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Abstract

The Compressive Sensing (CS) framework aims to ease the burden on analog-to-digital convert-
ers (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals.
Practical ADCs not only sample but also quantize each measurement to a finite number of bits;
moreover, there is an inverse relationship between the achievable sampling rate and the bit-depth.
In this paper, we investigate an alternative CS approach that shifts the emphasis from the sam-
pling rate to the number of bits per measurement. In particular, we explore the extreme case of
1-bit CS measurements, which capture just their sign. Our results come in two flavors. First, we
consider ideal reconstruction from noiseless 1-bit measurements and provide a lower bound on
the best achievable reconstruction error. We also demonstrate that i.i.d. random Gaussian matri-
ces provide measurement mappings that, with overwhelming probability, achieve nearly optimal
error decay. Next, we consider reconstruction robustness to measurement errors and noise and
introduce the Binary-Stable Embedding (BSE) property, which characterizes the robustness of
the measurement process to sign changes. We show that the same class of matrices that provide
almost optimal noiseless performance also enable such a robust mapping. On the practical side,
we introduce the Binary Iterative Hard Thresholding (BIHT) algorithm for signal reconstruction
from 1-bit measurements that offers state-of-the-art performance.
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Robust 1-Bit Compressive Sensing via

Binary Stable Embeddings of Sparse Vectors
Laurent Jacques∗, Jason N. Laska†§, Petros T. Boufounos‡, and Richard G. Baraniuk§

Abstract—The Compressive Sensing (CS) framework
aims to ease the burden on analog-to-digital converters
(ADCs) by reducing the sampling rate required to acquire
and stably recover sparse signals. Practical ADCs not only
sample but also quantize each measurement to a finite
number of bits; moreover, there is an inverse relationship
between the achievable sampling rate and the bit-depth. In
this paper, we investigate an alternative CS approach that
shifts the emphasis from the sampling rate to the number of
bits per measurement. In particular, we explore the extreme
case of 1-bit CS measurements, which capture just their
sign. Our results come in two flavors. First, we consider
ideal reconstruction from noiseless 1-bit measurements
and provide a lower bound on the best achievable recon-
struction error. We also demonstrate that i.i.d. random
Gaussian matrices provide measurement mappings that,
with overwhelming probability, achieve nearly optimal
error decay. Next, we consider reconstruction robustness to
measurement errors and noise and introduce the Binary ǫ-
Stable Embedding (BǫSE) property, which characterizes the
robustness of the measurement process to sign changes. We
show that the same class of matrices that provide almost
optimal noiseless performance also enable such a robust
mapping. On the practical side, we introduce the Binary
Iterative Hard Thresholding (BIHT) algorithm for signal
reconstruction from 1-bit measurements that offers state-
of-the-art performance.

I. INTRODUCTION

Recent advances in signal acquisition theory have led

to significant interest in alternative sampling methods.

Specifically, conventional sampling systems rely on the

Shannon sampling theorem that states that signals must

be sampled uniformly at the Nyquist rate, i.e., a rate

twice their bandwidth. However, the compressive sensing
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(CS) framework describes how to reconstruct a signal

x ∈ R
N from the linear measurements

y = Φx, (1)

where Φ ∈ R
M×N with M < N is an underdetermined

measurement system [1, 2]. It is possible to design a

physical sampling system Φ̄ such that y = Φx =
Φ̄(x(t)) where x is a vector of Nyquist-rate samples

of a bandlimited signal x(t), t ∈ R. In this case, (1)

translates to low, sub-Nyquist sampling rates, providing

the framework’s axial significance: CS enables the ac-

quisition and accurate reconstruction of signals that were

previously out of reach, limited by hardware sampling

rates [3] or number of sensors [4].

Although inversion of (1) seems ill-posed, it has been

demonstrated that K-sparse signals, i.e., x ∈ ΣK where

ΣK := {x ∈ R
N : ‖x‖0 := |supp(x)| ≤ K}, can be

reconstructed exactly [1, 2]. To do this, we could naı̈vely

solve for the sparsest signal that satisfies (1),

x∗ = argmin
u∈RN

‖u‖0 s.t. y = Φu; (RCS)

however, this non-convex program exhibits combinato-

rial complexity in the size of the problem [5]. Instead,

we solve Basis Pursuit (BP) by relaxing the objec-

tive in (RCS) to the ℓ1-norm; the result is a convex,

polynomial-time algorithm [6]. A key realization is that,

under certain conditions on Φ, the BP solution will be

equivalent to that of (RCS) [1]. This basic reconstruction

framework has been expanded to include numerous fast

algorithms as well as provably robust algorithms for

reconstruction from noisy measurements [7–11]. Recon-

struction can also be performed with iterative and greedy

methods [12–14].

Reconstruction guarantees for BP and other algorithms

are often demonstrated for Φ that are endowed with

the restricted isometry property (RIP), the sufficient

condition that the norm of the measurements is close

to the norm of the signal for all sparse x [7].1 This can

1The RIP is in fact not needed to demonstrate exact reconstruction
guarantees in noiseless settings, however it proves quite useful for
establishing robust reconstruction guarantees in noise.



be expressed, in general terms, as a δ-stable embedding.

Let δ ∈ (0, 1) and X ,S ⊂ R
N . We say the mapping Φ

is a δ-stable embedding of X ,S if

(1−δ)‖x−s‖22 ≤ ‖Φx−Φs‖22 ≤ (1+δ)‖x−s‖22, (2)

for all x ∈ X and s ∈ S . The RIP requires that (2)

hold for all x, s ∈ ΣK ; that is, it is a stable embedding

of sparse vectors. A key result in the CS literature is

that, if the coefficients of Φ are randomly drawn from

a sub-Gaussian distribution, then Φ will satisfy the RIP

with high probability as long as M ≥ CδK log(N/K),
for some constant Cδ [15]. Several hardware inspired

designs with only a few randomized components have

also been shown to satisfy this property [3, 17–19].

In practice, CS measurements must be quantized, i.e.,

each measurement is mapped from a real value (over a

potentially infinite range) to a discrete value over some

finite range. For example, in uniform quantization, a

measurement is mapped to one of 2B distinct values,

where B denotes the number of bits per measurement.

Quantization is an irreversible process that introduces

error in the measurements. One way to account for

quantization error is to treat it as bounded noise and

employ robust reconstruction algorithms. Alternatively,

we might try to reduce the error by choosing the most

efficient quantizer for the distribution of the measure-

ments. Several reconstruction techniques that specifically

address CS quantization have also been proposed [20–

24].

While quantization error is a minor inconvenience,

fine quantization invokes a more burdensome, yet often

overlooked source of adversity: in hardware systems, it

is the primary bottleneck limiting sample rates [25, 26].

In other words, the analog-to-digital converter (ADC)

is beholden to the quantizer. First, quantization signifi-

cantly limits the maximum speed of the ADC, forcing

an exponential decrease in sampling rate as the number

of bits is increased linearly [26]. Second, the quantizer is

the primary power consumer in an ADC. Thus, more bits

per measurement directly translates to slower sampling

rates and increased ADC costs. Third, fine quantization

is more susceptible to non-linear distortion in the ADC

electronics, requiring explicit treatment in the recon-

struction [27]. As we have seen, the CS framework

provides one mechanism to alleviate the quantization

bottleneck by reducing the ADC sampling rate. Is it

possible to extend the CS framework to mitigate this

problem directly in the quantization domain by reducing

the number of bits per measurement (bit-depth) instead?

In this paper we concretely answer this question in the

affirmative. We consider an extreme quantization; just

one bit per CS measurement, representing its sign. The

quantizer is thus reduced to a simple comparator that

tests for values above or below zero, enabling extremely

simple, efficient, and fast quantization. A 1-bit quantizer

is also more robust to a number of commonly encoun-

tered non-linear distortions in the input electronics, as

long as they preserve the signs of the measurements.

It is not obvious that the signs of the CS measurements

retain enough information for signal reconstruction; for

example, it is immediately clear that the scale (absolute

amplitude) of the signal is lost. Nonetheless, there is

strong empirical evidence that signal reconstruction is

possible [27–30]. In this paper we develop strong the-

oretical reconstruction and robustness guarantees for a

decoder able to enforce both sparsity and consistency of

the reconstructed vector, in the same spirit as classical

guarantees provided in CS by the RIP.

We briefly describe the 1-bit CS framework proposed

in [28]. Measurements of a signal x ∈ R
N are computed

via

ȳ = A(x) := sign (Φx), (3)

where the sign operator is applied component wise

on Φx, where signλ equals 1 if λ > 0 and −1
otherwise, for any λ ∈ R. Thus, the measurement

operator A(·) is a mapping from R
N to the Boolean

cube2 BM := {−1, 1}M . At best, we hope to recover

signals x ∈ Σ∗
K := {x ∈ SN−1 : ‖x‖0 ≤ K} where

SN−1 := {x ∈ R
N : ‖x‖2 = 1} is the unit hyper-

sphere of dimension N . We restrict our attention to

sparse signals on the unit sphere since, as previously

mentioned, the scale of the signal has been lost during

the quantization process. To reconstruct, we enforce con-

sistency on the signs of the estimate’s measurements, i.e.,

that A(x∗) = A(x). Specifically, we define a general

non-linear reconstruction decoder ∆1bit(ȳ,Φ,K) such

that, for x∗ = ∆1bit(ȳ,Φ,K), the solution x∗ is

(i) sparse, i.e., satisfies ‖x∗‖0 ≤ K = ‖x‖0,

(ii) consistent, i.e., satisfies A(x∗) = ȳ = A(x).

With (RCS) from CS as a guide, one candidate program

for reconstruction that respects these two conditions is

x∗ = argmin
u∈SN−1

‖u‖0 s.t. ȳ = sign (Φu). (R1BCS)

Although the parameter K is not explicit in (R1BCS), the

solution will be K ′-sparse with K ′ ≤ K because x is a

feasible point of the constraints.

2Generally, the M -dimensional Boolean cube is defined as {0, 1}M .
Without loss of generality, we use {−1, 1}M instead.
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Since (R1BCS) is computationally intractable, [28]

proposes a relaxation that replaces the objective with

the ℓ1-norm and enforces consistency via a linear convex

constraint. However, the resulting program remains non-

convex due to the unit-sphere requirement. Be that as it

may, several optimization algorithms have been devel-

oped for the relaxation, as well as a greedy algorithm

inspired by the same ideas [28–30]. While previous em-

pirical results from these algorithms provide motivation

for the validity of this 1-bit framework, there have been

few analytical guarantees to date.

The primary contribution of this paper is a rigorous

analysis of the 1-bit CS framework. Specifically, we

examine how the reconstruction error behaves as we

increase the number of measurement bits M given the

signal dimension N and sparsity K. We provide two

flavors of results. First, we determine a lower bound

on reconstruction performance from all possible map-

pings A with any reconstruction decoder, i.e., the best

achievable performance of this 1-bit CS framework. We

further demonstrate that if the elements of Φ are drawn

randomly from Gaussian distribution or its rows are

drawn uniformly from the unit sphere, then the worst-

case reconstruction error using ∆1bit will decay at a

rate almost optimal with the number of measurements,

up to a log factor in the oversampling rate M/K and

the signal dimension N . Second, we provide conditions

on A that enable us to characterize the reconstruction

performance even when some of the measurement signs

have changed (e.g., due to noise in the measurements).

