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Real-Time Energy-Optimal Trajectory Generation for a Servo Motor

Yiming Zhao, Yebin Wang, Scott A. Bortoff, and Koichiro Ueda

Abstract—This paper considers the fast generation of speed
and acceleration constrained energy-optimal trajectories for
a motor system performing a point-to-point positioning task
with a fixed final time. An algorithm is proposed to obtain the
energy-optimal solution by solving a series of Two-point Bound-
ary Value Problems (TBVPs) with guaranteed convergence. The
algorithm is capable of generating energy-optimal trajectories
in real-time.

Index Terms—servo motor, motion control, trajectory gen-
eration, minimum energy, optimal control, boundary value
problem, real-time, speed constraint, acceleration constraint.

I. INTRODUCTION

In a motor position control task, which is essential to

numerous mechatronic systems, the motor transits from one

angular position to another in a certain amount of time

with zero initial and final speed. Time-optimal and approxi-

mate time-optimal motor trajectory generation problems have

been considered for servo position control and motor speed

response control [11], [9], [2], [8], [13], [7], [1], [3]. To

improve the unsatisfactory energy efficiency of time-optimal

motor positioning trajectories, the energy-optimal motor

position control problem has also been studied. Ref. [12]

proposed an energy-optimal control method for incremental

motion drive (IMD), which used the optimal control tech-

nique to compute the current control inputs and execution

time to minimize the resistent loss of the motor. This method

does not take into account the friction of the system. Neither

does it consider the mechanical power stored in the rotor and

load which can help with the positioning task. Reference

[10] revised this method to consider friction and mechanical

power, and seeks for a suboptimal solution by introducing a

power cut-off disconnection time splitting the overall motion

into two phases. Ref. [6] studied the problem of energy-

optimal translationa for a two wheeled robot, which is

equivalent to a motor position control problem, and proposed

a real-time algorithm based on optimal control. However,

similar to previous research in [12], [10], it does not consider

speed and acceleration constraints, which are important for

addressing actuator limitations, vibration attenuation, and

safety.

A trapezoidal speed profile has been used for the en-

ergy efficient control of a permanent magnet synchronous
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motor (PMSM) [4], and the energy-saving speed control

of a wheeled mobile robot [5]. Although this method can

consider both acceleration and speed constraints, the result is

obviously suboptimal. It is expected that more energy saving

can be achieved using the optimal control approach.

The main contribution of this paper is twofold. First,

the energy-optimal servo motor position control problem

is studied using an optimal control formulation including

both acceleration and speed constraints, which has not been

addressed in the previous research using optimal control.

Second, this paper proposes a novel computationally efficient

algorithm which solves the acceleration and speed con-

strained energy-optimal trajectory generation problem with

guaranteed convergence.

This paper is organized as follows: The problem statement

is provided in Section II. Section III presents the theoretical

results and the algorithms for computing energy-optimal mo-

tor position control trajectories. The validity and efficiency

of the proposed algorithm are demonstrated by numerical

simulation in Section IV.

II. PROBLEM STATEMENT

Let x be the angular position of the motor, v = ẋ be

the angular speed, and u be the control current. The speed

dynamics equation of the motor system is given by

Iv̇(t) = −d0v(t)− c0 +Ktu(t),

where I is the combined moment of inertia of the motor

and the load, c0 is the Coulomb friction constant, d0 is the

viscous friction coefficient, and Kt is the torque constant.

Since the motor speed is either positive or negative along

an energy-optimal positioning trajectory except at t0 and tf ,
it is justified to treat the Coulomb friction as constant as

in the above dynamics equation. For notational convenience,

let d = d0/I , c = c0/I and b = Kt/I , the motor system

dynamics can be written as

ẋ(t) = v(t), (1)

v̇(t) = −dv(t)− c+ bu(t), (2)

In order to reduce structure vibration and maintain motor

efficiency, it is required that the motor’s motion must satisfy

the speed and acceleration constraints:

v(t) ≤ vmax, (3)

