
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Semismooth Equation Approach to Network
Utility Maximization (NUM)

Bai, L.; Raghunathan, A.U.

TR2013-060 June 2013

Abstract

Popular approach to solving NUM utilizes dual decomposition and subgradient iterations, which
are extremely slow to converge. Recently there has been investigation of barrier methods for
the solution of NUM which have been shown to possess second order convergence. However,
the question of accelerating dual decomposition based methods is still open. We propose a novel
semismooth equation approach to solving the standard dual decomposition formulation of NUM.
We show that under fairly mild assumptions that the approach converges locally superlinearly to
the solution of the NUM. Globalization of the proposed algorithm using a linesearch is also
described. Numerical experiments show that the approach is competitive with a state-of-the-art
nonlinear programming solver which solves the NUM without decomposition.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Semismooth Equation Approach to Network Utility Maximization (NUM)

Lijie Bai1,2 and Arvind U. Raghunathan2

Abstract— Popular approach to solving NUM utilizes dual
decomposition and subgradient iterations, which are extremely
slow to converge. Recently there has been investigation of bar-
rier methods for the solution of NUM which have been shown
to posess second order convergence. However, the question of
accelerating dual decomposition based methods is still open.
We propose a novel semismooth equation approach to solving
the standard dual decomposition formulation of NUM. We show
that under fairly mild assumptions that the approach converges
locally superlinearly to the solution of the NUM. Globalization
of the proposed algorithm using a linesearch is also described.
Numerical experiments show that the approach is competitive
with a state-of-the-art nonlinear programming solver which
solves the NUM without decomposition.

I. INTRODUCTION

Network Utility Maximization (NUM) problems are char-
acterized by a fixed network and a set of sources, which send
information over the network along predetermined routes.
Each source has a local utility function over the rate at
which it sends information. The goal is to determine the
source rates that maximize the sum of utilities subject to link
capacity constraints. This work focusses on NUM problem
which arise from rate control problem in wireline networks
[1]. NUM has largely been solved by dual decomposition
and subgradient iterations [2], [3], [4]. The popularity of
this method stems from the distributed computational frame-
work provided by dual decomposition. However, the method
performs poorly in practice due to the sublinear rate of
convergence of the subgradient method [5]. Low and Lapsley
[2] proposed a modified subgradient method with improved
convergence rates but well short of the second-order rates of
convergence of Newton’s method.

Recently, [6], [7], [8] considered solving NUM using a
barrier approach. The barrier formulation converts the NUM
into an equality constrained problem to which Newton’s
method is applied. The second order convergence follows
as a consequence. The difference between the above papers
is in the manner in which the step computation is distributed.
Belief propagation is used to solve the linear system in [6].
There are no guarantees of convergence for this approach. On
the other hand, [7], [8] employ matrix splitting techniques
which have rigorous convergence guarantees.

A. Our Contribution

We propose a novel second order method that relies on
the dual decomposition framework. In a significant departure

1Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Troy, NY 12180. bail@rpi.edu

2 Mitsubishi Electric Research Laboratories, Cambridge,MA 02139.
raghunathan@merl.com

from previous approaches, we pose the problem of comput-
ing the optimal dual multipliers as a complementarity system.
We show that this complementarity system is semismooth
under mild assumptions. The semismooth equation frame-
work allows us to employ the generalized Newton’s method
which also yields superlinear rate of convergence. In order to
compute the Newton direction we require that the individual
subproblems provide not only the solution but also sensitivity
of the solution to the chosen dual multiplier values. The
sensitivities are shown to exist under standard assumptions
and can be computed analytically. The case of distributed
computations is not considered in this work and will be the
subject of a future study.

B. Notation

All vectors will be assumed to column vectors. For a
vector x ∈ Rn, xi will denote the i-th entry of the vector and
and xT will denote its transpose. For a matrix A ∈ Rn×m Ai
will denote the i-th row of the matrix and ATi its transpose.
If α ⊆ {1, . . . , n} and β ⊆ {1. . . . ,m} then Aαβ ∈ R|α|×|β|
will denote the submatrix formed from elements of A in
rows indexed by α and columns indexed by β. For a function
f : Rn → R, ∇xf(x) and ∇2

xf(x) will denote the gradient
and hessian of the function w.r.t x.

C. Organization of paper

The rest of the paper is organized as follows. Section II
describes the NUM problem, our complementarity equation
formulation and shows the equivalence between the two.
Section III shows that the complementarity formulation is
semismooth using nonlinear programming sensivity. Section
IV outlines the algorithm and presents convergence results.
Computational results are provided in Section V, followed
by conclusions in Section VI.