In other words, we derive the conditions under which

robust reconstruction from 1-bit measurements can be

achieved. We do so by demonstrating that A is a stable

embedding of sparse signals, similar to the RIP. We

apply these stable embedding results to the cases where

we have noisy measurements and signals that are not

strictly sparse. Our guarantees demonstrate that the 1-bit

CS framework is on sound footing and provide a first

step toward analysis of the relaxed 1-bit techniques used

in practice.

To develop robust reconstruction guarantees, we pro-

pose a new tool, the binary ǫ-stable embedding (BǫSE),

to characterize 1-bit CS systems. The BǫSE implies

that the normalized angle between any sparse vectors

in SN−1 is close to the normalized Hamming distance

between their 1-bit measurements. We demonstrate that

the same class of random A as above exhibit this

property when M ≥ CǫK logN (where Cǫ is some

constant). Thus remarkably, there exist A such that the

BǫSE holds when both the number of measurements M
is smaller than the dimension of the signal N and the

measurement bit-depth is at minimum.

As a complement to our theoretical analysis, we in-

troduce a new 1-bit CS reconstruction algorithm, Binary

Iterative Hard Thresholding (BIHT). Via simulations, we

demonstrate that BIHT yields a significant improvement

in both reconstruction error as well as consistency, as

compared with previous algorithms. To gain intuition

about the behavior of BIHT, we explore the way that this

algorithm enforces consistency and compare and contrast

it with previous approaches. Perhaps more important

than the algorithm itself is the discovery that the BIHT

consistency formulation provides a significantly better

feasible solution in noiseless settings, as compared with

previous algorithms. Finally, we provide a brief explana-

tion regarding why this new formulation achieves better

solutions, and its connection with results in the machine

learning literature.

Since the first appearance of this work, Plan and Ver-

shynin have developed additional theoretical results and

bounds on the performance of 1-bit CS, as well as two

convex algorithms with theoretical guarantees [31–33].

The results in [31, 32] generalize the BǫSE guarantees

for more general classes of signals, including compress-

ible signals in addition to simply sparse ones. However,

the guarantees provided in that work exhibit worse decay

rates in the error performance and the tightness of the

BǫSE property. Furthermore, the results of [32, 33] are

intimately tied to reconstruction algorithms, in contrast

to our analysis. We point out similarities and differences

with our results when appropriate in the subsequent

development.

In addition to benchmarking the performance of BIHT,

our simulations demonstrate that many of the theoretical

predictions that arise from our analysis (such as the error

rate as a function of the number of measurements or the

error rate as a function of measurement Hamming dis-

tance), are actually exhibited in practice. This suggests

that our theoretical analysis is accurately explaining the

true behavior of the framework.

The remainder of this paper is organized as follows.

In Section II, we develop performance results for 1-bit

CS in the noiseless setting. Specifically we develop a

lower bound on reconstruction performance as well as

provide the guarantee that Gaussian matrices enable this

performance. In Section III we introduce the notion of a

BǫSE for the mapping A and demonstrate that Gaussian

matrices facilitate this property. We also expand recon-

struction guarantees for measurements with Gaussian

noise (prior to quantization) and non-sparse signals. To

make use of these results in practice, in Section IV we
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present the BIHT algorithm for practical 1-bit recon-

struction. In Section V we provide simulations of BIHT

to verify our claims. In Section VI we conclude with

a discussion about implications and future extensions.

To facilitate the flow of the paper and clear descriptions

of the results, most of our proofs are provided in the

appendices.

II. NOISELESS RECONSTRUCTION PERFORMANCE

A. Reconstruction performance lower bounds

In this section, we seek to provide guarantees on the

reconstruction error from 1-bit CS measurements. Before

analyzing this performance from a specific mapping

A with the consistent sparse reconstruction decoder

∆1bit(ȳ,Φ,K), it is instructive to determine the best

achievable performance from measurements acquired

using any mapping. Thus, in this section we seek a lower

bound on the reconstruction error.

We develop the lower bound on the reconstruction

error based on how well the quantizer exploits the

available measurement bits. A distinction we make in

this section is that of measurement bits, which is the

number of bits acquired by the measurement system,

versus information bits, which represent the true amount

of information carried in the measurement bits. Our

analysis follows similar ideas to that in [34, 35], adapted

to sign measurements.

We first examine how 1-bit quantization operates on

the measurements. Specifically, we consider the orthants

of the measurement space. An orthant in R
M is the set

of vectors such that all the vector’s coefficients have the

same sign pattern

Oz̄ := {z ∈ R
M | sign z = z̄}, (4)

where z̄ ∈ BM . Notice that ∪z̄∈BMOz̄ = R
M and

Oz̄ ∩Oz̄′ = ∅ if z̄ 6= z̄′. Therefore, any M -dimensional

space is partitioned to 2M orthants. Figure 1(a) shows the

8 orthants of R3 as an example. Since 1-bit quantization

only preserves the signs of the measurements, it encodes

in which measurement space orthant the measurements

lie. Thus, each available quantization point corresponds

to an orthant in the measurement space. Any unquantized

measurement vector Φx that lies in an orthant of the

measurement space will quantize to the corresponding

quantization point of that orthant and cannot be distin-

guished from any other measurement vector in the same

orthant. To obtain a lower bound on the reconstruction

error, we begin by bounding the number of quantization

points (or equivalently the number of orthants) that are

used to encode the signal.

(a)

(b)

Fig. 1: (a) The 8 orthants in R
3. (b) Intersection of orthants by a

2-dimensional subspace. At most 6 of the 8 available orthants are
intersected.

While there are generally 2M orthants in the measure-

ment space, the space formed by measuring all sparse

signals occupies a small subset of the available orthants.

We determine the number of available orthants that can

be intersected by the measurements in the following

lemma:

Lemma 1. Let x ∈ S :=
⋃L

i=1 Si belong to a union of

L subspaces Si ⊂ R
N of dimension K, and let M ≥ 2K

1-bit measurements ȳ be acquired via the mapping

A : RN → BM as defined in (3). Then the measurements

ȳ can effectively use at most 2KL
(
M
K

)
quantization

points, i.e., carry at most K log2(2Me/K) + log2(L)
information bits.

Proof: A K-dimensional subspace in an M -

dimensional space cannot lie in all the 2M available

octants. For example, as shown in Fig. 1(b), a 2-

dimensional subspace of a 3-dimensional space can inter-

sect at most 6 of the available octants. In Appendix A, we

demonstrate that one arbitrary K-dimensional subspace

4



in an M -dimensional space intersects at most 2K
(
M
K

)

orthants of the 2M available. Since Φ is a linear operator,

any K-dimensional subspace Si in the signal space R
N

is mapped through Φ to a subspace S ′
i = ΦSi ⊂ R

M

that is also at most K-dimensional and therefore follows

the same bound. Thus, if the signal of interest belongs

in a union S :=
⋃L

i=1 Si of L such K-dimensional

subspaces, then Φx ∈ S ′ :=
⋃L

i=1 S ′
i, and it follows that

at most 2KL
(
M
K

)
orthants are intersected. This means

that at most 2KL
(
M
K

)
≤ L( 2eMK )K effective quantization

points can be used, i.e., at most K log2(2eM/K) +
log2(L) information bits can be obtained.

Since K-sparse signals in any basis Ψ ∈ R
N×N

belong to a union of at most
(
N
K

)
subspaces in R

N with(
N
K

)
≤ (eN/K)K , using Lemma 1 we can obtain the

following corollary.3

Corollary 1. Let x = Ψα ∈ R
N be K-sparse in a

certain basis Ψ ∈ R
N×N , i.e., α ∈ ΣK . Then the

measurements ȳ = A(x) can effectively use at most

2K
(
N
K

)(
M
K

)
1-bit quantization points, i.e, carry at most

2K log2(
√
2 e

√
NM/K) information bits.

The set of signals of interest to be encoded is the set of

unit-norm K-sparse signals Σ∗
K . Since unit-norm signals

of a K-dimensional subspace form a K-dimensional unit

sphere in that subspace, Σ∗
K is a union of

(
N
K

)
such

unit spheres. Then, at most Q := 2K
(
N
K

)(
M
K

)
available

quantization points partition Σ∗
K into at most Q smaller

sets, each of which contains all the signals that quantize

to the same point.

To develop the lower bound on the reconstruction

error we examine how Σ∗
K can be optimally partitioned

with respect to the worst-case error, given the number

of quantization points used. The measurement and re-

construction process maps each signal in Σ∗
K to a finite

set of quantized signals Q ⊂ Σ∗
K , |Q| = Q. At best this

map ensures that the worst case reconstruction error is

minimized, i.e.,

ǫopt = max
x∈Σ∗

K

min
q∈Q

‖x− q‖2, (5)

where ǫopt denotes the worst-case quantization error and

q each of the available quantization points. The optimal

lower bound is achieved by designing Q to minimize (5)

without considering whether the measurement and re-

construction process actually achieve this design. Thus,

designing the set Q becomes a set covering problem.

Appendix B makes this intuition precise and proves the

following statement.

3This corollary is easily adaptable to a redundant frame Ψ ∈ R
N×D

with D ≥ N .

Theorem 1. Let the mapping A : RN → BM and let

x ∈ Σ∗
K . Then any reconstruction decoder estimating x

from ȳ = A(x) has error defined by (5) of at least

ǫopt ≥
K

2eM +
√
2K3/2

→
M

Ω

Å

K

M

ã

.

Thus, when M is high compared to K3/2, the worst-

case error cannot decay at a rate faster than Ω(1/M) as

a function of the number measurements, no matter what

reconstruction algorithm is used.

This result assumes noiseless acquisition and provides

no guarantees of robustness and noise resiliency. This

is in line with existing results on scalar quantization

in oversampled representations and CS that state that

the distortion due to scalar quantization of noiseless

measurements cannot decrease faster than the inverse of

the measurement rate [34–38]. Notice the absence of the

ambient space dimension N in the lower bound of ǫopt.
It is not clear whether that absence is an artifact of the

proof or can be improved with a tighter bound.

To improve the rate vs. distortion trade-off, alternative

quantization methods must be used, such as Sigma-Delta

(Σ∆) quantization [39–45] or non-monotonic scalar

quantization [46]. Specifically, Σ∆ approaches to CS

can achieve error decay rate of O((K/M)p−1/2), where

p is the order of the quantizer [45]. However, Σ∆
quantization requires feedback during the quantization

process, which is not necessary in scalar quantization.

Furthermore, the result in [45] only holds for multibit

quantizers, not 1-bit ones. While efficient 1-bit Σ∆ quan-

tization has been shown for classical sampling [40, 47],

to the best of our knowledge, similar results are not

currently known for 1-bit Σ∆ in CS applications. Alter-

natively, non-monotonic scalar quantization can achieve

error decay exponential in the number of measurements

M , even in CS applications [46]. However, such a

scheme requires a significantly more complex scalar

quantizer and reconstruction approach [48].

