tbus,i) Im(Ybus,i + Y Tbus,i)

]
Yij := 1

2

[
Re(Ybus,ij + Y Tbus,ij) Im(Y Tbus,ij − Ybus,ij)

Im(Y Tbus,ij − Ybus,ij) Re(Ybus,ij + Y Tbus,ij)

]
Ȳij := − 1

2

[
Im(Ybus,ij + Y Tbus,ij) Re(Ybus,ij − Y Tbus,ij)

Re(Ybus,ij − Y Tbus,ij) Im(Ybus,ij + Y Tbus,ij)

]
Mi :=

[
ζiζ

T
i 0

0 ζiζ
T
i

]
Mij :=

[
(ζi − ζj)(ζi − ζj)T 0

0 (ζi − ζj)(ζi − ζj)T
]

APPENDIX II
The constraints of the SDP dual formulation in (4) are,

gU (t) :=
∑

(i,j)∈L

[
Smax
ij λij(t) + µij(t)L

max
ij

]
+
∑
i∈N

[
αi(t)P

D
i (t)

+βi(t)Q
D
i (t) + λ

V

i (t)(V max
i )2 − λVi (t)(V min

i )2
]

+∑
i∈NG

[
λ
P

i (t)Pmax
i − λPi (t)Pmin

i + λ
Q

i (t)Qmax
i − λQi (t)Qmin

i

]
+

∑
i∈NS

[
λ
B

i (t)Bmax
i − λBi (t)Bmin

i + λ
R

i (t)Rmax
i − λRi (t)Rmin

i

]
+∑

i∈NG

[r2i (t)− ci0]

gC(t) :=
∑
i∈NG

[
ρi(t)∆P

max
i − ρ

i
(t)∆Pmin

i + σi(t)∆Q
max
i

−σi(t)∆Qmin
i

]
hW (t) :=

∑
(i,j)∈L

[
r1ij(t)Yij + r2ij(t)Ȳij + µij(t)Mij

]
+

∑
i∈N

[
−αi(t)Yi − βi(t)Ȳi + λ

V

i (t)Mi − λVi (t)Mi

]

hPG(i, t) :=


h0PG(i, t) + ρ

i
(1)− ρi(1), t = 1

h0PG(i, t) + ρi(t− 1)−
ρ
i
(t− 1)− ρi(t) + ρ

i
(t), t = 2 · · ·T − 1

h0PG(i, t) + ρi(T − 1)− ρ
i
(T − 1), t = T

h0PG(i, t) := αi(t) + ci1 + 2r1i
√
ci2 + λ

P

i (t)− λPi (t)

hQG(i, t) :=


h0QG(i, t) + σi(1)− σi(1), t = 1

h0QG(i, t) + σi(t− 1)−
σi(t− 1)− σi(t) + σi(t), t = 2 · · ·T − 1
h0QG(i, t) + σi(T − 1)− σi(T − 1), t = T

h0QG(i, t) := βi(t) + λ
Q

i (t)− λQi (t)

hB(i, t) :=


τ0i − τi(1), t = 0

λ
B

i (t)− λBi (t) + τi(t)− τ∗i , t = T

λ
B

i (t)− λBi (t) + τi(t)− τi(t+ 1), else

hR(i, t) := λ
R

i (t)− λRi (t)− αi(t)− ητi(t)
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