Amin ≤ v̇ = −dv(t)− c+ bu(t) ≤ Amax, (4)

where vmax, Amin, and Amax are constants with Amin < 0
and Amax > 0. As in [6], we model the energy consumption
of motor as a sum of copper loss and mechanical work. A



formula for the instantaneous power of the motor is given

by

P (v, u) = Ru2 +Ktvu, (5)

where R is the resistance of the motor. The energy-optimal

trajectory is given by the solution to the following minimum

energy control problem:

Problem 1 (Energy-optimal motor position control):

min
u

E =

∫ tf

0

P (v(t), u(t))dt

s.t. ẋ(t) = v(t),

v̇(t) = −dv(t)− c+ bu(t),

v(t) ≤ vmax,

Amin ≤ −dv(t)− c+ bu(t) ≤ Amax,

x(0) = 0, x(tf ) = xf ,

v(0) = 0, v(tf ) = 0.
Without loss of generality, we assume xf > 0. Note that

the speed regulation problem is just a simplified version of

Problem 1, therefore the method proposed later in this paper

also applies to energy-optimal motor speed response control.

III. OPTIMAL SOLUTION AND ALGORITHMS

We propose a computationally efficient method for solving

Problem 1 using optimal control theory. The key idea is the

application of an analytic solution to the Two-point Boundary

Value Problem (TBVP) associated with Problem 1 when the

constraints (3) and (4) are inactive, which is referred to as

the unconstrained case henceforth. Based on the analytic

solution, a novel algorithm is designed for updating the

boundary conditions of a series of TBVPs such that the

TBVP solutions converge to that of Problem 1. The schema

of the proposed method is illustrated in Fig. 1, where ‘BC’

stands for boundary condition.
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Fig. 1. Schematic for minimum energy servo control.

A. Analytic Solution of the Unconstrained Case

In this section we present the analytic solution to problem

1 for the unconstrained case, which is reformulated below:

Problem 2: (Unconstrained energy-optimal motor posi-

tion control problem)

min
u

E =

∫ tf

0

(Ru2(t) +Ktv(t)u(t))dt

s.t. ẋ(t) = v(t),

v̇(t) = −dv(t)− c+ bu(t),

x(0) = 0, x(tf ) = xf ,

v(0) = 0, v(tf ) = 0.
Problem 2 can be solved analytically by applying Pontrya-

gin’s Maximum Principal. The Hamiltonian for this problem

is

H(x(t), v(t), λx(t), λv(t), u(t))

=Ru2(t) +Ktv(t)u(t) + λx(t)v(t)

+ λv(t)(−dv(t)− c+ bu(t)),

where λx and λv are the co-state variables. The dynamics

of the co-states are given by

λ̇x(t) = −
∂H

∂x
= 0, (6)

λ̇v(t) = −
∂H

∂v
= dλv(t)−Ktu(t)− λx(t). (7)

According to (6), λx(t) is constant. The optimal control u
∗

can be determined from the first-order optimality condition

∂H/∂u = 0, which yields

u∗(t) = −
Kt

2R
v(t) −

b

2R
λv(t). (8)

It is also noted that

∂2H

∂u2
= 2R > 0, (9)

which ensures that u∗ is unique.

Substituting (8) into the state and co-state dynamics, we

have the following linear TBVP

ẋ(t) = v(t), (10)

v̇(t) = −

(

d+
bKt

2R

)

v(t)−
b2

2R
λv(t)− c, (11)

λ̇v(t) =
K2

t

2R
v(t) +

(

d+
bKt

2R

)

λv(t)− λx, (12)

with boundary conditions x(0) = 0, x(tf ) = xf , v(0) = 0,
v(tf ) = 0, and unknown parameter λx, λv(0) and λv(tf ).

Let A1 = −(d+ bKt

2R ), A2 = − b2

2R , A3 =
K2

t

2R , and define

A =





0 1 0
0 A1 A2

0 A3 −A1



, B =





0
−c
−λx



.