Theorem 1 bounds the best possible performance of

any decoder over all possible mappings A applied to

vectors in Σ∗
K , and so it bounds the one of a ∆1bit

decoder. However, not all mappings A will behave as the

lower bound suggests. In the next section we identify two

classes of matrices such that the mapping A admits an

upper bound on the reconstruction error from a general

decoder ∆1bit that decays almost optimally.

B. Achievable performance via random projections

In this section we describe a class of matrices Φ
such that the consistent sparse reconstruction decoder
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∆1bit(ȳ,Φ,K) can indeed achieve error decay rates of

optimal order, described by Theorem 1, with the number

of measurements growing linearly in the sparsity K
and logarithmically in the dimension N , as is required

in conventional CS. We first focus our analysis on

Gaussian matrices, i.e., Φ such that each element φi,j

is randomly drawn i.i.d. from the standard Gaussian

distribution, N (0, 1). In the rest of the paper, we use the

short notation Φ ∼ NM×N (0, 1) to characterize such

matrices, and we write ϕ ∼ NN×1(0, 1) to describe

the equivalent random vectors in R
N (e.g., the rows of

Φ). For these matrices Φ, we prove the following in

Appendix C.

Theorem 2. Let Φ be matrix generated as Φ ∼
NM×N (0, 1), and let the mapping A : RN → BM be

defined as in (3). Fix 0 ≤ η ≤ 1 and ǫo > 0. If the

number of measurements is

M ≥ 2
ǫo

(
2K log(N) + 4K log( 17ǫo ) + log 1

η

)
, (6)

then for all x, s ∈ Σ∗
K we have that

‖x− s‖2 > ǫo ⇒ A(x) 6= A(s), (7)

or equivalently

A(x) = A(s) ⇒ ‖x− s‖2 ≤ ǫo,

with probability higher than 1− η.

Theorem 2 is a uniform reconstruction result, meaning

that with high probability all vectors x, s ∈ Σ∗
K can be

reconstructed as opposed to a non-uniform result where

each vector could be reconstructed with high probability.

As derived in Appendix G, Theorem 2 demonstrates

that if we use Gaussian matrices in the mapping A,

then, given a fixed probability level η, the reconstruction

decoder ∆1bit(ȳ,Φ,K) will recover signals with error

order

ǫo = O
(
K
M log MN

K

)
,

which decays almost optimally compared to the lower

bound given in Theorem 1 up to a log factor in MN/K.

Whether the gap can be closed, with tighter lower or

upper bounds is still an open question. Notice that the

hidden proportionality factor in this last relation depends

linearly on log 1/η which is assumed fixed.

We should also note a few minor extensions of The-

orem 2. We can multiply the rows of Φ with a positive

scalar without changing the signs of the measurements.

By normalizing the rows of the Gaussian matrix we

obtain another class of matrices, ones with rows drawn

uniformly from the unit ℓ2 sphere in R
N . It is thus

straightforward to extend the Theorem to matrices with

such rows as well. Furthermore, these projections are

rotation invariant (often referred to as “universal” in CS

systems), meaning that the theorem remains valid for

sparse signals in any basis Ψ, i.e., for x, s belonging

to Σ∗
Ψ,K := {u = Ψα ∈ R

N : α ∈ Σ∗
K}. This

is true since for any orthonormal basis Ψ ∈ R
N×N ,

Φ′ = ΦΨ ∼ NM×N (0, 1) when Φ ∼ NM×N (0, 1).

C. Related Work

A similar result to Theorem 2 has been recently shown

for sign measurements of non-sparse signals in the

context of quantization using frame permutations [49].

Specifically, it has been shown that reconstruction from

sign measurements of signals can be achieved (almost

surely) with an error rate decay arbitrarily close to

O(1/M). Our main contribution here is demonstrating

that this result is true uniformly for all K-sparse vectors

in R
N , given a sparse and consistent decoder. Our

results, in addition to introducing the almost linear de-

pendence on K, also show that proving this error bound

uniformly for all K-sparse signals involves a logarithmic

penalty in (MN)/K. This does not seem to be necessary

from the lower bound in the previous section. We will see

in Section V that for Gaussian matrices, the optimal error

behavior is empirically exhibited on average. Finally, we

note that for a constant ǫ0, the number of measurements

required to guarantee (7) is M = O(K logN), nearly

the same as order in conventional CS.

Furthermore, since the first appearance of our work, a

bound on the achievable reconstruction error for com-

pressible signals and for signals in arbitrary subsets

of R
N appeared in [31, 32]. Specifically for com-

pressible signals, that works leads to error decay ǫ =
O((K

M log N
K )1/4), which decreases more slowly (with

K/M ) than both our bound and the one provided in [49].

However, the results in [31, 32] are for more general

classes of signals. These works propose also convex

optimization algorithms with provable reconstruction

guarantees.

We can also view the binary measurements as a hash

or a sketch of the signal. With this interpretation of

the result we guarantee with high probability that no

sparse vectors with Euclidean distance greater than ǫo
will “hash” to the same binary measurements. In fact,

similar results play a key role in locality sensitive hash-

ing (LSH), a technique that aims to efficiently perform

approximate nearest neighbors searches from quantized

projections [50–53]. Most LSH results examine the

performance on point-clouds of a discrete number of

signals instead of the infinite subspaces that we explore

6



in this paper. Furthermore, the primary goal of the LSH

is to preserve the structure of the nearest neighbors

with high probability. Instead, in this paper we are

concerned with the ability to reconstruct the signal from

the hash, as well as the robustness of this reconstruction

to measurement noise and signal model mismatch. To

enable these properties, we require a property of the

mapping A that preserves the structure (geometry) of

the entire signal set. Thus, in the next section we seek

an embedding property of A that preserves geometry

for the set of sparse signals and thus ensures robust

reconstruction.

III. ACQUISITION AND RECONSTRUCTION

ROBUSTNESS

A. Binary ǫ-stable embeddings

In this section we establish an embedding property

for the 1-bit CS mapping A that ensures that the sparse

signal geometry is preserved in the measurements, anal-

ogous to the RIP for real-valued measurements. This

robustness property enables us to upper bound the re-

construction performance even when some measurement

signs have been changed due to noise. Conventional

CS achieves robustness via the δ-stable embeddings of

sparse vectors (2) discussed in Section I. This embed-

ding is a restricted quasi-isometry between the metric

spaces (RN , dX) and (RM , dY ), where the distance

metrics dX and dY are the ℓ2-norm in dimensions N
and M , respectively, and the domain is restricted to

sparse signals.4 We seek a similar definition for our

embedding; however, now the signals and measurements

lie in the different spaces SN−1 and BM , respectively.

Thus, we first consider appropriate distance metrics in

these spaces.

The Hamming distance is the natural distance for

counting the number of unequal bits between two mea-

surement vectors. Specifically, for ā, b̄ ∈ BM we define

the normalized Hamming distance as

dH(ā, b̄) = 1
M

M∑

i=1

āi ⊕ b̄i,

where ā ⊕ b̄ is the XOR operation between ā, b̄ ∈ B
such that ā ⊕ b̄ equals 0 if ā = b̄ and 1 otherwise. The

distance is normalized such that dH ∈ [0, 1]. In the signal

4A function A : X → Y is called a quasi-isometry between metric
spaces (X, dX) and (Y, dY ) if there exists C > 0 and D ≥ 0 such

that 1

C
dX(x, s) − D ≤ dY (A(x), A(s)) ≤ CdX(x, s) + D for

x, s ∈ X , and E > 0 such that dY (y,A(x)) < E for all y ∈ Y
[54]. Since D = 0 for δ-stable embeddings, they are also called bi-
Lipschitz mappings.

space we only consider unit-norm vectors, thus, a natural

distance is the angle formed by any two of these vectors.

Specifically, for x, s ∈ SN−1, we consider

dS(x, s) :=
1
π arccos〈x, s〉.

As with the Hamming distance, we normalize the true

angle arccos〈x, s〉 such that dS ∈ [0, 1]. Note that since

both vectors have the same norm, the inner product

〈x, s〉 can easily be mapped to the ℓ2-distance using the

polarization identity.

Using these distance metrics we define the binary

stable embedding.

Definition 1 (Binary ǫ-Stable Embedding). Let ǫ ∈
(0, 1). A mapping A : RN → BM is a binary ǫ-stable

embedding (BǫSE) of order K for sparse vectors if

dS(x, s)− ǫ ≤ dH(A(x), A(s)) ≤ dS(x, s) + ǫ

for all x, s ∈ SN−1 with | supp (x) ∪ supp (s) | ≤ K.

Our definition describes a specific quasi-isometry be-

tween the two metric spaces (SN−1, dS) and (BM , dH),
restricted to sparse vectors. While this mirrors the form

of the δ-stable embedding for sparse vectors, one impor-

tant difference is that the sensitivity term ǫ is additive,

rather than multiplicative, and thus the BǫSE is not bi-

Lipschitz. This is a necessary side-effect of the loss of

information due to quantization.

Any BǫSE A(·) of order 2K enables robustness guar-

antees on any reconstruction algorithm extracting a unit

sparse signal estimate x∗ of x ∈ Σ∗
K . In this case, the

angular error is immediately bounded by

dS(x,x
∗) ≤ dH

(
A(x), A(x∗)

)
+ ǫ.

Thus, if an algorithm returns a unit norm sparse

solution with measurements that are not consistent (i.e.,

dH(A(x), A(x∗)) > 0), as is the case with several

algorithms [28–30], then the worst-case angular recon-

struction error is close to Hamming distance between

the estimate’s measurements’ signs and the original

measurements’ signs. Section V verifies this behavior

with simulation results. Furthermore, in Section III-C we

use the BǫSE property to guarantee that if measurements

are corrupted by noise or if signals are not exactly sparse,

then the reconstruction error is bounded.

Note that, in the best case, for a BǫSE A(·), the an-

gular error of any sparse and consistent ∆1bit(ȳ,Φ,K)
decoder is bounded by ǫ since then dH

(
A(x), A(x∗)

)
=

0. As we have seen earlier this is to be expected

because, unlike conventional noiseless CS, quantization

fundamentally introduces uncertainty and exact recovery

7



cannot be guaranteed. This is an obvious consequence of

the mapping of the infinite set Σ∗
K to a discrete set of

quantized values.

We next identify a class of matrices Φ for which A is

a BǫSE.

B. Binary ǫ-stable embeddings via random projections

As is the case for conventional CS systems with

RIP, designing a Φ for 1-bit CS such that A has the

BǫSE property is possibly a computationally intractable

task (and no such algorithm is yet known). Fortunately,

an overwhelming number of “good” matrices do exist.

Specifically we again focus our analysis on Gaussian

matrices Φ ∼ NM×N (0, 1) as in as in Section II-B.

As motivation that this choice of Φ will indeed enable

robustness, we begin with a classical concentration of

measure result for binary measurements from a Gaussian

matrix.

Lemma 2. Let x, s ∈ SN−1 be a pair of arbitrary fixed

vectors, draw Φ according to Φ ∼ NM×N (0, 1), and let

the mapping A : RN → BM be defined as in (3). Fix

ǫ > 0. Then we have

P
( ∣∣ dH

(
A(x), A(s)

)
− dS(x, s)

∣∣ ≤ ǫ
)

≥ 1− 2 e−2ǫ2M , (8)

where the probability is with respect to the generation

of Φ.