II. NUM AS COMPLEMENTARITY EQUATIONS

The NUM problem is formulated as,

max
x≥0

N∑
i=1

Ui(xi) s.t. Rx ≤ c (1)

where x ∈ RS is the vector of source rates, Ui : R+ → R is a
twice continuously differentiable, strictly concave, monoton-
ically increasing objective function, the matrix R ∈ RL×N
is a binary matrix where the 1-entries in row Rl indicates
the sources sharing the link l and cl > 0 : l ∈ {1, . . . , L} is
the capacity of the link.

The dual decomposition approach for solving the NUM
problem (1) dualizes the constraints Rx ≤ c using multipliers

λ ∈ RL+ to obtain the dual function g(λ),

g(λ) := min
x≥0

N∑
i=1

fi(xi) + λT (Rx− c) (2)

where fi(xi) = −Ui(xi). The dualization renders (2) sepa-
rable in the x variables. We will denote the solution to (2)
as x(λ). To obtain the optimal value of λ∗ that solves (1)
the dual function needs to be maximized

max
λ≥0

g(λ). (3)

The dual function g(λ) is in general nonsmooth and hence,
the subgradient method is employed for solving (3) [2]-[4].

We propose to solve NUM by posing it as the following
complementarity problem

c−Rx(λ) ≥ 0 ⊥ λ ≥ 0. (4)

Lemma 1 shows the equivalence between problems (1) and
(4). Prior to that we will state the assumptions on solution
to (1). The first order stationary conditions [9] of (1) are

∇xf(x) +RTλ− ν = 0
0 ≤ ν ⊥ x ≥ 0
0 ≤ λ ⊥ c−Rx ≥ 0.

(5)

where f(x) =
∑N
i=1 fi(xi) and (λ, ν) are respectively the

multipliers corresponding to the inequality constraints and
bounds. We will denote by (x∗, λ∗, ν∗) the solution to (1)
with its associated multipliers.

Assumption 1: Each fi(xi) = −Ui(xi) from the objective
function

∑N
i=1 fi(xi) of the NUM is strictly convex. Further,

fi are at least twice, Lipschitz continuously differentiable.
Assumption 2: Linear Independence Constraint Qualifica-

tion (LICQ) [9] holds at the solution point x∗.
Assumption 3: x∗+ ν∗ > 0, which means that x∗ and ν∗

are strictly complementary to each other.
The following shows the equivalence between (1) and (4).
Lemma 1: Suppose Assumption 1 holds. Then, x∗ solves

(1) with multipliers (λ∗, ν∗) if and only if λ∗ solves (4).
Proof: A solution x(λ) to (2) satisfies,

∇xf(x(λ)) +RTλ− ν(λ) = 0
0 ≤ ν(λ) ⊥ x(λ) ≥ 0.

Since (2) is strictly convex (Assumption 1), we have that
above first order conditions are also sufficient [9]. Con-
sequently, if λ solves (4) then, it is easy to see that
(x(λ), λ, ν(λ)) also satisfies (5). Strict convexity of (1)
(Assumption 1) implies that (5) are also sufficient for (1).
The claim follows.

Under assumptions of strict convexity of fi and LICQ
(Assumptions 1-2), it is easy to show that (x∗, λ∗, ν∗)
uniquely solves NUM (1)[9]. The following lemma shows
that the solution uniqueness property also holds for the
complementarity equations (4).

Lemma 2: Suppose (x∗, λ∗, ν∗) solves (1) and Assump-
tions 1-2 hold. Then, λ∗ uniquely solves (4).

Proof: Suppose the claim does not hold. Then there
exists λ̂ 6= λ∗ such that λ̂ solves (4) with x̂, ν̂ denoting

the solution, multiplier to (2) for λ = λ̂. From Lemma 1,
we have that (x̂, λ̂, ν̂) also solves (1). Assumptions on strict
convexity of fi (Assumption 1) this implies x∗ = x̂ while
satisfaction of LICQ at x∗ implies that λ∗, ν∗ are unique.
Thus, λ̂ = λ∗ contradicting our hypothesis.

Lemma 2 shows that λ∗ is an isolated solution of com-
plementarity equations (4). However, the complementarity
system in (4) is nonsmooth. We note that (4) is equivalent
to solving either of the following systems:

Φmin(λ) := min(λ, c−Rx(λ)) = 0, (6)

where min operator is applied componentwise; and

ΦFB(λ) :=

 φFB(λ1, c1 −R1x(λ))
. . .
φFB(λL, cL −RLx(λ)).