Differential equations in the above TBVP can be written as

Ẋ(t) = AX(t) +B (13)



where X(t) = [x(t), v(t), λv(t)]
T . The analytic solution to

(13) is given by

X(t) = M(t, t0)X(t0) +G(t, t0)B, (14)

where M(t, t0) = eA(t−t0) ∈ R
3×3 is the state-transition

matrix. The matrix G(t, t0) ∈ R
3×3 is given by

G(t, t0) =

∫ t

t0

eA(t−τ)dτ .

Both M(t, t0) and G(t, t0) can be easily computed analyt-

ically using standard symbolic computation software, hence

are not listed here due to limited space. The boundary

conditions of the TBVP must satisfy (14) with t = tf as

described by the following linear algebraic equations,

X(tf ) = M(tf , 0)X(t0) +G(tf , 0)B, (15)

from which the three unknowns λv0 = λv(0), λvf = λv(tf ),
and λx can be easily solved. Once these unknowns are

obtained, the optimal state and co-state trajectories as the

solution to the TBVP (13) can be determined from (14), and

the corresponding optimal control is given by (8).

The following two propositions characterize some proper-

ties of the energy-optimal speed profile in the unconstrained

case, which will be used later. The proof of Proposition 1 is

omitted due to space limitation.

Proposition 1: Let (x, v, λx, λv) and (x̃, ṽ, λ̃x, λ̃v) be two
sets of optimal states and co-states for Problem 2 with

different boundary conditions and/or final time tf such that

v and ṽ are not identical, then the function z(t) = v(t)− ṽ(t)
has at most two roots. Furthermore, suppose the function z
has at least one root, then its derivative ż(t) = v̇(t) − ˙̃v(t)
has at most one root.

Proposition 2: Let (x, v, λx, λv) be the optimal solution

for Problem 2. Suppose there exists t1, t2 ∈ R such that

v̇(t1)v̇(t2) < 0, then v̇(t) is a strictly monotone function.

Proof: Based on the analytic solution to Problem 2, it

can be shown that

v̇(t) =(A2λv0 − c+A1v0) cosh(pt/2)

+ 2(v0A
2
1 − cA1 −A2λx +A2A3v0) sinh(pt/2)/p.

Let τ = pt/2. Noticing that sinh(τ) = (eτ − e−τ )/2 and

cosh(τ) = (eτ + e−τ )/2, there exist constants c1, c2 ∈ R

such that the above expression can be rewritten as

v′(τ) = c1e
τ + c2e

−τ ,

where v′ denotes the derivative of v with respect to τ .
Besides, with τ1 = pt1/2 and τ2 = pt2/2, we have

v′(τ1)v
′(τ2) < 0. Without loss of generality, assume that

τ1 < τ2. Since v′ is proportional to v̇, it suffices to prove

that v′ is a strictly monotone function.

If v′(τ1) > 0 and v′(τ2) < 0, then we must have c1c2 < 0,
otherwise, v′(τ) is either always positive or always negative,
which leads to a contradiction. Now consider the second

derivative of v:

v′′(τ) = c1e
τ − c2e

−τ .

Note that v′′(τ) is a continuous function. Because c1c2 < 0,
we must have either v′′(τ) > 0 for any τ ∈ R when

c1 > 0, or that v′′(τ) < 0 for any τ ∈ R when c1 < 0,
which implies that v′(τ) > 0 is either a strictly monotone

increasing function when c1 > 0 or a strictly monotone

decreasing function when c1 < 0. Similar conclusion holds

when v′(τ1) < 0 and v′(τ2) > 0. Therefore, the proof is

complete.

B. Trajectory Smoothness at Junction Points

In the sequel, when v(t) = vmax along a segment of the

speed profile, this segment is referred to as a speed con-

strained arc. Similarly, the activation of constraints v̇ ≤ Amax

and v̇ ≥ Amin corresponds to acceleration constrained and

deceleration constrained arcs, respectively. The connection

points between neighboring arcs are called junction points.

For Problem 1, because the Hamiltonian is strictly convex

with respect to the control according to (9), and the fact that

the constraints are linearly independent, the optimal control

is continuous along the whole trajectory, and the slope of

the optimal speed profile for Problem 1 is continuous at any

time, including the junction points.