Proof: This lemma is a simple consequence of

Lemma 3.2 in [55] which shows that, for one mea-

surement, P[Aj(x) 6= Aj(s)] = dS(x, s). The result

then follows by applying Hoeffding’s inequality to the

binomial random variable MdH
(
A(x), A(s)

)
with M

trials.

In words, Lemma 2 implies that the Hamming distance

between two binary measurement vectors A(x), A(s)
tends to the angle between the signals x and s as the

number of measurements M increases. In [55] this fact

is used in the context of randomized rounding for max-

cut problems; however, this property has also been used

in similar contexts as ours with regards to preservation

of inner products from binary measurements [56, 57].

The expression (8) indeed looks similar to the defi-

nition of the BǫSE, however, it only holds for a fixed

pair of arbitrary (not necessarily sparse) signals, chosen

prior to drawing Φ. Our goal is to extend (8) to cover

the entire set of sparse signals. Indeed, concentration

results similar to Lemma 2, although expressed in terms

of norms, have been used to demonstrate the RIP [15].

These techniques usually demonstrate that the cardinality

of the space of all sparse signals is sufficiently small,

such that the concentration result can be applied to

demonstrate that distances are preserved with relatively

few measurements.

Unfortunately, due to the non-linearity of A we cannot

immediately apply Lemma 2 using the same procedure

as in [15]. To briefly summarize, [15] proceeds by cov-

ering the set of all K-sparse signals ΣK with a finite set

of points (with covering radius δ > 0). A concentration

inequality is then applied to this set of points. Since any

sparse signal lies in a δ-neighborhood of at least one such

point, the concentration property can be extended from

the finite set to ΣK by bounding the distance between the

measurements of the points within the δ-neighborhood.

Such an approach cannot be used to extend (8) to ΣK ,

because the severe discontinuity of our mapping does

not permit us to characterize the measurements A(x+s)
using A(x) and A(s) and obtain a bound on the distance

between measurements of signals in a δ-neighborhood.

To resolve this issue, we extend Lemma 2 to include

all points within Euclidean balls around the vectors x

and s inside the (sub) sphere Σ∗(T ) := {u ∈ SN−1 :
suppu ⊂ T} for some fixed support set T ⊂ [N ] :=
{1, · · · , N} of size |T | = D. Define the δ-ball Bδ(x) :=
{a ∈ SN−1 : ‖x−a‖2 < δ} to be the ball of Euclidean

distance δ around x, and let B∗
δ (x) := Bδ(x) ∩Σ∗(T ).

Lemma 3. Given T ⊂ [N ] of size |T | = D, let Φ be

a matrix generated as Φ ∼ NM×N (0, 1), and let the

mapping A : RN → BM be defined as in (3). Fix ǫ > 0
and 0 ≤ δ ≤ 1. For any x, s ∈ Σ∗(T ), we have

P

Å

∀u ∈ B∗
δ (x), ∀v ∈ B∗

δ (s),
∣∣ dH

(
A(u), A(v)

)
− dS(x, s)

∣∣ ≤ ǫ+
»

π
2D δ

ã

≥ 1− 2 e−2ǫ2M .

The proof of this result is given in Appendix D. It should

be noted that the proof does not depend on the radial

behavior of the Gaussian pdf in R
N . In other words, this

result is easily generalizable to matrices Φ whose rows

are independent random vectors drawn from an isotropic

pdf .

In words, if the width δ is sufficiently small, then

the Hamming distance between the 1-bit measurements

A(u), A(v) of any points u, v within the balls B∗
δ (x),

B∗
δ (s), respectively, will be close to the angle between

the centers of the balls.

Lemma 3 is key for providing a similar argument to

that in [15]. We now simply need to count the number
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of pairs of K-sparse signals that are euclidean distance

δ apart. The Lemma can then be invoked to demon-

strate that the angles between all of these pairs will be

approximately preserved by our mapping.5 Thus, with

Lemma 3 under our belt, we demonstrate in Appendix E

the following result.

Theorem 3. Let Φ be a matrix generated as Φ ∼
NM×N (0, 1) and let the mapping A : RN → BM be

defined as in (3). Fix 0 ≤ η ≤ 1 and ǫ > 0. If the

number of measurements is

M ≥ 2
ǫ2

(
K log(N) + 2K log( 35ǫ ) + log( 2η )

)
, (9)

then with probability exceeding 1− η, the mapping A is

a BǫSE of order K for sparse vectors.

As with Lemma 3, the theorem extends easily to

matrices Φ with independent rows in R
N drawn from

an isotropic pdf in this space.

By choosing Φ ∼ NM×N (0, 1) with M =
O(K logN), with high probability we ensure that the

mapping A is a BǫSE. Additionally, using (9) with a

fixed η and the development in Appendix G, we find

that the error decreases as

ǫ = O
(»

K
M log MN

K

)
.

Unfortunately, this decay rate is slower, roughly by

a factor of
√
K/M , than the lower bound in Sec-

tion II-A. This error rate results from an application

of the Chernoff-Hoeffding inequality in the proof of

Theorem 3. An open question is whether it is possible to

obtain a tighter bound (with optimal error rate) for this

robustness property.

As with Theorem 2, Gaussian matrices provide a uni-

versal mapping, i.e., the result remains valid for sparse

signals in a basis Ψ ∈ R
N×N . Moreover, Theorem 3 can

also be extended to rows of Φ that are drawn uniformly

on the sphere, since the rows of Φ in Theorem 3 can be

normalized without affecting the outcome of the proof.

Note that normalizing the Gaussian rows of Φ is as if

they had been drawn from a uniform distribution of unit-

norm signals.

We have now established a random construction pro-

viding robust BǫSEs with high probability: 1-bit quan-

tized Gaussian projections. We now make use of this

robustness by considering an example where the mea-

surements are corrupted by Gaussian noise.

5 We note that the covering argument in the proof of Theorem 2 also
employs δ-balls in similar fashion but only considers the probability
that dH = 0, rather than the concentration inequality.

C. Noisy measurements and compressible signals

In practice, hardware systems may be inaccurate when

taking measurements; this is often modeled by additive

noise. The mapping A is robust to noise in an unusual

way. After quantization, the measurements can only take

the values −1 or 1. Thus, we can analyze the recon-

struction performance from corrupted measurements by

considering how many measurements flip their signs. For

example, we analyze the specific case of Gaussian noise

on the measurements prior to quantization, i.e.,

An(x) := sign (Φx+ n), (10)

where n ∈ R
M has i.i.d. elements ni ∼ N (0, σ2). In

this case, we demonstrate, via the following lemma, a

bound on the Hamming distance between the corrupted

and ideal measurements with the BǫSE from Theorem 3

(see Appendix F).

Lemma 4. Let Φ be a matrix generated as Φ ∼
NM×N (0, 1), let the mapping A : RN → BM be defined

as in (3), and let An : RN → BM be defined as in (10).

Let n ∈ R
M be a Gaussian random vector with i.i.d.

components ni ∼ N (0, σ2). Fix γ > 0. Then, given

x ∈ R
N , we have

E
(
dH

(
An(x), A(x)

) )
≤ e(σ, ‖x‖2),

P
(
dH

(
An(x), A(x)

)
> e(σ, ‖x‖2) + γ

)
≤ e−2Mγ2

,

where e(σ, ‖x‖2) := 1
2

σ√
‖x‖2

2
+σ2

≤ 1
2

σ
‖x‖2

.

If x∗
n is the estimate from a sparse consistent re-

construction decoder ∆1bit(An(x),Φ,K) from the mea-

surements An(x) with Φ ∼ NM×N (0, 1) and if M
satisfies (9), then it immediately follows from Lemma 4

and Theorem 3 that

dS(x
∗
n,x) ≤ dH

(
An(x), A(x)

)
+ ǫ

≤ 1
2

σ
‖x‖2

+ γ + ǫ, (11)

with a probability higher than 1 − e−2Mγ2 − η. Given

alternative noise distributions, e.g., Poisson noise, a

similar analysis can be carried out to determine the likely

number of sign flips and thus provide a bound on the

error due to noise.

Another practical consideration is that real signals are

not always strictly K-sparse. Indeed, it may be the case

that signals are compressible; i.e., they can be closely

approximated by a K-sparse signal. In this case, we can

reuse the non-uniform result of Lemma 2 to see that,

given x ∈ R
N and for Φ ∼ NM×N (0, 1),

P
(
dH

(
A(x), A(xK)

)
> dS(x,xK) + γ

)
≤ e−2Mγ2

.
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In similar fashion to (11), if M satisfies (9), this

result and Theorem 3 imply that, given x ∈ SN−1

(not necessarily sparse) and for Φ ∼ NM×N (0, 1) the

angular reconstruction error of x∗ = ∆1bit(A(x),Φ,K)
is such that dS(x

∗,xK) ≤ dH(A(x∗), A(xK)) + ǫ =
dH(A(x), A(xK)) + ǫ ≤ dS(x,xK) + γ + ǫ, with

probability higher than 1−e−2Mγ2 −η. Therefore, from

the triangular inequality on dS , this provides the bound

dS(x
∗,x) ≤ 2 dS(x,xK) + γ + ǫ,

with the same probability. Much like conventional CS re-

sults, the reconstruction error depends on the magnitude

of the best K-term approximation error of the signal,

here expressed angularly by dS(x,xK).

This reconstruction error bound is non-uniform with

respect to the selection of x ∈ R
N . A uniform bound

on the BǫSE for more general classes of signals is

developed in [31, 32], albeit with a worse error decay—

ǫ = O((K
M log N

K )1/4) for compressible signals.

Thus far we have demonstrated a lower bound on

the reconstruction error from 1-bit measurements (The-

orem 2) and introduced a condition on the mapping

A that enables stable reconstruction in noiseless, noisy,

and compressible settings (Definition 1). We have fur-

thermore demonstrated that a large class of random

matrices—specifically matrices with coefficients drawn

from a Gaussian distribution and matrices with rows

drawn uniformly from the unit sphere—provide good

mappings (Theorem 3).

Using these results we can characterize the error

performance of any algorithm that reconstructs a K-

sparse signal. If the reconstructed signal quantizes to

the same quantization point as the original data, then

the error is characterized by Theorem 2. If the algorithm

terminates unable to reconstruct a signal consistent with

the quantized data, then Theorem 3 describes how far

the solution is from the original signal. Since (R1BCS) is

a combinatorially complex problem, in the next section

we describe a new greedy reconstruction algorithm that

attempts to find a solution as consistent with the mea-

surements as possible, while guaranteeing this solution

is K-sparse.

IV. BIHT: A SIMPLE FIRST-ORDER

RECONSTRUCTION ALGORITHM

A. Problem formulation and algorithm definition

We now introduce a simple algorithm for the recon-

struction of sparse signals from 1-bit compressive mea-

surements. Our algorithm, Binary Iterative Hard Thresh-

olding (BIHT), is a simple modification of IHT, the real-

valued algorithm from which is takes its name [14].