 = 0, (7)

where φFB(a, b) is the Fischer-Burmeister [10] function,
which has the form

φFB(a, b) =
√
a2 + b2 − a− b (8)

with a and b being scalars. Clearly φ(a, b) satisfies

φFB(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0 and ab = 0. (9)

The above formulations are nondifferentiable at the point
where both components are 0. However, under mild assump-
tions it is shown in the following that nonsmooth Newton
methods can be applied to solve (6) and (7). In the rest of the
paper, we will focus only on the Fischer-Burmeister function
ΦFB as globalization of generalized Newton’s method is easy
to show in this case.

III. SEMISMOOTH EQUATION FRAMEWORK

We briefly review the semismooth Newton method, while
interested readers are referred to [11] for a detailed survey
of the recent developments of this method.

Definition 1 ([11]): The function Φ : Rn → Rn is said
to be semismooth at λ∗ ∈ RL if Φ is locally Lipschitz,
directionally differentiable at λ∗ and

V d− Φ′(λ∗; d) = o(‖d‖)

where V ∈ ∂Φ(λ∗ + d) (the set of generalized Jacobian of
Φ at λ∗+ d) and Φ′(λ∗; d) is the directional derivative of Φ
at λ∗ along the direction d.
The set of limiting Jacobians at λ or B-subdifferential of Φ,
denoted as ∂BΦ(λ), is given by

∂BΦ(λ) =

{
lim

λj→λ,λj∈D
|Φ′(λj)

}
where D = {λ|Φ is differentiable at λ}. The limiting Jaco-
bian is obtained by approching the nondifferentiable point
through a sequence of differentiable points. The generalized
Jacobian of Φ at λ is the convex hull of the limiting Jacobians
at λ and denoted as ∂Φ(λ) = conv∂BΦ(λ).

The generalized Newton method for solving Φ(λ) = 0 can
be stated as the iteration

λk+1 = λk − (V k)−1Φ(λk) (10)

where V k ∈ ∂BΦ(λk). In order for the above iteration to
be well-defined we require the nonsingularity of V k in a
neighborhood of λ∗ where Φ(λ∗) = 0.

In the following we show that the NUM approach (4)
is semismooth and that the generalized Newton method
achieves fast local convergence (Therorem 1). We begin by
showing that x(λ) is Lipschitz in a neighborhood λ∗ and so is
ΦFB(λ). This allows us to show that ΦFB(λ) is semismooth
by Definition 1. The result for x(λ) follows from standard
nonlinear programming sensitivity [12].

Lemma 3 (Corollary 1 in [12]): Let (x∗, λ∗, ν∗) be a so-
lution to the NUM problem (1) satisfying Assumptions 1-3.
Then, solutions (xi(λ), νi(λ)) to (2) are Lipschitz contin-
uously differentiable in neighborhood of λ∗. The gradients
with respect to λ satisfy the following linear system[
∇2
i fi(xi(λ

∗)) −1

νi(λ
∗) xi(λ

∗)

](
dxi(λ

∗)
dλl

dνi(λ
∗)

dλl

)
=

[
−Rli
0

]
(11)

where ∇2
i fi(xi(λ

∗)) denotes the hessian of fi at xi(λ∗).
Hence, we have

dxi(λ
∗)

dλl
=

{
−Rli

∇2
i fi(xi(λ

∗))
if xi(λ∗) > 0

0 if νi(λ∗) > 0.

Remark 1: In the case that xi(λ∗) and νi(λ
∗) are de-

generate (both are zeros), xi(λ∗) is continuous and locally
Lipschitz but not differentiable (refer Theorem 2 in [12]).

The above lemma allows the semismooth characterization
of ΦFB(λ) from which the fast local convergence follows.

Lemma 4: Let (x∗, λ∗, ν∗) solve the NUM problem (1)
and Assumptions 1-3 hold. Then ΦFB(λ) is semismooth at
λ∗.

Proof: The claim follows from properties of φFB [13],
Definition 1 and Lemma 3.

To show fast local convergence of the generalized Newton
iteration (10) we need to ensure that the iteration is well
defined. In other words, that ∂BΦ(λ∗) has nonsingular
elements. We show this in the following. Prior to proving
this result, we introduce some notation. At the solution
point (x∗, λ∗, ν∗) of the NUM problem (1), we define the
following index sets.

α = {l|(c−Rx∗)l = 0, λ∗l > 0}
β = {l|(c−Rx∗)l = 0, λ∗l = 0}
γ = {l|(c−Rx∗)l > 0, λ∗l = 0}.

(12)

Let Rα∪β denote the Jacobian of the active linear inequality
constraints, (c−Rx∗)l for l ∈ α∪β w.r.t. x. Let Ex denote
the matrix with rows corresponding to the gradients of the
active bounds x∗i = 0 and Eγ refer to the rows corresponding
to the constraint gradients of λ∗i = 0 ∀ i ∈ γ.