C. Energy-Optimal Control with Acceleration Constraints

When the acceleration constraints are active, the optimal

solution typically exhibits a three phase structure: accel-

eration constrained trajectory, unconstrained trajectory, and

deceleration constrained trajectory. The optimal solution may

not contain the first or the third phase depending on values

of Amax and Amin. However, the proposed method can still

be applied without any difficulty. Hence, we focus on the

general case and assume that the optimal solution contains

three phases.

In the first and third phases, the position and speed can

be determined by

vl(t) = Amaxt, (16)

xl(t) =
1

2
Amaxt

2, (17)

vr(t) = Amin(t− tf ), (18)

xr(t) = xf +
1

2
Amin(t− tf )

2. (19)

which satisfy the boundary conditions at t0 and tf . Let
(xm, vm, um) be the optimal solution of the second phase on
the time interval [t1, t2] with boundary values xl(t1), vl(t1)
and xr(t2), vr(t2), where t1 is the switch time between

the acceleration constrained and unconstrained arcs, t2 is

the switch time between the unconstrained and deceleration

constrained arcs, as illustrated in Fig. 2. Since the constraints

are inactive in the second phase, the optimal solution during

this phase is given by




xm(t)
vm(t)
λv(t)



 = M(t, t1)





xm(t1)
vm(t1)
λv(t1)



−G(t, t1)





0
c
λx



, (20)

The optimal solution xm and vm must also satisfy the

junction conditions xm(t1) = xl(t1), vm(t1) = vl(t1),
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Fig. 2. Optimal speed profile with active acceleration constraints.

xm(t2) = xr(t2), vm(t2) = vr(t2). Since the energy-optimal
speed profile does not contain any corner point, we have

v̇l(t
−

1 ) = v̇m(t+1 ) and v̇m(t−2 ) = v̇r(t
+
2 ).

Algorithm 1 is proposed for solving the acceleration

constrained problem by identifying the optimal switch times

t1, t2 satisfying all junction conditions. Once t1 and t2 are

obtained, the optimal trajectory can be easily computed.

According to the following theorem, the switching times

given by Algorithm 1 always converge to the optimal values.

Theorem 3.1: The sequences {tak
} and {tbk} as updated

in Algorithm 1 converge monotonically to the optimal

switching times t∗1 and t∗2, respectively, as k → ∞.

The proof of Theorem 3.1 is omitted due to space limi-

tation. Figure 3 illustrates one step of updates for switching

times using Algorithm 1 when both the acceleration and

deceleration constraints are violated.

t

v

tbktak tbk+1
tak+1

vk+1

vk

tck tdktek

Fig. 3. Update scheme of switching time.

D. Energy-Optimal Control with Acceleration and Speed

Constraints

In this section we propose an algorithm dealing with

the maximum speed constraint. This algorithm is based

on a partial equivalence between the optimal solution to

Problem 1 and the optimal solution to a particular problem

with acceleration constraint only, which can be solved using

Algorithm 1. Such a partial equivalence is illustrated in

Fig. 4, and the details are given by Theorem 3.2. Theorem 3.2

is given without proof due to space limitation.

Theorem 3.2: Let (x∗, v∗, u∗) be the optimal solution to

Problem 1 with final position xf and final time tf . Suppose

Algorithm 1 Switch time computation for active acceleration

constraints

1: e ⇐ 1, k ⇐ 1, and choose a small tolerance parameter

ε ≪ 1
2: tak

⇐ 0, tbk ⇐ tf
3: while e > ε do
4: solve the unconstrained problem with boundary condi-

tions vk(tak
) = vl(tak

), xk(tak
) = xl(tak

), vk(tbk) =
vr(tbk), xk(tbk) = xr(tbk), and denote the solution as
(xk, vk, uk).