Demonstrating theoretical convergence guarantees for

BIHT is a subject of future work (and thus not shown in

this paper), however the algorithm is of significant value

since it i) has a simple and intuitive formulation and

ii) outperforms previous algorithms empirically, demon-

strated in Section V. We further note that the IHT algo-

rithm has recently been extended to handle measurement

non-linearities [58]; however, these results do not apply

to quantized measurements since quantization does not

satisfy the requirements in [58].

We briefly recall that the IHT algorithm consists of

two steps that can be interpreted as follows. The first

step can be thought of as a gradient descent to reduce the

least squares objective ‖y−Φx‖22/2. Thus, at iteration l,
IHT proceeds by setting al+1 = xl +ΦT (y−Φx). The

second step imposes a sparse signal model by projecting

al+1 onto the “ℓ0 ball”, i.e., selecting the K largest in

magnitude elements. Thus, IHT for CS can be thought

of as trying to solve the problem

argmin
u

1
2‖y − Φu‖22 s.t. ‖u‖0 = K. (12)

The BIHT algorithm simply modifies the first step

of IHT to instead minimize a consistency-enforcing

objective. Specifically, given an initial estimate x0 = 0

and 1-bit measurements ȳ, at iteration l BIHT computes

al+1 = xl + τ
2Φ

T
(
ȳ −A(xl)

)
, (13)

xl+1 = ηK(al+1), (14)

where A is defined as in (3), τ is a scalar that con-

trols gradient descent step-size, and the function ηK(v)
computes the best K-term approximation of v by thresh-

olding. Once the algorithm has terminated (either con-

sistency is achieved or a maximum number of iterations

have been reached), we then normalize the final estimate

to project it onto the unit sphere. Section IV-B discusses

several variations of this algorithm, each with different

properties.

The key to understanding BIHT lies in the formulation

of the objective. The following Lemma shows that the

term ΦT
(
ȳ − A(xl)

)
in (13) is in fact the negative

subgradient of a convex objective J . Let [·]− denote the

negative function, i.e., ([u]−)i = [ui]− with [ui]− = ui

if ui < 0 and 0 else, and u ⊙ v denote the Hadamard

product, i.e., (u⊙ v)i = uivi for two vectors u and v.

Lemma 5. The quantity 1
2 Φ

T
(
A(x) − ȳ

)
in (13) is a

subgradient of the convex one-sided ℓ1-norm

J (x) = ‖[ȳ ⊙ (Φx)]−‖1,
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Thus, BIHT aims to decrease J at each step (13).

Proof: We first note that J is convex. We can write

J (x) =
∑

i Ji(x) with each convex function Ji given

by

Ji(x; ȳ,Φ) =

®

|〈ϕi,x〉|, if Ai(x) ȳi < 0,

0, else,

where ϕi denotes a row of Φ and Ai(x) = sign 〈ϕi,x〉.
Moreover, if 〈ϕi,x〉 6= 0, then the gradient of Ji is

∇Ji(x; ȳ,Φ) =
1
2 (Ai(x)− ȳi)ϕi

=

®

Ai(x)ϕi if ȳi Ai(x) < 0,

0, else,

while if 〈ϕi,x〉 = 0, then the gradient is replaced by

the subdifferential set

∇Ji(x; ȳ,Φ) =
{

ξ
2 (Ai(x)− ȳi)ϕi : ξ ∈ [0, 1]

}

∋ 1
2 (Ai(x)− ȳi)ϕi.

Thus, by summing over i we conclude that 1
2 Φ

T
(
A(x)−

ȳ
)
∈ ∇J(x; ȳ,Φ).

Consequently, the BIHT algorithm can be thought of

as trying to solve the problem:

x∗ = argmin
u

‖[ȳ⊙(Φu)]−‖1 s.t. ‖u‖0 = K, ‖u‖2 = 1.

Observe that since ȳ ⊙ (Φx) simply scales the ele-

ments of Φx by the signs ȳ, minimizing the one-sided

ℓ1 objective enforces a positivity requirement,

ȳ ⊙ (Φx) ≥ 0, (15)

that, when satisfied, implies consistency.

Previously proposed 1-bit CS algorithms have used

a one-sided ℓ2-norm to impose consistency [27–30].

Specifically, they have applied a constraint or objective

that takes the form ‖[ȳ ⊙ (Φx)]−‖22/2. Both the one-

sided ℓ1 and ℓ2 functions imply a consistent solution

when they evaluate to zero, and thus, both approaches are

capable of enforcing consistency. However, the choice of

the ℓ1 vs. ℓ2 penalty term makes a significant difference

in performance depending on the noise conditions. We

explore this difference in the experiments in Section V.

B. BIHT shifts

Several modifications can be made to the BIHT al-

gorithm that may improve certain performance aspects,

such as consistency, reconstruction error, or convergence

speed. While a comprehensive comparison is beyond

the scope of this paper, we believe that such variations

exhibit interesting and useful properties that should be

mentioned.

Projection onto sphere at each iteration. We can

enforce that every intermediate solution have unit ℓ2
norm. To do this, we modify the “impose signal model”

step (14) by normalizing after choosing the best K-term

approximation, i.e., we replace the update of xl+1 in (14)

by xl+1 = U(ηK(al+1)), where U(v) = v/‖v‖2. While

this step is found in previous algorithms such as [28–

30], empirical observations suggest that it not required

for BIHT to converge to an appropriate solution.

If we choose to impose the projection, Φ must be

appropriately normalized or, equivalently, the step size

of the gradient descent must be carefully chosen. Oth-

erwise, the algorithm will not converge. Empirically, we

have found that for a Gaussian matrix, an appropriate

scaling is 1/(
√
M‖Φ‖2), where the 1/‖Φ‖2 controls the

amplification of the estimate from ΦT in the gradient

descent step (13) and the 1/
√
M ensures that ‖ȳ −

A(xl)‖2 ≤ 2. Similar gradient step scaling requirements

have been imposed in the conventional IHT algorithm

and other sparse recovery algorithms as well (e.g., [9]).

Minimizing hinge loss. The one-sided ℓ1-norm is

related to the hinge-loss function in the machine learn-

ing literature, which is known for its robustness to

outliers [59]. Binary classification algorithms seek to

enforce the same consistency function as in (15) by

minimizing a function
∑

i[κ − ȳi(Φx)i]+ = ‖[κ1 −
ȳ⊙(Φx)]+‖1, where [·]+ sets negative elements to zero.

When κ > 0, the objective is both convex and has a non-

trivial solution. Further connections and interpretations

are discussed in Section V. Thus, rather than minimizing

the one-sided ℓ1 norm, we can instead minimize the

hinge-loss. The hinge-loss can be interpreted as ensuring

that the minimum value that an unquantized measure-

ment (Φx)i can take is bounded away form zero, i.e.,

|(Φx)i| ≥ κ. This requirement is similar to the sphere

constraint in that it avoids a trivial solution; however,

will perform differently than the sphere constraint. In

this case, in the gradient descent step (13), we instead

compute

al+1 = xl − τΘT (sign(Θxl − κ)− 1)/2

where Θ = (ȳ⊙Φ) scales the rows of Φ by the signs of

ȳ. Again, the step size must be chosen appropriately, this

time as Cκ/‖Φ‖2, where Cκ is a parameter that depends

on κ.

General one-sided objectives. In general, any func-

tion R(x) =
∑Ri(xi), where Ri is continuous and has

a negative gradient for xi ≤ 0 and is 0 for xi > 0, can be

used to enforce consistency. To employ such functions,

11



we simply compute the gradient of R and apply it in

(13). As an example, the previously mentioned one-sided

ℓ2-norm has been used to enforce consistency in several

algorithms. We can use it in BIHT by computing

al = xl + τΦT [ȳ ⊙ Φxl]+

in (13). We compare and contrast the behavior of the

one-sided ℓ1 and ℓ2 norms in Section V.

V. EXPERIMENTS

In this section we explore the performance of the

BIHT algorithm and compare it to the performance of

previous 1-bit CS algorithms. To make the comparison

as straightforward as possible, we reproduced the exper-

iments of [30] with the BIHT algorithm.

The experimental setup is as follows. For each data

point, we draw a length-N , K-sparse signal with the

non-zero entries drawn uniformly at random on the unit

sphere, and we draw a new M ×N matrix Φ with each

entry φij ∼ N (0, 1). We then compute the binary mea-

surements ȳ according to (3). Reconstruction of x∗ is

performed from ȳ with three algorithms: matching sign

pursuit (MSP) [29], restricted-step shrinkage (RSS) [30],

and BIHT (this paper); the algorithms will be depicted

by dashed, dotted, and triangle lines, respectively. Each

reconstruction in this setup is repeated for 1000 trials and

with a fixed N = 1000 and K = 10 unless otherwise

noted. Furthermore, we perform the trials for M/N
within the range [0, 2]. Note that when M/N > 1, we

are acquiring more measurements than the ambient di-

mension of the signal. While the M/N > 1 regime is not

interesting in conventional CS, it may be very practical

in 1-bit systems that can acquire sign measurements at

extremely high, super-Nyquist rates.

Average error. We begin by measuring the average

reconstruction angular error ǫsim := dS(x,x
∗) over

the 1000 trials. Figure 2 displays the results of this

experiment in two different ways: (i) the signal-to-noise

ratio (SNR)6 in Figure 2(a), to demonstrate that the

performance of these techniques is practical (since the

angular error is unintuitive to most observers), and (ii)

the inverse of the angular error, i.e., ǫ−1
sim in Figure 2(b),

to compare with the performance predicted by Theo-

rem 2.

We begin by comparing the performance of the al-

gorithms. While we can observe that the angular er-

ror of each algorithm follows the same trend, BIHT

6In this paper we define the reconstruction SNR in decibels as
SNR(x) := 10 log10(‖x‖

2
2
/‖x− x

∗‖2
2
). Note that this metric uses

the standard euclidean error and not angular error.
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Fig. 2: Average reconstruction angular error ǫsim vs. M/N , plotted

two ways. (a) SNR in decibels, and (b) Inverse angular error ǫ−1

sim
.

The plot demonstrates that BIHT yields a considerable improvement
in reconstruction error, achieving an SNR as high as 40dB when
M/N = 2. Furthermore, we see that the error behaves according

ǫ−1

sim
= O(M), implying that on average we achieve the optimal

performance rate given in Theorem 1.

obtains smaller error (or higher SNR) than the others,

significantly so when M/N is greater than 0.35. The

discrepancy in performance could be due to difference

in the algorithms themselves, or perhaps, differences

in their formulations for enforcing consistency. This is

explored later in this section.

We now consider the actual performance trend. We

see from Figure 2(b) that, above M/N = 0.35 each line

appears fairly linear, albeit with a different slope, imply-

ing that with all other variables fixed, ǫsim = O(1/M).
This is on the order of the optimal performance as given

by the bound given in Theorem 1 and predicted by

Theorem 2 for Gaussian matrices.

Consistency. We also expose the relationship between

the Hamming distance dH(A(x), A(x∗)) between the

measurements of the true and reconstructed signal and

the angular error of the true and reconstructed signal.