As noted previously, the function φFB is differentiable at
all points λ except at points where both arguments vanish.
The subdifferential of ΦFB(λ) at λ∗ consists of matrices of
the form (refer Theorem 7.1 in [13])

∂BΦFB(λ∗) =
{
Da −DbR∇λx(λ∗)

}

where Da, Db are diagonal matrices with nonpositive entries
on the diagonal. In particular the diagonal matrices are,

Da =

0
Da
β

−Iγ

 , Db =

−Iα Db
β

0


where Iα ∈ R|α|×|α| is the identity matrix and Da

β , D
b
β are

diagonal matrices with Da
β +Db

β = −Iβ .
The following technical result will be utilized in showing

the nonsingularity for all V ∈ ∂BΦFB(λ∗).
Lemma 5: Suppose (x∗, λ∗, ν∗) solves the NUM (1) and

Assumptions 1-2 hold. Then, the following matrices are
nonsingular for all β1 ⊆ β:

(i)

∇2
xf(x∗) RTα∪β1

−ETx
Rα∪β1 0 0
Ex 0 0

, (ii)
[
∇2
xf(x∗) −ETx
Ex 0

]
and (iii)

[
Rα∪β1

0
] [∇2

xf(x∗) −ETx
Ex 0

]−1 [
RTα∪β1

0

]
.

Proof: Suppose that the matrix in (i) is singular. Then
there exists (u, v, w) 6= 0 such that

∇2f(x∗)u+RTα∪β1
v − Exw = 0

Rα∪β1
u = 0

Exu = 0
(13)

Left multiplying the first equation by uT we have that,
uT (∇2

xf(x∗)u + RTα∪β1
v − Exw) = 0 which can be sim-

plified using Rα∪β1
u = 0, Exu = 0 to uT∇2

xf(x∗)u = 0.
From strict convexity of f we have that ∇2

xf(x) is positive
definite for all x. Consequently, u = 0 for the condition
uT∇2

xf(x∗)u = 0 to hold. Substituting u = 0 in to the first
equation of (13) we obtain that RTα∪β1

v − Exw = 0. From
the assumption of LICQ, we have that [RTα∪β1

−Ex] is full
column rank which yields that (v, w) = 0. Collecting results,
we have (u, v, w) = 0 which contradicts our assumption.
Hence, the matrix in (i) is non-singular. The proof for the
matrix in (ii) follows along identical lines.

Suppose that the matrix in statement (iii) is singular. If
this were true then there exists v 6= 0 such that([

Rα∪β1 0
] [∇2

xf(x∗) −Ex
Ex 0

]−1 [
RTα∪β1

0

])
v = 0

Also, define the vector (u,w) as,[
u
w

]
=

([
∇2
xf(x∗) −Ex
Ex 0

]−1 [
RTα∪β1

0

])
v.

We have constructed (u, v, w) 6= 0 such its right product
with matrix in (i) is 0. This is in contradiction with non-
singularity of the matrix in (i) and hence, the matrix in (iii)
is non-singular.

The next lemma proves positive semidefiniteness of the
matrices in (ii) and (iii) which are not symmetric.

Lemma 6: Suppose (x∗, λ∗, ν∗) solves the NUM (1) and
Assumptions 1-2 hold. Then, matrices in (ii) and (iii) of
Lemma 5 are positive semidefinite for all β1 ⊆ β.

Proof: Consider the matrix in (ii) of Lemma of 5. For
any (u, v) 6= 0,[
uT vT

] [∇2
xf(x∗) −(Ex)T

Ex 0

]
︸ ︷︷ ︸

=:K

[
u
v

]
= uT∇2

xf(x∗)u ≥ 0

where the last inequality follows from the strict convexity of
f . This proves the positive semidefiniteness of the matrix in
(i). Consider the matrix in (ii), for some w 6= 0

wT
[
Rα∪β1

0
]
K−1

[
RTα∪β1

0

]
w︸ ︷︷ ︸

z

= zTK−1z.

Since LICQ holds we have that RTα∪β1
has full column rank

and z 6= 0 whenever w 6= 0. Hence,

zTK−1z = zT (KK−1)TK−1z = zT (K−1)TKT K−1z︸ ︷︷ ︸
ẑ

= ẑTKT ẑ = ẑTKẑ ≥ 0

where the last inequality follows from positive semidefinite-
ness of K and ẑ 6= 0. This completes the proof.

The following proves the result for ∂BΦmin(λ∗).
Lemma 7: Suppose (x∗, λ∗, ν∗) solves the NUM (1) and

Assumptions 1-3 hold. Then all V ∈ ∂BΦFB(λ∗) are
nonsingular.