5: if v̇k(tak
) > Amax then

6: solve v̇k(τl) = Amax for τl
7: tak+1

⇐ τl
8: else

9: tak+1
⇐ tak

10: end if

11: if v̇k(tbk) < Amin then

12: solve v̇k(τr) = Amin for τr
13: tbk+1

⇐ τr
14: else

15: tbk+1
⇐ tbk

16: end if

17: k ⇐ k + 1
18: e ⇐ |tak

− tak−1
|+ |tbk − tbk−1

|
19: end while

20: t1 ⇐ tak
, t2 ⇐ tbk

21: return x∗, v∗, u∗, where

x∗(t) =







xl(t), 0 ≤ t ≤ t1,
xk(t), t1 < t ≤ t2,
xr(t), t2 < t ≤ tf ,

v∗(t) =







vl(t), 0 ≤ t ≤ t1,
vk(t), t1 < t ≤ t2,
vr(t), t2 < t ≤ tf ,

u∗(t) =







(Amax + dvl(t) + c)/b, 0 ≤ t ≤ t1,
uk(t), t1 < t ≤ t2,
(Amin + dvr(t) + c)/b, t2 < t ≤ tf ,

the speed constraint v ≤ vmax is active on the interval [t
∗

3, t
∗

4],
where t∗3 and t∗4 are the optimal switch times at which v∗

enters and exits the speed constrained arc. Let ∆∗

t = t∗4 −
t∗3, and let (x̃∗, ṽ∗, ũ∗) be the optimal solution to Problem

1 without the speed constraint and with the final position

xf −∆∗

t vmax and the final time tf −∆∗

t , then (x∗, v∗, u∗)
and (x̃∗, ṽ∗, ũ∗) are related by







x∗(t) = x̃∗(t)
v∗(t) = ṽ∗(t)
u∗(t) = ũ∗(t)

, t ∈ [0, t∗3], (21)







x∗(t) = x̃∗(t−∆∗

t ) + ∆∗

t vmax

v∗(t) = ṽ∗(t−∆∗

t )
u∗(t) = ũ∗(t−∆∗

t )
, t ∈ [t∗4, tf ]. (22)

Lemma 1: Let (x∗, v∗, u∗) be the optimal solution to
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Fig. 4. Optimal speed profile with speed constraint.

Problem 1. Suppose that the state constraint v − vmax ≤ 0
is activated along v∗. Let Γ ∈ [0, tf ] be the collection of t
such that v∗(t) = vmax, then Γ is connected.

Lemma 1 means that the optimal speed trajectory to

Problem 1 may contain at most one speed constrained arc,

which justifies the assumption used in Algorithm 2 that the

speed constrained arc is simply connected. Proof of Lemma

1 is omitted due to space limitation.

Algorithm 2 is essentially a bisection algorithm combined

with the Newton’s update to find the root of the equation

η(δ) = 0. The Newton’s update can help improve the

convergence rate when the current update is close to the

root of η(δ) = 0. It can be shown that η(δ) is continuous
and has a unique root on [0,∆w], hence the convergence of
Algorithm 2 is guaranteed by the bisection algorithm. The

proof for the convergence of Algorithm 2 is omitted due to

the page limit. Since Algorithm 1 is used in the inner loop

of Algorithm 2, the result of Algorithm 2 satisfies both

acceleration/deceleration constraints and speed constraints.

IV. SIMULATION RESULTS

Algorithm 1 and 2 are implemented in Matlab, and

executed on a computer with a dual core 2.4GHz CPU.

The numerical simulation covers 64 motor position control

tasks. In each task, the algorithms determine the structure of

the optimal solution, compute the optimal switching times,

and return an optimal trajectory. The shortest computation

time for a single task is 3.1ms, which corresponds to an

unconstrained case. The longest computation time is 33.7ms

for a task involving active acceleration and speed constraints.

The average computation time is 6.9ms. As a comparison,

a Nonlinear Programming based numerical optimal control

algorithm via direct transcription need 2.5 -4.8 s to solve a

single task with acceptable accuracy.