Figure 3 depicts the Hamming distance vs. angular error

for three different values of M/N . The particularly strik-

ing result is that BIHT returns significantly more con-

sistent reconstructions than the two other algorithms7.

This is clear from the fact that most of the red (plus)

points lie on the y-axis while the majority of blue (dot)

7We observed this effect for ratio M/N as small as M/N = 0.1
(not represented here).
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Fig. 3: Reconstruction angular error ǫsim vs. measurement Ham-
ming error ǫH . BIHT returns a consistent solution in most trials.
For sufficiently large M/N regimes, we see a linear relationship
ǫsim ≈ C + ǫH between the average angular error ǫsim and the
hamming error ǫH where C is constant (see (a) and (b)). The BǫSE
formulation in Definition 1 predicts that the angular error is bounded
by the hamming error ǫH in addition to an offset ǫ. The dashed line
ǫU1000 + ǫH denotes the empirical upper bound for 1000 trials.

or green (triangle) points do not. We find that, even in

significantly “under-sampled” regimes like M/N = 0.1,

where the BǫSE is unlikely to hold, BIHT is likely to

return a consistent solution (albeit with high variance

of angular errors). We also find that in “over-sampled”

regimes such as M/N = 1.7, the range of angular errors

on the y-axis is small. Indeed, the range of angular

errors shrinks as M/N increases, implying an imperical

tightening of the BǫSE upper and lower bounds.

We can infer an interesting performance trend from

Figures 3(a) and (b), where the BǫSE property may hold.

Since the RSS and MSP algorithms often do not return

a consistent solution, we can visualize the relationship

between angular error and hamming error. Specifically,

on average the angular reconstruction error is a linear

function of hamming error, ǫH = dH(A(x), A(x∗)), as

similarly expressed by the reconstruction error bound

provided by BǫSE. Furthermore, if we let ǫ1000 be the

largest angular error (with consistent measurements) over

1000 trials, then we can suggest an empirical upper
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Fig. 4: Enforcing consistency: One-sided ℓ1 vs. one-sided ℓ2 BIHT.
When BIHT attempts to minimize a one-sided ℓ2 instead of a one-sided
ℓ1 objective, the performance significantly decreases. We find this to
be the case even when an oracle provides the true signal support a
priori. Note: (c) is simply a zoomed version (b).

bound for BIHT of ǫ1000 + ǫH . This upper bound is

denoted by the dashed line in Figures 3(a) and (b).

One-sided ℓ1 vs. one-sided ℓ2 objectives. As demon-

strated in Figures 2 and 3, the BIHT algorithm achieves

significantly improved performance over MSP and RSS

in both angular error and Hamming error (consistency).

A significant difference between these algorithms and

BIHT is that MSP and RSS seek to impose consistency

via a one-sided ℓ2-norm, as described in Section IV-B.

Minimizing either the one-sided ℓ1 or one-sided ℓ2
objectives will enforce consistency on the measurements

of the solution; however, the behavior of these two terms

appears to be significantly different, according to the

previously discussed experiments.

To test the hypothesis that this term is the key

differentiator between the algorithms, we implemented

BIHT-ℓ2, a one-sided ℓ2 variation of the BIHT algo-
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rithm that enabled a fair comparison of the one-sided

objectives (see Section IV-B for details). We compared

both the angular error and Hamming error performance

of BIHT and BIHT-ℓ2. Furthermore, we implemented

oracle assisted variations of these algorithms where the

true support of the signal is given a priori, i.e., ηK in (14)

is replaced by an operator that always selects the true

support, and thus the algorithm only needs to estimate

the correct coefficient values. The oracle assisted case

can be thought of as a “best performance” bound for

these algorithms. Using these algorithms, we perform the

same experiment detailed at the beginning of the section.

The results are depicted in Figure 4. The angular error

behavior of BIHT-ℓ2 is very similar to that of MSP and

RSS and underperforms when compared to BIHT. We

see the same situation with regards to Hamming error:

BIHT finds consistent solutions for the majority of trials,

but BIHT-ℓ2 does not. Thus, the results of this simulation

suggest that the one-sided term plays a significant role

in the quality of the solution obtained.

One way to explain the performance discrepancy be-

tween the two objectives comes from observing the con-

nection between our reconstruction problem and binary

classification. As explained previously, in the classifica-

tion context, the one-sided ℓ1 objective is similar to the

hinge-loss, and furthermore, the one-sided ℓ2 objective

is similar to the so-called square-loss. Previous results

in machine learning have shown that for typical convex

loss functions, the minimizer of the hinge loss has the

tightest bound between expected risk and the Bayes

optimal solution [60] and good error rates, especially

when considering robustness to outliers [60, 61]. Thus,

the hinge loss is often considered superior to the square

loss for binary classification.8 One might suspect that

since the one-sided ℓ1-objective is very similar to the

hinge loss, it too should outperform other objectives

in our context. Understanding why in our context, the

geometry of the ℓ1 and ℓ2 objectives results in different

performance is an interesting open problem.

We probed the one-sided ℓ1/ℓ2 objectives further by

testing the two versions of BIHT on noisy measurements.

We flipped a number of measurement signs at random

in each trial. For this experiment, N = M = 1000 and

K = 10 are fixed, and we performed 100 trials. We

varied the number of sign flips between 0% and 5% of

the measurements. The results of the experiment are de-

picted in Figure 5. We see that for both the angular error

8Additional “well-behaved” loss functions (e.g., the Huber-ized
hinge loss) have been proposed [62] and a host of classification
algorithms related to this problem exist [61–65], both of which may
prove useful in the 1-bit CS framework in the future.
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Fig. 5: Enforcing consistency with noise: One-sided ℓ1 vs. one-sided
ℓ2 BIHT. When BIHT attempts to minimize a one-sided ℓ2 instead
of the one-sided ℓ1 objective, the algorithm is more robust to flips of
measurement signs. *Note that the Hamming error in (b) is measured
with regards to the noisy measurements, e.g., a Hamming error of
zero means that we reconstructed the signs of the noisy measurements
exactly.

in Figure 5(a) and Hamming error in Figure 5(b), that

the one-sided ℓ1 objective performs better when there are

only a few errors and the one-sided ℓ2 objective performs

better when there are significantly more errors. This is

expected since the ℓ1 objective promotes sparse errors.

This experiment implies that BIHT-ℓ2 (and the other one-

sided ℓ2-based algorithms) may be more useful when the

measurements contain significant noise that might cause

a large number of sign flips, such as Gaussian noise.

Performance with a fixed bit-budget. In some ap-

plications we are interested in reducing the total number

of bits acquired due to storage or communication costs.

Thus, given a fixed total number of bits, an interesting

question is how well 1-bit CS performs in comparison

to conventional CS quantization schemes and algorithms.

For the sake of brevity, we give a simple comparison here

between the 1-bit techniques and uniform quantization

with Basis Pursuit DeNoising (BPDN) [8] reconstruc-

tion. While BPDN is not the optimal reconstruction tech-

nique for quantized measurements, it (and its variants

such as the LASSO [62]) is considered a benchmark

technique for reconstruction from measurements with

noise and furthermore, is widely used in practice.

The experiment proceeds as follows. Given a total

number of bits and a (uniform) quantization bit-depth
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Fig. 6: Comparison of BIHT to conventional CS multibit uniform scalar
quantization (multibit reconstructions performed using BPDN [8]).
BIHT is competitive with standard CS working with multibit mea-
surements when the total number of bits is severely constrained. In
particular, the BIHT algorithm performs strictly better than CS with 4
bits per measurement.

B (i.e., number of bits per measurement), we choose

the number of measurements as M = total bits/B,

N = 2000, and the sparsity K = 20. The remainder of

the experiment proceeds as described earlier (in terms of

drawing matrices and signals). For bit depth greater than

1, we reconstruct using BPDN with an optimal choice

of noise parameter and we scale the quantizer to such

that signal can take full advantage of its dynamic range.

The results of this experiment are depicted in Figure 6.

We see a common trend in each line: lackluster perfor-

mance until “sufficient” measurements are acquired, then

a slow but steady increase in performance as additional

measurement are added, until a performance plateau

is reached. Thus, since lower bit-depth implies that a

larger number of measurements will be used, 1-bit CS

reaches the performance plateau earlier than in the multi-

bit case (indeed, the transition point is achieved at a

higher number of total bits as the bit-depth is increased).

This enables significantly improved performance when

the rate is severely constrained and higher bit-rates per

measurements would significantly reduce the number of

available measurements. For higher bit-rates, as expected

from the analysis in [35], using fewer measurements with

refined quantization achieves better performance.

It is also important to note that, regardless of trend,

the BIHT algorithm performs strictly better than BPDN

with 4 bits per measurement and uniform quantization

for the parameters tested here. This gain is consistent

with similar gains observed in [28, 29]. A more thorough
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Fig. 7: Comparison of uniformly quantized Nyquist-rate samples with
linear reconstruction (solid) and BPDN denoising (dashed), CS with
M = N and BPDN reconstruction (dash-circle), and 1-bit quantized
CS measurements with BIHT reconstruction (dash-dotted). Nyquist
samples were quantized with bit-depth β ∈ [2, 10] and 1-bit CS used
M = βN measurements; the same number of bits is used in each
reconstruction. The Nyquist-rate lines have the classical 6.02dB/bit-
depth slope, as expected. For a fixed number of bits, 1-bit CS does
not follow this slope and outperforms conventional quantization when
β < 6.

comparison of additional CS quantization techniques

with 1-bit CS is a subject for future study.

Comparison to quantized Nyquist samples. In our

final experiment, we compare the performance of the

1-bit CS technique to the performance of a conven-

tional uniform quantizer applied to uniform Nyquist-

rate samples. Specifically, in each trial we draw a new

Nyquist-sampled signal in the same way as in our

previous experiments and with fixed N = 2000 and

K = 20; however, now the signals are sparse in the

discrete cosine transform (DCT) domain. We consider

four reconstruction experiments. First, we quantize the

Nyquist-rate signal with a bit-depth of β bits per time-

domain sample (and optimal quantizer scale) and per-

form linear reconstruction (i.e., we just use the quantized

samples as sample values). Second, we apply BPDN to

the quantized Nyquist-rate samples with optimal choice

of noise parameter, thus denoising the signal using a

sparsity model. Third, we draw a new Gaussian matrix

with M = N , quantize the measurements to β bits,

again at optimal quantizer scale, and reconstruct using

BPDN. Fourth, we draw a new Gaussian matrix with

M = βN and compute measurements, quantize to

one bit per measurement by maintaining their sign, and

perform reconstruction with BIHT. Note that the same

total number of bits is used in each experiment.
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Figure 7 depicts the average SNR obtained by per-

forming 100 of the above trials. The linear, BPDN,

Gaussian measurements with BPDN, and BIHT recon-

structions are depicted by solid, dashed, dash-circled,

and dash-dotted lines, respectively. The linear recon-

struction has a slope of 6.02dB/bit-depth, exhibiting a

well-known trade-off for conventional uniform quanti-

zation. The BPDN reconstruction (without projections)

follows the same trend, but obtains an SNR that is at

least 10dB higher than the linear reconstruction. This

is because BPDN imposes the sparse signal model to

denoise the signal. We see about the same performance

with the Gaussian projections at M = N , although it

performs slightly worse than without projections since

the Gaussian measurements require a slightly larger

quantizer range. Similarly to the results in Fig. 6, in low

Nyquist bit-depth regimes (β < 6), 1-bit CS achieves a

significantly higher SNR than the other two techniques.