Proof: From Lemma 3 it can be shown that,

∇λx(λ∗) =
[
I 0

] [∇2
xf(x∗) −ETx
Ex 0

]−1 [
I
0

]
︸ ︷︷ ︸

=:M

(−RT)

where I ∈ RS×S . Any element in subdifferential
∂BΦFB(λ∗) can be expressed as

Da −DbRM(−RT) = Da +DbRMRT .

For any such element, consider a partition of β1 ∪ β2 = β,
β1 ∩ β2 = ∅ such that Db

β2
= 0. In other words, Da

β2
has

nonzero diagonal elements since Da
β + Db

β = −Iβ . Also,
Db
β1

has nonzero diagonal elements by the definition of β2.
Using this partition an element V of subdifferential can be
written as,

V =

[
Da
α∪β1

0

0 −Iβ2∪γ

]
+

[
Db
α∪β1

Rα∪β1
MR

0

]
. The structure above implies that nonsingularity of V will
follow from nonsingularity of

Da
α∪β1

+Db
α∪β1

Rα∪β1
MRTα∪β1

.

To show this, suppose for some u 6= 0 that,(
Da
α∪β1

+Db
α∪β1

Rα∪β1MRTα∪β1

)
u = 0

=⇒
(

(Db
α∪β1

)−1Da
α∪β1

+Rα∪β1
MRTα∪β1

)
u = 0

which follows from nonsingularity from Db
α∪β1

. Hence[
0

(Dβ1

b)−1Dβ1
a u

β1

]
+
(
Rα∪β1

M(Rα∪β1
)T
)
u = 0

since Da
α = 0. If Da

β1
uβ1

= 0 then the matrix above reduces
to requiring singularity of the matrix in (iii) of Lemma 5
which is a contradiction. Consider Dβ1

a u
β1 6= 0 then pre-

multiplying by uT we obtain,

(uβ1
)T (Db

β1
)−1Da

β1
uβ1

+ uT
(
Rα∪β1

M(Rα∪β1
)T
)
u = 0

which again is a contradiction since by our assumption on
Dβ1
a u

β1 and Lemma 6 the first term is positive while the
second term is nonnegative. Hence, there exists no such u 6=
0 and the claim follows.

Combining the previous results we obtain the fast conver-
gence of the iteration in (10) in a neighborhood of λ∗.

Theorem 1 ([11]): Suppose (x∗, λ∗, ν∗) solves the NUM
(1) and Assumptions 1-3 hold. Then the generalized Newton
method (10) using V ∈ ∂BΦFB(·) is superlinearly conver-
gent in a neighborhood of λ∗.

Proof: The proof of this result relies on the semis-
moothness of ΦFB(λ∗) and the nonsingularity of elements in
∂BΦ(λ∗) (Lemma 7). We omit the proof for sake of brevity
and refer the interested reader to [11].

IV. ALGORITHM

The main step in the generalized Newton method is the
solution of the linear system

V dλ = −ΦFB(λ) for some V ∈ ∂BΦFB(λ) (14)

at each iteration. In our case, the calculation of V inolves
solving the subproblems (2). Critical to this calculation is
the existence of the sensitivity matrix ∇λx(λ). As stated in
Lemma 3 we require the strict complementarity condition to
hold. For the local analysis it was sufficient that this hold at
the solution to NUM. However, for our algorithm to compute
steps from iterates that are far removed from the solution we
will make the following assumption.

Assumption 4: For all iterates {λk} produced by the algo-
rithm, the strict complementarity condition x(λk)+ν(λk) >
0 holds.
Assumption 4 implies that x(λ) is differentiable as a
function of λ, c − Rx(λ) is differentiable as well. To
calculate the derivatives of c − Rx(λ), define D(λ) =

diag(
1{x1(λ)>0}

(∇2
1f1(x1(λ)))2

, . . . ,
1{xN (λ)>0}

(∇2
NfN (xN (λ)))2

). Therefore

∇λ(c−Rx(λ)) = −R∇λx(λ) = RD(λ)RT . (15)

For the puprposes of our algorithm it is sufficient to obtain
one element V ∈ ∂BΦFB(λ) at each iteration. We choose V
as follows (refer Section 7 of [13]),

∇λφFB(λl, cl −Rlx) =

(
λl

‖(λl,cl−Rlx)‖ − 1
)
el +

(
cl−Rlx

‖(λl,cl−Rlx)‖ − 1
)

(RD(λ)RTl)

if (λl, cl −Rlx) 6= 0(
ξl

‖(ξl,RlD(λ)RT ξ)‖ − 1
)
el+(

RlD(λ)RT ξ
‖(λl,RlD(λ)RT ξ)‖ − 1

)
(RD(λ)RTl)

otherwise.