Figures 5 and 6 show the optimal speed and control of

four position control tasks with the same final position xf

but different final time tf = T0(1+α) for different α values,

where T0 is the minimum time for the positioning task from

0 to xf , and α is a parameter used for relaxing the final time.

The minimum time solution corresponds to the trajectories

with α = 0 in Figs. 5 and 6. When α = 0.05, the optimal
speed history contains five phases: acceleration constrained

arc, unconstrained arc, speed constrained arc, a second

unconstrained arc, and deceleration constrained arc. When

α increases, the maximum speed of the motor decreases,

as shown in Fig. 5, which helps with energy saving. When

α = 0.1, the optimal speed profile contain three phases

with active acceleration constraints. The trajectory become

unconstrained when α = 0.5. It is clear from these figures

that the acceleration and speed constraints are satisfied by

the algorithm’s solutions.

Figure. 7 illustrates the trade-off between energy consump-

tion and transition time for the same tasks in Fig. 5 and

Fig. 6, where α is the parameter for final time relaxation.

The energy consumption ratio is the ratio of the energy

consumption E(α) of the minimum energy trajectory by

Algorithm 2 to the energy costEt(α) of the trapezoidal speed
profile introduced in Ref. [4]. When α = 0, the trapezoidal
speed profile becomes the minimum-time solution. It is

obvious from Fig. 7 that considerable energy saving (up to

more than 40%) can be achieved by relaxing the transition

time and applying the minimum energy servo control.
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V. CONCLUSIONS

The proposed energy-optimal trajectory generation method

solves the acceleration and speed constrained energy-optimal

control problem for a servomotor system on the scale of a
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few milliseconds. The corresponding algorithm is guaranteed

to converge to the optimal solution. The proposed method is

suitable for real-time applications.
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Algorithm 2 The Main Algorithm for Computing Acceler-

ation and Speed Constrained Energy-Optimal Trajectory

1: i ⇐ 1, δi ⇐ 0, ηi ⇐ 1, and choose 0 < ε ≪ 1
2: while |ηi| > ε do
3: apply Algorithm 1 on interval [0, tf − δi] with bound-

ary conditions v(0) = 0, x(0) = 0, v(tf − δi) = 0,
x(tf − δi) = xf − vmaxδi. Denote the solution by

(xi, vi, ui).
4: solve v̇i(tsi) = 0 for tsi
5: ηi ⇐ v(tsi)− vmax

6: if i=1 then

7: if ηi ≤ 0 then
8: ηi ⇐ 0
9: else

10: δL ⇐ 0, δU ⇐ ∆w =
xf

vmax
+ vmax

2Amin
− vmax

2Amax

11: δi+1 ⇐ 1
2 (δL + δU )

12: end if

13: else

14: if ηi < 0 then
15: δU ⇐ δi
16: else

17: δL ⇐ δi
18: end if

19: δi+1 ⇐ δi −
(

ηi−ηi−1

δi−δi−1

)

−1

ηi
20: if δi+1 > δU or δi+1 < δL then
21: δi+1 = 1

2 (δL + δU )
22: end if

23: end if

24: i ⇐ i+ 1
25: end while

26: ts ⇐ tsi−1
, ∆∗

t ⇐ δi, (x̃
∗, ṽ∗, ũ∗) ⇐ (x, v, u)

27: return x∗, v∗, u∗, where

x∗(t) =







x̃∗(t), 0 ≤ t ≤ ts,
x̃∗(ts) + vmax(t− ts), ts < t ≤ ts +∆∗

t ,
x̃∗(t−∆∗

t ) + vmax∆
∗

t , ts +∆∗

t < t ≤ tf ,

v∗(t) =







ṽ∗(t), 0 ≤ t ≤ ts,
vmax, ts < t ≤ ts +∆∗

t ,
ṽ∗(t−∆∗

t ), ts +∆∗

t < t ≤ tf ,

u∗(t) =







ũ∗(t), 0 ≤ t ≤ ts,
(dvmax + c)/b, ts < t ≤ ts +∆∗

t ,
ũ∗(t−∆∗

t ), ts +∆∗

t < t ≤ tf .
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