When 6 < β < 8, 1-bit CS is competitive with the

BPDN scenario. Thus, for a fixed number of bits, 1-bit

CS is competitive to conventional sampling with uniform

quantization, especially in low bit-depth regimes.

VI. DISCUSSION

In this paper we have developed a rigorous mathe-

matical foundation for 1-bit CS. Specifically, we have

demonstrated a lower bound on reconstruction error

as a function of the number of measurements and

the sparsity of the signal. We have demonstrated that

Gaussian random projections almost reach this lower

bound (up to a log factor) in the noiseless case. This

behavior is consistent with and extends existing results

in the literature on multibit scalar quantization and 1-bit

quantization of non-sparse signals.

We have also introduced reconstruction robustness

guarantees through the binary ǫ-stable embedding

(BǫSE) property. This property can be thought of as

extending the RIP to 1-bit quantized measurements. To

our knowledge, this is the first time such a property has

been introduced in the context of quantization. To be able

to use this property we showed that random constructions

using Gaussian pdf (or more generally using isotropic

pdf in the signal space R
N ) generate such embeddings

with high probability. This construction class is still very

limited compared to the numerous random constructions

known for generating RIP matrices. Extending this class

with other constructions is an interesting topic for future

research.

Using the BǫSE, we have proven that 1-bit CS systems

are robust to measurement noise added before quantiza-

tion as well as to signals that are not exactly sparse but

compressible.

We have introduced a new 1-bit CS algorithm, BIHT,

that achieves better performance over previous algo-

rithms in the noiseless case. This improvement is due to

the enforcement of consistency using a one-sided linear

objective, as opposed to a quadratic one. The linear

objective is similar to the hinge loss from the machine

learning literature.

We remind the reader that the central goal of this

paper has been signal acquisition with quantization.

As explained previously, one motivation for our work

is the development of very high speed samplers. In

this case, we are interested in building fast samplers

by relaxing the requirements on the primary hardware

burden, the quantizer. Such devices are susceptible to

noise. Thus, while our noiseless results extend previous

1-bit quantization results (e.g., see [51] and [49]) to the

sparse signal model setting and are of theoretical interest,

a major contribution has been the further development

of the robust guarantees, even if they produce error rates

that seem suboptimal when compared to the noiseless

case.

A number of interesting questions remain unanswered.

As we discuss in Section III-B earlier, we have found that

the BǫSE holds for Gaussian matrices with angular error

decay roughly on the order of O(
√
K/M) worse than

optimal. One question is whether this gap can be closed

with an alternative derivation, or whether it is a funda-

mental requirement for stability. Another useful pursuit

would be to provide a more rigorous understanding of

the discrepancy between the performance of the one-

sided ℓ1 and ℓ2 objectives. Analysis of the performance

behavior might lead to better one-sided functions.
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Σ∗
K covering.

APPENDIX A

LEMMA 1: INTERSECTIONS OF ORTHANTS BY

SUBSPACES

While there are 2M available quantization points pro-

vided by 1-bit measurements, a K-sparse signal will

not use all of them. To understand how effectively

the quantization bits are used, we first investigate how

the K-dimensional subspaces projected from the N -

dimensional K-sparse signal spaces intersect orthants

in the M -dimensional measurement space, as shown in

Fig 1 for K = 2 and M = 3.

We use I(M,K) to denote the maximum number

of orthants in M dimensions intersected by a K-

dimensional subspaces. A bound of for I(M,K) is

developed in [66, 67]:

I(M,K) ≤ 2
K−1∑

l=0

Ç

M − 1

l

å

. (16)

For K ≤ M/2, this simplifies to I(M,K) ≤ 2K
(
M−1
K−1

)
.

Using
(

p
q−1

)
+
(
p
q

)
=

(
p+1
q

)
we can also derive a simple

bound on (16) for K ≤ M . We observe that

∑K−1
l=0

(
M−1

l

)
=

(
M
1

)
+

∑K−1
l=2

(
M−1

l

)

≤
(
M
1

)
+

∑K−1
l=2

(
M
l

)
≤ ∑K−1

l=1

(
M
l

)
.

Repeating the same argument, we find
∑K−1

l=1

(
M
l

)
≤∑K−1

l=2

(
M+1

l

)
≤ · · · ≤

(
M+K−2

K−1

)
and finally

I(M,K) ≤ 2
(
M+K−2

K−1

)
≤ 2

(
2M−1
K−1

)
(17)

= 2( K
2M )

(
2M
K

)
≤ 2K

(
eM
K

)K
, (18)

using the bound
(
M
K

)
≤

(
eM
K

)K
.

APPENDIX B

THEOREM 1: DISTRIBUTING SIGNALS TO

QUANTIZATION POINTS

To prove Theorem 1 we consider how the available

quantization points optimally cover the set of signals

Σ∗
K = {x ∈ R

N : ‖x‖ = 1, ‖x‖0 ≤ K}. This set

corresponds to the union of L :=
(
N
K

)
K-dimensional

unit spheres
⋃

i∈[L] Si, each Si = {x ∈ R
N : ‖x‖ =

1, suppx ⊂ Ti} being associated to one support Ti ⊂
[N ] taken amongst the L available K-length supports of

R
N . The cover should be optimal with respect to the

worst case distance, denoted by r, of any point in Σ∗
K

to its closest quantization point. Our goal is to determine

a lower bound on the best-case r we can achieve.

Unfortunately, determining the optimal cover of Σ∗
K

is not straightforward. For instance, optimally covering

each Si individually does not produce an optimal cover

for their union. Indeed, at the intersection of different K-

dimensional spheres in Σ∗
K there are K-sparse signals,

with different support, very close to each other. A single

quantization point in R
N could be close to all those

signals, whereas independent covers of each Si would

have to use a different quantization point to represent

the signals on each sphere in that intersection.

Thus, instead of determining the optimal cover of Σ∗
K ,

we establish a lower bound on r required to cover a

subset Σ̃∗
K of Σ∗

K using the same number of points. A

cover of Σ∗
K with a smaller r would not be possible,

since that would also cover Σ̃∗
K with the same or smaller

r. Therefore, this r establishes a lower bound for the

cover of Σ∗
K . To establish the bound, we pick Σ̃∗

K such

that the neighborhood around the intersection of the balls

is not included. Specifically, we pick

Σ̃∗
K :=

⋃
i S̃i ⊂ Σ∗

K ,

with S̃i := {x ∈ Si : ∀ k ∈ Ti, |xk| >
√
2r} ⊂ Si.

In other words, we pick the subset of each K-ball,

such that all the nonzero coordinates of the signals in

the subset are greater than
√
2r. The union of those

subsets for all possible supports comprises Σ̃∗
K . This

choice ensures that any signal x ∈ S̃i has distance at

least 2r from any signal in any other S̃j , j 6= i, and

therefore both cannot be close to a common quantization

point in R
N with distance r from each. Notice that S̃i

is non empty as soon as r < 1/(
√
2K).

With this choice of Σ̃∗
K , an optimal covering can be

obtained by merging the optimal coverings of each S̃i

for i ∈ [L]. For an optimal covering of distance r, each

of the elements in S̃i should belong to some ball of

radius r centered at the quantization point. Thus, each

quantization point and its corresponding r-ball should

cover as large an area of S̃i as possible. This is achieved

when the quantization point is on S̃i, and the intersection

of the ball with S̃i is a spherical cap of radius r in a K-

dimensional subspace [68]. Thus, for the spherical caps

to cover S̃i, the total area of all spherical caps in the

cover should be greater than the area of S̃i. Furthermore,

since the overall cover of Σ̃∗
K is composed of separate

cover of each S̃i, the total area of all spherical caps used

for the cover should be greater than the area of Σ̃∗
K .

Therefore, since 2KL
(
M
K

)
quantization points and

corresponding spherical caps are available, according to

Lemma 1 and Corollary 1, to cover L subsets of K-
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Fig. 8: The geometry of our problem in R
2. We only need to consider

one orthant, P , as the problem is the same for all orthants. To measure

the surface area of S̃+

i
relative to the surface of SK−1, we consider

the ratio of the volume of C(S̃+

i
) with respect to this of BK . We

lower bound the former using Cr(S̃
+

i
) ⊂ C(S̃+

i
).

spheres, as described above, the cover should satisfy

2KL

Ç

M

K

å

κ(r) ≥ σ(Σ̃∗
K), (19)

where σ(·) denotes the rotationally invariant area mea-

sure of the K-sphere Si and κ(r) denotes the surface

area of a spherical cap of radius r measured using σ.

To determine the smallest r satisfying (19), we thus

need to measure the set Σ̃∗
K . Choosing one i ∈ [L] we

have σ(Σ̃∗
K) = Lσ(S̃i) since the sets S̃k (k ∈ [L]) are

disjoint with identical area. We first show that

σ(S̃i) ≥ (1− r
√
2K)Kσ(SK−1), (20)

where SK−1 is a K-dimensional sphere in R
K . Note

that this bound is tight at two ends: at r = 0 where

S̃i = Si (almost everywhere) and at r = 1/
√
2K for

which S̃i = ∅.

To prove (20) we assume without loss of generality

Ti = {1, · · · ,K} and consider Si = SK−1 = {x ∈
R

K : ‖x‖ = 1} and S̃i = {x ∈ R
K : ‖x‖ =

1, min |xk| >
√
2r}. We define the intersection S̃+

i :=

S̃i ∩ P with the positive orthant P = {x ∈ R
K : ∀ i ∈

[K], xi ≥ 0}. By symmetry, σ(S̃i) = 2Kσ(S̃+
i ) since

there are 2K orthants in R
K . As described in [68], the

ratio between the measure of S̃+
i and the one of the

full sphere SK−1 equals the ratio between the volume

occupied by a cone formed by S̃+
i in the unit ball

BK ⊂ R
K and the volume of this ball, i.e.,

σ(S̃+
i )

σ(SK−1)
=

µ(C(S̃+
i ))

µ(BK)
, (21)

where µ is the Lebesgue measure in R
K and C(A) =

{ta : t ∈ [0, 1], a ∈ A} ⊂ BK is the portion of the cone

(with apex on the origin and restricted to BK) formed

by the subset A ⊂ SK−1. The geometry of our problem

is made clear in Figure 8.

To measure the volume of C(S̃+
i ), writing 1 =

(1, · · · , 1)T ∈ R
K , we first define the set

Cr(S̃+
i ) := (P +

√
2r1) ∩BK ,

also shown in the figure, which is non-empty for
√
2r ≤

1/
√
K. Since Cr(S̃+

i ) ∩ Si = S̃+
i and

√
2r1 ∈ C(S̃+

i ),

it is straightforward to show that Cr(S̃+
i ) ⊂ C(S̃+

i ), and

therefore the measure of Cr(S̃+
i ) is a lower bound to

the measure of C(S̃+
i ). Furthermore, by the translation

invariance of µ,

µ(Cr(S̃+
i )) = µ((P +

√
2r1) ∩BK)

= µ(P ∩ (BK −
√
2r1)),

where BK −
√
2r1 is the unit ball centered on −

√
2r1.