In the above, ξ ∈ RL with ξl = 0 for the indices such that
(λl, cl − Rlx) 6= 0 and 1 otherwise and el ∈ RL with 1

for l-th entry. Solving the non-linear system ΦFB(λ) = 0 is
closely related to the unconstrained minimization problem

min ΨFB(λ) := 1
2ΦFB(λ)TΦFB(λ). (16)

For the Fischer function it has been shown that ΨFB(λ) is
continuously differentiable and stationary points of ΨFB(λ)
correspond to zeros of ΦFB(λ). Hence, the above function
is an ideal choice for use as a merit function. In particular,
progress towards satisfaction of the ΦFB(λ) = 0 can be
gauged by reduction in ΨFB(λ). Given a choice of direction
dλ the steplength is determined as the smallest natural
number r such that:

ΨFB(λ+ dλ) ≤ ΨFB(λ) + σρr∇λΨFB(λ)T dλ (17)

where ∇ΨFB(λ) = ∇ΦFB(λ)TΦFB(λ) is well-defined.
Algorithm 1 details the steps of the algorithm under

satisfaction of Assumption 4. At each iteration the algorithm
first attempts to compute the Newton step by solving (14).
If the linear cannot be solved or if the step size required to
satisfy the Armijo conditon (17) is too small then, we attempt
to make progress with the gradient step. If the stepsize for
satisfying (17) is also short then reset step is invoked. This
is a feature that is similar to the crash restart discussed
in [14]. The algorithm attempts to find an iterate that can
make progress towards solving the problem. We control the
number of reset steps that are taken in the algorithm using
the nreset,max. The algorithm terminates when steps are too
small or if the current iterate solves the NUM to tolerance.

To provide intuition for the requirement of reset steps, con-
sider for instance the case where at some iteration x(λk) = 0.
In this case ∇λx(λk) = 0 and hence, V k = 0 and (14)
cannot be solved. Further, the gradient step cannot make
progress towards reducing the merit function. In this case,
it is necessary to invoke a reset step. As long as the reset
steps are not invoked often the algorithm should converge to
a solution of the NUM.

The requirement of Assumption 4 is restrictive. To relax
the assumption, we consider reformulating (2) as,

min

S∑
i=1

(fi(xi)− µ ln(xi)) + λT (Rx− c) (18)

The above problem has no inequality constraints and hence,
the solution x(λ, µ) is always continuously differentiable as a
function λ. Algorithm 1 can be applied to this formualtion for
a fixed value of barrier parameter, µ. The complementarity
equations are solved approximately to tolerance that is a mul-
tiple of µ and then, the barrier parameter is decreased further.
This process continues until the NUM is solved. The steps
of the barrier based algorithm are provided in Algorithm 2.
In this algorithm, we denote by SN(fi − µ ln(xi), µ, λ

l) the
call to Algorithm 1 for solving the NUM with (18) to a
tolerance of µ starting with initial iterate λl. Reusing the
solution of the previous barrier problem as an intial guess
for the current barrier parameter improves the convergence
of the algorithm. This feature is also exploited in interior
point algorithms such as Ipopt [15]. The choice of barrier

Algorithm 1: Semismooth Newton method - SN(fi, ε, λ̄)

1 Let σ, ρ, ω, η, τ ∈ (0, 1), nreset,max ≥ 0 be given scalars
2 Set k = 0, λ0 = λ̄, nreset = 0

3 repeat
/* Newton Step */

4 if linear system (14) solvable then
5 Set dλkN = −(V k)−1ΦFB(λk)
6 Find smallest rN ≥ 0 such that (17) holds
7 Set dλk = ρrNdλkN
8 end

/* Gradient Step */
9 if linear system (14) unsolvable or ρrN < τ then

10 Set dλkG = −∇λΦFB(λk)
11 Find smallest rG ≥ 0 such that (17) holds
12 Set dλk = ρrGdλkG
13 end

/* Reset Step */
14 if (14) unsolvable or (rN < τ and rG < τ) then
15 if nreset < nreset,max then
16 Set nreset = nreset + 1
17 Set dλk = (min(ω, ‖λk‖1+η)− 1)λk

18 end
19 else
20 Set dλk = 0.
21 end

/* Update iterate */
22 Set λk+1 = λk + dλk

23 Set k = k + 1
24 until ‖λk+1 − λk‖ ≤ ε or
‖min(c−Rx(λk), λk)‖∞ ≤ ε

parameter decrease ensures that the sequence of solutions to
(18) converge superlinearly as well.

For lack of space, we omit global convergence results for
the above algorithms. Instead we provide extensive numerical
results that demonstrate the efficiency of the algorithms.

V. RESULTS

Algorithms 1 and 2 were coded in MATLAB. For all
computational experiments the following values were used
for the scalars in Algorithm 1, σ = 10−4, ρ = 0.9, ω = 0.5,
η = 0.5, τ = 10−8 and nreset,max = 2. All problems were
solved to a convergence tolerance of ε = 10−8. The codes
were executed in MATLAB 7.11 on a machine with 2.4GHz
Intel Core 2 CPU and 2 GB of RAM. For comparison we
also solved the problems using Ipopt [15] through a custom
MEX interface linked to Ipopt’s precompiled DLLs [16].

The utility functions were chosen as Ui(xi) = −fi(xi) =
wi ln(xi) where wi > 0 for which Assumption 1 holds. In the
Algorithms 1 and 2, the iterates λk can be become negative.
In which case xi(λk) → ∞. To avoid this, we impose an
upper bound of xmax = max(c) + 1 on all xi which is valid
for any NUM solution x∗. Consequently, the subproblems

Algorithm 2: Semismooth Newton method (Barrier)
Initialization: Let σ ∈ (0, 1) and ρ ∈ (0, 1) be given

scalars
Set l = 0, pick µ > 0, λ0 ∈ RL+ and convergence
tolerance ε

1 repeat
2 Solve SN(fi − µ ln(xi), µ, λ

l) to obtain solution
λl+1

3 Set µ = min(µ1.5, 0.1µ)
4 Set l = l + 1
5 until µ ≤ ε

Fig. 1. Plot of error versus iterations for the two algorithms on a 100
source, 100 links instance.

that are solved in the two algorithms are respectively

min
0≤x≤xmax

min
S∑
i=1

fi(xi) + λT (Rx− c)

min
S∑
i=1

(fi(xi)− µ ln(xi)− µ ln(xmax − xi)) + λT (Rx− c).

Data for the problem instances were randomly generated as
suggested in [7]. The link-source matrix R was generated
from a Bernoulli distribution. Any instance constained a row
with all zeros was discarded. The link capacities and source
weights were generated randomly using MATLAB’s rand
command as c = 3∗rand(L, 1) and w = rand(S, 1).

A. Fast local convergence of the algorithms

Theorem 1 shows the asymptotically the algorithm con-
verges at a superlinear rate. Figure 1 plots the error as
function of iteration number for the Algorithms 1 and 2 for
a randomly generated problem instance with S = 100, L =
100. Both algorithms were provided an initial point of all
1’s, λ0 = 1. Clearly the last few iterates converge rapidly to
a solution. This behavior was observed in all our examples
validating the theory.

B. Comparison with smooth second order algorithm

To demonstrate the computational efficiency of the com-
putational efficiency of the algorithms we compare our
implementation against an algorithm that directly solves

Fig. 2. Performance profiles of algorithms based on number of iterations
for convergence.

the NUM (1). Ipopt [15] is used to solve (1). Ipopt is a
state-of-the-art interior point method for solving nonlinear
programming (NLP) problems. Ipopt also employs a second
order algorithm which achieves superlinear convergence in
the neighborhood of a solution satisfying the assumptions
stated in this work. In the following, Ipopt is initialized with
x0 = 1, Algorithm 1 is intialized with λ0 = 1 and Algorithm
2 is initialized with λ0 = Rw. Ipopt is fairly insensitive
to the choice of initial point. On the other, the choices for
our algorithms are empirically seen to provide very good
performance. We emphasize the algorithms are robust for
other choices of λ0 as well.

We compare the algorithms in three aspects - number of
iterations, number of function evaluations and CPU time.
Figures 2,3,4 show the performance profiles of the three
algorithms on a randomly generated set of 100 instances of
size S = L = 100. Performance profiles were introduced in
[17] as a means of comparing algorithm behaviors on differ-
ent aspects. To compare the algorithms based on number of
iterations for convergence, we determine for each algorithm
j and each problem instance p

t(j, p) =
iterations by algorithm j on p

least # iterations among all algorithms on p

which is a normalization against best algorithm for each
problem instance. The performance profile is essentially a
cumulative plot of {#p|t(j, p) ≤ τ} against τ . Figure
2 shows that Algorithm 2 requires the least number for
iterations for convergence on more than 75 instances, while
Algorithm 1 has the least iteration count on 60 instances.
The number of iterations for Algorithm 2 is sum of iteratons
required for each barrier parameter. Both algorithms solve all
problems in about 1.5 times the number of iterations requires
for the best algorithm. Ipopt on the other hand requires
as much as 2.5 times that required by best algorithm on
all problem instances. Algorithms 1 and 2 are essentially
active set type algorithms and hence, are likely to have
excellent convergent behavior when started with a good
initial guess. Yet, this is certainly remarkable given that
we employ a dual decomposition framework and Ipopt is

Fig. 3. Performance profiles of algorithms based on number of function
evaluations for convergence.

Fig. 4. Performance profiles of algorithms based on CPU time for
convergence.

a robust, efficient algorithm. In the context of function
evaluations (refer Figure 3), Ipopt clearly surpasses our
algorithms on all problems. Both our algorithms have almost
identical performance profiles and require more than 3 times
the number of function evaluations of Ipopt on more than
50 instances. This is possibly due to line search cutting back
on the given search directions. We have also noticed that the
Jacobian ∇λΦFB(λk) also becomes ill-conditioned at some
early iterations. In terms of CPU time, our algorithms are
much faster than Ipopt as seen in Figure 4.

C. Frequency of reset steps

In the previous section, we alluded to the possibility of
having to invoke reset steps quite often. In our computational
experience, we never had to use the reset steps in any of the
100 instances for the given initialization of both algorithms.
However, when Algorithm 2 is initialized with λ0 = 1 we
have noticed that there are instances where the reset step
is invoked at the first iteration only. This behavior is quite
encouraging and shows robustness of our approach.

VI. CONCLUSION

Dual decomposition for NUM have long been plagued by
the poor convergence properties of the subgradient algorithm.

We presented two algorithms based on a novel reformulation
of the NUM to semismooth complementarity equations.
Both algorithms enjoy fast local convergence properties near
the solution to NUM under mild assumptions. Numerical
experience confirmed the excellent local and global conver-
gence properties of the algorithms. The performance of the
algorithms is superior to even a state-of-the-art nonlinear pro-
gramming algorithm in certain aspects. We will investigate
the global convergence proof of the algorithms and extension
to a distributed computational setting in a future work. We
believe the linear system solution can be distributed using
iterative linear algebra techniques along the lines of [7].
This allows to develop a distributed computational approach
which will retain the fast local convergence shown here.

REFERENCES

[1] F. P. Kelly, A. K. Malulloo, and D. K. H. Tan, “Rate control in
communications networks: Shadow prices, proportional fairness and
stability,” Journal of the Operations Research Society, vol. 49, pp.
237–252, 1998.

[2] S. H. Low and D. E. Lapsley, “Optimization flow control, I: basic
algorithm and convergence,” IEEE/ACM Transaction on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[3] S. Low and R. Srikant, “A mathematical framework for designing a
low-loss low-delay internet,” Network and Spatial Economics, vol. 4,
no. 1, pp. 75–101, 2004.

[4] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architecture,” Proceedings of IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[5] N. Z. Shor, Minimization methods for nondifferentiable functions.
Berlin: Springer, 1985, Translated from Russian by K.C. Kiwiel and
A. Ruszczynski.

[6] D. Bickson, Y. Tock, A. Zyrnnis, S. Boyd, and D. Dolev, “Distributed
large scale network utility maximization,” Proceedings of IEEE Inter-
national Symposium on Information Theory.

[7] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A Distributed Newton Method
for Network Utility Maximization, I: Algorithm,” Massachussetts
Institute of Technology, Tech. Rep.

[8] J. Liu and H. Sherali, “A Distributed Newton Approach for Joint
Multi-Hop Routing and Flow Control: Theory and Algorithm,” Tech.
Rep.

[9] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2000.
[10] A. Fischer, “A special Newton-type optimization method,” Optimiza-

tion, vol. 24, pp. 269–284, 1992.
[11] L. Qi and D. Sun, “A survey of some nonsmooth equations and

smoothing Newton methods,” in Progress in optimization : contribu-
tions from Australasia Vol. 30 of Applied optimization, A. Eberhard,
B. Glover, R. Hill, D. Ralph, Ed. Kluwer Academic Publications,
pp. 121–146.

[12] K. Jittorntrum, “Solution Point Differentiability without Strict Com-
plementarity in Nonlinear Programming,” Mathematical Progamming,
vol. 21, pp. 127–138, 1984.

[13] T. D. Luca, F. Facchinei, and C. Kanzow, “A semismooth equation
approach to the solution of nonlinear complementarity problems,”
Mathematical Programming, vol. 75, pp. 407–439, 1996.

[14] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow,
“The Semismooth algorithm for large scale complementarity prob-
lems,” INFORMS Journal on Computing, vol. 13, pp. 294–311, 2001.

[15] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–
57, 2006.

[16] “Ipopt pre-compiled binaries.” [Online]. Available: http://www.coin-
or.org/Binaries/Ipopt/

[17] E. D. Dolan and J. J. More, “Benchmarking optimization software with
performance profiles,” Mathematical Programming, vol. 91, no. 2, pp.
201–213.

	Title Page
	Title Page
	page 2

	Semismooth Equation Approach to Network Utility Maximization (NUM)
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

