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Abstract
The phase of randomized complex-valued projections of real signals preserves information
about the angle, i.e., the correlation, between signals. This information can be exploited to
design angle preserving embeddings, which represent such correlations. These embeddings
generalize known results on binary embeddings and 1-bit compressive sensing and reduce the
embedding uncertainty.
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Abstract—The phase of randomized complex-valued projections of

real signals preserves information about the angle, i.e., the correlation,

between signals. This information can be exploited to design angle-

preserving embeddings, which represent such correlations. These em-

beddings generalize known results on binary embeddings and 1-bit

compressive sensing and reduce the embedding uncertainty.

Randomized embeddings play an increasingly important role in

signal processing applications. Such embeddings transform a signal

space to another of typically lower dimension or convenient com-

putational properties. The embedding approximately preserves some

aspect of the signal geometry, such that operations on the embedded

signals directly map to operations on the original signals.

The most celebrated embeddings are Johnson-Lindestrauss (J-L)

embeddings, preserving ℓ2 distances [1]. They are functions f : S →
R

K mapping a finite set of L signals S ⊂ R
N to a K-dimensional

space such that, given two signals x and y in S, their images satisfy:

(1− ǫ)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ǫ)‖x− y‖22.

In many applications, however, ℓ2 distance is not the appropriate

distance metric. In this work we explore embeddings of signals that

preserve angles, i.e., correlations. The remainder of this development

uses the normalized angle defined between two signals x and x’ as

d∠ =
1

π
arc cos

〈x,x′〉

‖x‖‖x′‖
(1)

Often, angles between signals are more informative than distances.

Furthermore, if signals are normalized, their angle captures their

distance. Embeddings preserving angles instead of distances can be

more efficient in such cases.

Angle embeddings were first introduced in the context of 1-bit

compressive sensing [2]. The binary ǫ-stable embedding encodes

signals using a random projection followed by a 1-bit scalar quantizer

that only preserves the sign of each projection coefficient:

q = sign(Ax). (2)

The normalized angle between two signals x and x′ embedded in q

and q′, respectively, is preserved in the normalized hamming distance

between their embeddings, as follows:

|dH(q,q′)− d∠(x,x
′)| ≤ ǫ, (3)

where dH(x,x′) = (
∑

i
xi ⊕ x′

i)/K denotes the normalized ham-

ming distance between the signal embeddings.

Instead, in this work we consider continuous embeddings, obtained

by first projecting the signal to a complex-valued space and only

preserving the phase of the projection coefficients:

y = ∠(ACx), (4)

where AC ∈ C
K×N is a randomly drawn matrix with i.i.d. elements

drawn from the standard complex normal distribution.

To demonstrate that angles are preserved we should show that given

a pair of signals x, x′, the expected value of the phase difference of

their complex projection coefficients is proportional to their angle
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= d∠(x,x
′), (5)
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Fig. 1. Angle embeddings (blue dots) capture the true angle between
signals with less uncertainty compared to binary embeddings (red dots). Plots
generated using for K = 32 (left) or K = 256 (right) and N = 1024.

where ∠(·) measures the principal phase of a complex number (used

here to appropriately take wrapping into account). A concentration of

measure argument using Hoeffding’s inequality can then show that
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≤ ǫ (6)

with probability greater than 1 − 2e2 logL−2ǫ2K . In other words,

similar to J-L embeddings, K = O(logL) dimensions are sufficient

to embed a cloud of L points. The argument can be extended to

infinite sets such as sparse signals, using methods similar to [3].

The proposed embeddings can be considered a generalization of 1-

bit embeddings as the phase of complex signals generalizes the sign

of real-valued ones. Similar to 1-bit embeddings, phase embeddings

eliminate magnitude information but preserve the remaining infor-

mation about the signal which allows angle computation. Figure 1

compares the two embeddings, plotting simulation results on pairs of

signals with different angles, as embedded in a space of lower (left)

and higher (right) dimensional space using binary (red) or continuous

angle (blue) embeddings. Angle embeddings capture the true angles

with much less uncertainty compared to binary embeddings for the

same measurements K. If the bit-rate is important, the phase can be

quantized and methods similar to [4] can be used for rate allocation.

Phase-only compressive sensing, i.e., sparse reconstruction, is also

possible, using a program similar to [5]. Details can be found in [6].
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