Setting α = (1−r
√
2K) it follows that ‖u+

√
2r1‖ ≤ 1

for any u ∈ R
K , ‖u‖ ≤ α. Consequently, αBK ⊂

BK −
√
2r1 and P ∩ αBK ⊂ P ∩ (BK −

√
2r1).

Therefore, the measure of the positive orthant of a K-

ball with radius α lower bounds the measure of C(S̃+
i ).

Putting everything together we obtain

µ(C(S̃+
i )) ≥ µ(P ∩ αBK) = αK2−Kµ(BK),

which, using (21), implies that σ(S̃+
i )/σ(SK−1) ≥

αK2−K and

σ(Σ̃∗
K) = Lσ(S̃i) ≥ (1− r

√
2K)KLσ(SK−1).

In turn, (19) becomes

2KL

Ç

M

K

å

κ(r) ≥ (1− r
√
2K)KLσ(SK−1),

where κ(r) ≤ rKσ(SK−1) [68]. From
(
M
K

)
≤

(eM/K)K , the result follows:

2KrK( eMK )K ≥ (1− r
√
2K)K

⇒ r ≥ ( 2eMK +
√
2K)−1 = K/(2eM +

√
2K3/2).

APPENDIX C

THEOREM 2: OPTIMAL PERFORMANCE VIA

GAUSSIAN PROJECTIONS

To prove Theorem 2, we follow the procedure given in

[46, Theorem 3.3]. We begin by restricting our analysis

to the support set T ⊂ [N ] := {1, · · · , N} with

|T | ≤ D ≤ N , and thus we consider vectors that

lie on the (sub) sphere Σ∗(T ) = {x : suppx ⊂
T, ‖x‖2 = 1} ⊂ R

N . We remind the reader that

Br(x) := {a ∈ SN−1 : ‖x−a‖2 < r} is the ball of unit

norm vectors of Euclidean distance r > 0 around x, and

we write B∗
r (x) = Br(x) ∩ Σ∗(T ) as in Section III-B.
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Let us fix a radius δ > 0 to be precised later. The

sphere Σ∗(T ) can be covered with a finite set Qδ ⊂
Σ∗(T ) of no more than (3/δ)D points such that, for any

w ∈ Σ∗(T ), there exists a q ∈ Qδ with w ∈ B∗
δ (q) [16].

Using the notation dS defined in Sec. III-A, given a

vector ϕ ∼ NN×1(0, 1) and two distinct points p and

q in Qδ , we have that

P
[
∀u ∈ B∗

δ (p), ∀v ∈ B∗
δ (q) : signϕ

Tu 6= signϕTv
]

≥ dS(p, q) −
»

π
2D δ,

from Lemma 6 (given in Appendix D). Since for all

u ∈ B∗
δ (p) and v ∈ B∗

δ (q)

π dS(p, q) ≥ 2 sin(π2 dS(p, q)) = ‖p− q‖2
≥ ‖u− v‖2 − 2δ,

we can write for any ǫo > 0

P
[
∀u ∈ B∗

δ (p), ∀v ∈ B∗
δ (q) :

signϕTu 6= signϕTv | ‖u− v‖2 > ǫo
]

≥ ǫo
π − ( 2π +

»

π
2D) δ.

By setting δ = πǫo/(4 + π
√
2πD) (and reversing the

inequality), we obtain

P
[
∃u ∈ B∗

δ (p), ∃v ∈ B∗
δ (q) :

sign (ϕTu) = sign (ϕTv) | ‖u−v‖2 > ǫo
]
≤ 1− ǫo

2 .

Thus, for M different random vectors ϕi arranged in

Φ = (ϕ1, · · · ,ϕM )T ∼ NM×N (0, 1), and for the

associated mapping A defined in (3), we get

P
[
∃u ∈ B∗

δ (p), ∃v ∈ B∗
δ (q) :

A(u) = A(v) | ‖u− v‖2 > ǫo
]
≤ (1− ǫo

2 )
M .

In other words, we have found a bound on the probability

that two vectors’ measurements are consistent, even if

their Euclidean distance is greater than ǫo, but only for

vectors in the restricted (sub) sphere Σ∗(T ). Now we

seek to cover the rest of the space Σ∗
K (unit norm K-

sparse signals).

Since there are no more than
(|Qδ|

2

)
≤ (|Qδ|)2 ≤

(3/δ)2D pairs of distinct points in Qδ , we find

P
[
∃u,v ∈ Σ∗(T ) : A(u) = A(v) | ‖u− v‖2 > ǫo

]

≤
(

1
πǫo

(12 + 3π
√
2πD)

)2D
(1− ǫo

2 )
M .

To obtain the final bound, we observe that any pair of

unit K-sparse vectors x and s in Σ∗
K belongs to some

Σ∗(T ) with T = suppx∪ supp s and |T | ≤ 2K. There

are no more than
(
N
2K

)
≤ (eN/2K)2K of such sets T ,

and thus setting D = 2K above yields

P
[
∃u,v ∈ Σ∗

K : A(u) = A(v) | ‖u− v‖2 > ǫo
]

≤ ( eN2K )2K ( 1
πǫo

(12 + 6π
√
πK))4K (1− ǫo

2 )
M

≤ e2K log( eN
2K )+4K log( 1

πǫo
(12+6π

√
πK))−M ǫo

2 ,

where the second inequality follows from 1 − ǫo
2 ≤

exp ǫo
2 . By upper bounding this probability by η and

solving for M , we obtain

M ≥ 2
ǫo

(
2K log eN

2K + 4K log( 12+6π
√
πK

πǫo
) + log 1

η

)
.

Since K ≥ 1, we have that 1
π (12+6π

√
πK) < 17

»

2K
e ,

and thus the previous relation is then satisfied when

M ≥ 2
ǫo

(
2K log eN

2K + 4K log( 17
√
2√

e ǫo

√
K) + log 1

η

)

= 2
ǫo

(
2K logN + 4K log( 17ǫo ) + log 1

η

)
.

APPENDIX D

LEMMA 3: CONCENTRATION OF MEASURE FOR

δ-BALLS

Since T ⊂ [N ] is fixed with size |T | = D, proving

Lemma 3 amounts to showing that, for any fixed ǫ > 0
and 0 ≤ δ ≤ 1, given a Gaussian matrix Φ ∈ R

M×D, the

mapping A : RD → BM defined as A(u) = sign (Φu),
and for any fixed x, s ∈ SD−1, we have

P

Å

∀u ∈ B∗
δ (x), ∀v ∈ B∗

δ (s),

∣∣ dH
(
A(u), A(v)

)
− dS(x, s)

∣∣ ≤ ǫ+
»

π
2D δ

ã

≥ 1− 2 e−2ǫ2M ,

where, in this case, B∗
δ (p) = (Bδ(p) ∩ SD−1) ⊂ R

D

for any p ∈ R
D.

Given u′ ∈ B∗
δ (x) and v′ ∈ B∗

δ (s), the quantity

MdH
(
A(u′), A(v′)

)
is the sum

∑
i Ai(u

′) ⊕ Ai(v
′),

where Ai(u
′) stands for the ith component of A(u′).

For one index 1 ≤ i ≤ M ,

Z+
i := max

{
Ai(u)⊕Ai(v) : u ∈ B∗

δ (x),v ∈ B∗
δ (s)

}

≥ Ai(u
′)⊕Ai(v

′),

Z−
i := min

{
Ai(u)⊕Ai(v) : u ∈ B∗

δ (x),v ∈ B∗
δ (s)

}

≤ Ai(u
′)⊕Ai(v

′),

and therefore

Z− :=
M∑

i=1

Z−
i ≤ M dH

(
A(u′), A(v′)

)

≤
M∑

i=1

Z+
i =: Z+.
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Of course, the occurrence of Z+
i = 0 (Z−

i = 1)

means that all vector pairs taken separately in B∗
δ (x)

and B∗
δ (s) have consistent (or respectively, inconsistent)

measurements on the ith sensing component Ai. More

precisely, since ϕi ∼ NN×1(0, 1), Z±
i are binary

random variables such that P[Z+
i = 1] = 1 − p0

and P[Z−
i = 1] = p1 independently of i, where the

probabilities p0 and p1 are defined by

p0(x, s, δ) = P[Z+
i = 0]

= P
[
∀u ∈ B∗

δ (x), ∀v ∈ B∗
δ (s), Ai(u) = Ai(v)

]
,

p1(x, s, δ)

= P
[
∀u ∈ B∗

δ (x), ∀v ∈ B∗
δ (s), Ai(u) 6= Ai(v)

]
.

In summary, Z+ and Z− are binomially distributed

with M trials and probability of success 1− p0 and p1,

respectively. Furthermore, we have that EZ+ = M (1−
p0) and EZ− = M p1, thus by the Chernoff-Hoeffding

inequality,

P
[
Z+ > M (1− p0) +Mǫ

]
≤ e−2Mǫ2 ,

P
[
Z− < M p1 −Mǫ

]
≤ e−2Mǫ2 .

This indicates that with a probability higher than 1 −
2e−2Mǫ2 , we have

p1 − ǫ ≤ dH
(
A(u′), A(v′)

)
≤ (1− p0) + ǫ.

The final result follows by lower bounding p0 and p1 as

in Lemma 6.

Lemma 6. Given 0 ≤ δ < 1 and two unit vectors x, s ∈
SD−1, we have

p0 = P
[
∀u ∈ B∗

δ (x), ∀v ∈ B∗
δ (s),

sign 〈ϕ,u〉 = sign 〈ϕ,v〉
]

≥ 1 − dS(x, s) −
»

π
2D δ, (22)

p1 = P
[
∀u ∈ B∗

δ (x), ∀v ∈ B∗
δ (s),

sign 〈ϕ,u〉 6= sign 〈ϕ,v〉
]

≥ dS(x, s) −
»

π
2D δ. (23)

Proof of Lemma 6: We begin by introducing some

useful properties of Gaussian vector distribution. If ϕ ∼
ND×1(0, 1), the probability that ϕ ∈ A ⊂ R

D is simply

the measure µ of A with respect to the standard Gaussian

density γ(ϕ) = 1
(2π)D/2 e

−‖ϕ‖2/2, i.e.,

P[ϕ ∈ A ] = µ(A) =

∫

A
dDϕ γ(ϕ),

with µ(RD) = 1. It may be easier to perform this

integration over a hyper-spherical set of coordinates

measured in a basis defined by the vectors x and s.

This is possible since the pdf γ is rotationally invariant.

Specifically, we consider the canonical basis E =
{e1, · · · , eD} of RD where, by using the cross product

∧ in R
D, e1 := (x ∧ s) / ‖x ∧ s‖2, eD := x and

eD−1 := eD ∧ e1, while the other vectors {ek : 2 ≤
k ≤ D − 2} are defined arbitrarily for completing the

basis. In this system, the “xs” plane is equivalent to

the plane spanned by eD and eD−1. Moreover, any

vector ϕ ