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Abstract—Machine-to-Machine (M2M) wireless communica-
tion requires the transmission of short blocks of data with
high reliability over fading channels. We discuss the use of
the probabilistic data association (PDA) detector in conjunction
with precoding to design high-performance systems for these
links. First, the performance of the traditional PDA algorithm
with precoding over ideal Rayleigh fading links is analyzed,
which provides insight into its performance, and evidence of an
error floor at high SNRs. Then, a novel ordering mechanism is
proposed that takes advantage of the precoder characteristics.
It is shown by simulation that the proposed modified algorithm
can achieve near-ML performance for block sizes as small as 32

symbols
Index Terms—Machine-to-Machine (M2M) Communication,

single-input single-output (SISO) channel, precoding, probabilis-
tic data association (PDA) algorithm, ordered-PDA.

I. INTRODUCTION

Machine-to-Machine (M2M) Communication is an impor-

tant part of various modern settings, and has applications

in factory automation, wireless telemetry and advertising, to

name a few. M2M applications require the transmission of

short blocks of information wirelessly, with extremely high

reliability and low latency.

The M2M channel is usually a fading channel, which makes

achieving these requirements difficult. Single-input single-

output (SISO) channels with frequency-flat fading have poor

reliability when the channel is not known at the transmitter [1].

The average uncoded error probability for such links falls of

as a polynomial function of the received signal-to-noise ratio

(SNR), in contrast to the performance of the optimal detector

over an additive white Gaussian noise (AWGN) link [2], for

which the probability of error decays exponentially with SNR,

a limit termed infinite or exponential diversity [3].

One common way of improving the reliability over flat-

fading channels is to use spatial diversity [4] (multiple-

input multiple-output (MIMO) systems). A variety of near-

maximum likelihood (ML) algorithms have been developed

[5] for large MIMO systems that achieve close to exponen-

tial diversity at reasonable complexity. The likelihood ascent

search (LAS) [6], the QRD-M algorithm [7], graphical model

based approaches [8] and the probabilistic data association

(PDA) algorithm [9] are some examples.
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However, devices in M2M networks are usually small and

simple devices [10], and are unlikely to be equipped with a

large number of antennas. Thus, the interest is in SISO links,

or possibly small MIMO links. In [11], the authors discussed

a method to turn SISO links into virtual-MIMO links, through

precoding with a random matrix, a technique called pseudo-

random phase precoding (PRPP); followed by detection with

the LAS algorithm. This technique performed extremely well

in practice, and the concept of precoding seems promising for

SISO fading links. However, with the PRPP precoder and LAS

detector, a block size of 400 symbols or more was required

to achieve near-exponential diversity. Many practical M2M

systems require still smaller block sizes, in which regime the

performance of LAS falls off.

In this paper, we explore the PDA algorithm for SISO

systems with precoding. First, we analyze the PDA algorithm

to demonstrate that for large block sizes, it achieves AWGN

performance over SISO links with precoding, but that it is

subject to a finite block size error-propagation effect that limits

performance. We then propose a novel ordering algorithm that

improves performance by reducing the error propagation. This

algorithm is shown to be particularly advantageous when the

precoder is a Hadamard matrix (referred to as the Hadamard

Precoder) or a discrete Fourier transform (DFT) matrix (DFT

precoder).

Notation:Boldface lowercase math symbols represent vector

quantities, boldface uppercase symbols represent matrices, as

in A, and ajk is the (j, k)th element of A. The symbol (·)†

indicates the conjugate transpose of a matrix, (·)∗ denotes

complex conjugation, and the subscripts r and i, when applied

to a scalar, denote its real and imaginary parts, respectively.

CN (µ,Σ) will indicate a complex normal distribution with

mean vector µ and covariance matrix Σ. IN represents the

N ×N identity matrix, and en represents its nth column.

II. SYSTEM MODEL

A simplified block diagram of the system under considera-

tion is shown in Fig.1. A block of information bits b is mapped

into a vector x
△
=[x1, . . . , xN ]T of symbols to be transmitted.

The length of the vector x is the block size of transmission,

denoted N . We shall assume the binary phase shift keying

(BPSK) for mapping, so that x ∈ {−1, 1}N . Also, assume

that x is uniformly distributed, so that any sequence is equally



(a) Transmitter and Channel

(b) Receiver

Fig. 1: Block diagram of the considered system.

likely. The block x is mapped by the N×N precoding matrix

P into a set of precoded symbols z = Px, where in general,

z ∈ C
N . P is assumed to be unitary, and its every element is

assumed to have a magnitude 1/
√
N . This implies that every

element of the precoder may be written:

pjk =
ejθjk√
N

, θjk ∈ [−π,π) (1)

Precoded symbol block z is then transmitted across the

channel. The received signal vector y is given by:

y =
√
γHPx+w

= Gx+w

=
√
γG̃x+w (2)

where the channel is assumed to be an ideal Rayleigh fading

channel, so that H
△
=diag(h1, · · · , hN ), where hk ∼ CN (0, 1)

and w ∼ CN (0, IN ). The average received SNR is denoted

γ. We also define G
△
=
√
γHP and G̃

△
=HP as the equivalent

channels with and without signal gain being applied. We

assume perfect channel state information at the receiver, so

that Ĥ =
√
γH . The received signal is then passed to the

detector which forms an estimate x̂ of x, and then a demapper,

which maps this back into an estimate b̂ of the bits b.

III. THE PROBABILISIC DATA ASSOCIATION ALGORITHM

The principle of the PDA algorithm in [9] and [12] is to

compute the probability distribution of each of the transmitted

symbols, assuming the rest of the symbols and the channel

noise together form an equivalent noise, and making a Gaus-

sian assumption on the distribution of the equivalent noise. We

rewrite (2), for any n, as:

ỹ = G−1y = xnen +
∑

k %=n

xkek +G−1w (3)

PDA updates the distribution of xn by treating the entire term
∑

k %=n xkek + G−1w as an equivalent noise for the update

of xn. For the BPSK modulation, let pn
△
=P(xn = 1). Then,

PDA performs the update for pn by computing the probability

that xn = 1, conditioned on the knowledge of ỹ and on all

the probabilities computed so far, pk, k &= n.

pn = P(xn = 1)

= P(xn = 1|ỹ, {pk, k &= n})

=
P(ỹ|xn = 1, {pk, k &= n})

P(ỹ|xn = 1, {pk, k &= n}) + P(ỹ|xn = −1, {pk, k &= n})
(4)

To compute the probabilities of (4), PDA makes the assump-

tion that, conditioned on xn, ỹ is a complex Gaussian. Thus,

the mean and covariance of ỹ evaluated as follows:

µn(xn) = E[ỹ|xn = 1, {pk, k &= n}]

= xnen +
∑

k %=n

(2pk − 1)ek (5)

and:

Σn = cov(ỹ|xn = 1, {pk, k &= n})

= (G†G)−1 +
∑

k %=n

4pk(1− pk)eke
†
k (6)

Note that the covariance does not depend on the value of

xn. During the update of the nth symbol, using the assumption

that, conditioned on xn, ỹ ∼ CN (µn(xn),Σn), along with

(4), the update equation for pn is given as:

pn =
1

1 + exp(−4ℜ(µ†
n(1)Σ

−1

n ek))
(7)

The PDA algorithm starts by initializing pn = 0.5, n =
1, 2, · · · , N . Then for each n, it runs the update step (7). After

all the probabilities have been updated, the algorithm goes

back and runs all the updates again. The process continues

until all the probabilities have converged or each probability

is updated at least a certain number of times (a fixed number

of iterations are run).

IV. PERFORMANCE ANALYSIS OF THE PDA DETECTOR

The performance is analyzed in terms of symbol error rate

(SER) for the BPSK signal. Assume that the probability of the

nth symbol is being updated, and that all the other probabilities

have converged, i.e., that for k &= n, pk(1 − pk) ≈ 0. Then,

from (6), it is clear that Σn ≈ (G†G)−1. Also define x̄k =
2pk − 1 for all k. Then, from (7), after a little algebra, we

have:

pn ≈ 1

1 + exp(−4ℜ([y −
∑

k %=n x̄kGek]†Gek))
(8)

An error is made in the nth symbol if pn > 0.5 when

xn = −1 or pn < 0.5, xn = 1. By conditioning on the input

sequence x, the other estimated symbols, {x̄k, k &= n}, and

the matrix G, the error probability of xn = 1 is given by:

perr,n(1) =E{xk, k %=n},G,{x̄k, k %=n}[P[pn < 0.5|xn = 1, . . .

. . . {xk, k &= n},G, {x̄k, k &= n}]] (9)



From (8), we note that pn < 0.5 if, and only if:

ℜ([y −
∑

k %=n

x̄kGek]
†Gen) < 0 (10)

Using (2) and the definition of G, (10) becomes, for xn = 1:

ℜ(wHGen) < −ℜ(e†nG†Gen +
∑

k %=n

∆xke
†
kG

†Gen) (11)

where ∆xk
△
=xk − x̄k.

Let us define w̃n
△
=ℜ(wHGen), which can be written as

follows:

w̃n =
√
γ

N
∑

l=1

(wlr g̃lnr
+ wli g̃lni

) (12)

where wlr , wli being all independent real Gaussians with 0
mean and variance 1/2. It is easy to see that E[w̃n] = 0, and:

var(w̃n) =
1

2

N
∑

l=1

(g̃2lnr
+ g̃2lni

) =
γ

2N

N
∑

l=1

|hl|
2 (13)

Based on (9) and (13), perr,n(1) is evaluated as follows:

perr,n(1)

=



EQ





√

2γ
ℜ
(

e†nG̃
†G̃en +

∑

k %=n(∆xk)e
†
kG

†Gen

)

√

1

N

∑N

l=1
|hl|2









(14)

where Q(·) denotes the Q-function. The expectation is taken

over the same quantities as in (9). Also, we can readily derive:

ℜ
(

e
†
kG̃

†G̃en

)

=
1

N

N
∑

l=1

|hl|
2 cos(θln − θlk) (15)

where the θjks were defined in (1).

Substituting (15) into (14), the probability of error when

xn = 1 is given as follows:

perr,n(1) = E



Q





√
2γ

√

1

N

∑N

l=1
|hl|2

(

1

N

N
∑

l=1

|hl|
2+

∑

k %=n

(∆xk)
1

N

N
∑

l=1

|hl|
2 cos(θln − θlk)











 (16)

A similar procedure can be applied for xn = −1, and this

yields:

perr,n(−1) = E



Q





√
2γ

√

1

N

∑N

l=1
|hl|2

(

1

N

N
∑

l=1

|hl|
2−

∑

k %=n

(∆xk)
1

N

N
∑

l=1

|hl|
2 cos(θln − θlk)











 (17)

Thus, the overall probability of error is given by as:

perr,n =
perr,n(1) + perr,n(−1)

2
(18)

A. Large Block Size Effects

As N → ∞, we note that, by the weak law of large

numbers, we have:

1

N

N
∑

l=1

|hl|
2 → 1 (19a)

1

N

N
∑

l=1

|hl|
2 cos(θln − θlk) → 0 (19b)

For PRPP, it is immediately obvious why the expected value

for the θs uniformly distributed in [−π,π) is zero. For other

precoders, Eqs. (19a) and (19b) are not true. However, for

DFT precoders, it is approximately valid for large enough N .

Further, for Hadamard precoders, the cos(θln − θlk) can be

thought of as being equiprobably drawn from 1 and −1 for

large enough N , so that the argument holds. We hypothesize

that the condition holds for most reasonable unitary precoders

satisfying the magnitude constraints on the elements.

Using (19a) and (19b) in (16), it becomes clear that:

perr,n(1) = perr,n(−1)
N→∞≈ Q(

√

2γ) (20)

Therefore, at large N , the performance of the PDA algorithm

for precoded SISO channels is near the AWGN performance.

B. Finite Block Size Effects

For finite N , where the law of large numbers does not apply,

the coefficient of ∆xk in (16) and (17) does not go to zero.

Thus, any error made in one symbol raises the error probability

of all the other symbols. In practice, the multiplication of

the
√
2γ term with the error terms leads to the performance

breaking away from the AWGN performance at high SNRs.

Errors propagate irrespective of SNR- i.e., once the first error

is made, the propagation does not depend on the SNR, which

can be observed from (16). Thus, the error propagation terms

become more and more of a factor at high SNRs. While the

probability error still decreases with SNR, the falloff becomes

slower and is not as fast as the AWGN falloff. This effect is

more pronounced at smaller block sizes, as, intuitively, there

is less chance of recovering from an error once made because

there is less information to combine.

V. ORDERED PDA (O-PDA)

One typical method of order in which PDA updates the

symbol probabilities is the the optimal decision feedback

ordering of [13]. However, for the ideal Rayleigh fading model

under consideration, every permutation has the same cost for

the proposed scheme of [13]. In other words, the decision

feedback ordering is unable to differentiate between orderings

for this channel. The proof is omitted here for lack of space.

However, it is clear that if the first few symbols to be

decoded are correct, there is a definite overall advantage to the

performance of the algorithm since there is less chance of error

propagation. Hence, we would expect that the performance

follows the ML curve for longer. Therefore we investigate

orderings based on likelihood metrics.



A. Proposed Ordering Scheme

To design a mechanism for ordering, we consider the space

of precoded symbols z = Px. The nth element of z is given

by:

zn =
1√
N

N
∑

j=1

ejθnjxj . (21)

Let us assume that each zn belong to the set Z ⊂ C, and let

Z be a finite set. Note that this may not be true (as in the case

of the PRPP precoder) or, even if it is, |Z| may be very large

(as for the DFT precoder).

We can rewrite (2) as yn = hnzn + wn, n = 1, · · · , N .

Thus, knowing the set Z , we can compute the likelihood,

p(yn|zn = z, hn), for each z ∈ Z , by:

p(yn|zn = z, hn) ∝ exp

(

− |yn − hnz|
2

2σ2
w

)

. (22)

If we choose a prior on the zns, p(zn = z), we can map these

likelihoods into a posterior via Bayes’ theorem:

p(zn = z|yn, hn) =
p(yn|zn = z, hn)p(zn = z)

∑

z0∈Z p(yn|zn = z0, hn)p(zn = z0)
.

(23)

Using this posterior probability, we compute the expectation

on the zn’s as:

E[zn|hn, yn] =
∑

z∈Z

zp(zn = z|yn, hn). (24)

Now using the linearity of expectations, we can map this into

an expected value of x, as follows:

µx = P−1
[

E[z1|h1, y1], . . . ,E[zN |hN , yN ]
]T

. (25)

Once we have an expected value of x, we can map that

into probabilities of the xns, which can serve as the initial

probabilities for the PDA algorithm. Specifically, for the BPSK

case, it is given by:

[

p
1
, · · · , pN

]T
=

1 + µx

2
. (26)

While (26) provides an initial set of probabilities for the

algorithm, it still does not give the ordering itself. However,

it is evident that the quantity vn
△
=pn(1 − pn) measures the

variance of the random variable xn. The smaller vn, indicates

the higher confidence. Thus, we simply order the symbols in

the ascending order of the value vn, and update probabilities

in that order.

Since the employed precoder is unitary, it is clear that none

of the zns can have a magnitude larger than
√
N , as this is the

root power of the sequence x. Also, the typical sequence of x

has an equal number of 1s and −1s, so linearity implies that

the typical values of zn, which is a complex linear combination

of the values in x, are all near the 0 in the complex plane.

Thus, we choose a set of points in the complex plane, restricted

to be within the circle of radius
√
N , and with the bulk of the

points close to the origin, we should expect that to be sufficient

for ordering. The black crosses in Fig.2 show a possible choice

−6 6 

−6

6 

 

 General Precoder/Constellation

Hadamard Precoder with BPSK
Imag(z)

Real(z)

Fig. 2: Possible sets Z .

of the set Z for general complex precoders, with N = 32. A

special case occurs when the precoder is the Hadamard matrix.

As each entry is either ±1/
√
N , it can be seen that the set Z

is finite and real, and in fact can be found exactly as:

Z =

{

−
√
N +

2k√
N

, k = 0, 1, · · · , N

}

. (27)

The red dots of Fig.2 shows this set for Hadamard precoders

with N = 32.

B. Choice of Priors

To choose an effective prior, we assume that zn is uniform

in the set Z . In particular, for the Hadamard precoder, it is

easy to show that if x is uniform, then every zn is distributed

binomially with parameters (N, 0.5). Specifically:

P

(

zn =
N − 2k√

N

)

=
1

2N

(

N

k

)

. (28)

For the more general case, from (21), we note that zn is

essentially a weighted sum of a number of i.i.d. random

variables, xj . Evidently, therefore, we can make a central limit

argument on the zn, and assume that zn ∼ CN (0, 1). This is

the prior that is used. We now summarize the complete O-PDA

algorithm.

C. Summary of O-PDA Algorithm

1) Choose a set Z and a prior p(z) on Z , depending on

the precoder and N .

2) For every n = 1, · · · , N , compute the likelihood,

p(yn|zn = z, hn), for every z ∈ Z ,using (22).

3) Map that to a posterior, using (23).

4) Map that into an expectation on x, using (24) and (25).

5) Use that to form probabilities pn with (26).

6) Determine the ascending order of vn.

7) Run PDA, using pn as the initial probabilities and in

the ordering determined above- the first symbol to be

run should be the one with the smallest value of vn.

VI. SIMULATION RESULTS

The channel for simulation is the ideal Rayleigh fading

channel with uncorrelated channel taps, wherein the noise is

white Gaussian. Performances are depicted at block sizes of
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Fig. 3: Simulated Performance of the PDA Detector

N = 32 and 64, which are significantly smaller than in [11].

Also depicted are the AWGN and ML bounds. Note that the

ML bound is different for different block sizes. As N → ∞,

the ML bound matches the AWGN bound.

Fig.3a demonstrates the performance of the PDA detector

versus the MMSE-LAS detector of [11], with various pre-

coders such as the PRPP precoder, the DFT matrix precoder

and the Hadamard precoder. Fig. 3a shows that PDA shows a

large improvement over the MMSE-LAS detector for all the

different precoders. Evidently, the PDA algorithm in general

provides a much more reliable estimate than the LAS detector.

The predicted error propagation is also observed in the PDA

algorithm. The performance follows the ML bound (which in

turn follows the AWGN bound) until the high SNR regime. At

high SNRs, the error rate falloff slows down and the curves

break away from the bound. Another important feature of

Fig.3a is that the DFT precoder is significantly better than

either the PRPP or Hadamard precoder, for both PDA and

LAS.

Comparing the PRPP and Hadamard precoded system de-

coded with LAS and PDA, in Fig.3a, we note that for LAS,

the Hadamard precoder performs better whereas for PDA, the

performance of the two precoders is comparable. This effect

arises as a result of the fact that while LAS is a local search,

for which the Hadamard precoder has some advantage in terms

of codeword distances, PDA is a global search algorithm. An

even more interesting effect is observed- at high SNRs, the

PRPP precoder is better when coupled with PDA than the

Hadamard precoder. Due to the structure of the Hadamard

precoder, it is more strongly susceptible to error propagation

than with PRPP. In Fig.3b, we consider the effect of increasing

N with the PDA algorithm and the PRPP precoder. Evidently,

the performance is improved when the block size is raised

from 32 to 64- the SNR at which the performance breaks

away from the corresponding ML bound is increased. This is

in consonance with the analysis that we carried out- the longer
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Fig. 4: Performance of PDA and O-PDA

the block size, the smaller the error propagation effect.



Fig.4 demonstrates the performance of the O-PDA algo-

rithm, vis-a-vis the conventional PDA algorithm with arbitrary

ordering. In Fig.4a, we compare the performance for a block

size N = 32, for the DFT and Hadamard precoders. Note that

the constellations chosen for ordering in the Hadamard and

DFT cases are the respective ones of Fig.2 when N = 32,

and that the priors chosen are, respectively for the Hadamard

and DFT precoders, the binomial distribution of (28) and the

complex standard normal distribution.

It is obvious that the ordering does in fact, as hypothesized,

mitigate the error propagation, to the extent that the DFT per-

formance is near ML, even at the relatively small block size of

32. The Hadamard precoder, evidently has poorer performance

than the DFT precoder, but even here, the ordering provides

an improvement. In this case, the performance improvement

provided raises the SNR at which the performance charac-

teristic becomes significantly non-exponential diversity. When

N = 64, a similar effect is observed in Fig.4b). Given several

observations, we would expect the DFT precoder to perform

even better.

Note that an effect at high SNRs between the PRPP and

Hadamard precoded systems, similar to that observed in

Fig.3a, is demonstrated here also. The Hadamard and PRPP

precoders perform about the same with PDA when it is

run without regard to the ordering, but at high SNRs, the

Hadamard precoder is slightly worse. However, the Hadamard

precoded system with O-PDA is close to the ML bound. This

clearly demonstrates the advantages of the O-PDA. For both

N = 32 and 64, O-PDA is able, with a suitable precoder,

to achieve within 0.5dB of the ML bound at an error rate of

10−8. We also note that we have not applied ordering to the

PRPP precoded system. The performance of PRPP/O-PDA is

in fact rather poor, and the benefit is rather marginal.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we considered the use of the PDA algorithm

for the detection of signals transmitted over wireless fading

links with precoding. We first analyzed the performance of

the algorithm for this channel, and demonstrated the presence

of error propagation, which would limit performance at high

SNRs. We then provided an ordering mechanism that allowed

us to initialize the algorithm with a set of probabilities and

an order of updating that mitigated the error propagation, and

called it the O-PDA algorithm. Simulation demonstrated the

use of the algorithms proposed, and provided us with insight

into the functioning of various precoders across these channels

and how to optimize the decoder for these various cases.

However, this work considered idealized Rayleigh channel

models. The performance of the proposed scheme for channels

other than independent Rayleigh fading remains to be investi-

gated. Future work may also investigate the performance under

correlated fading. A comparison against other schemes, such

as Sphere Decoding is also being considered. Finally, the effect

of unknown system parameters (such as the covariance matrix

of the input) remains to be studied.
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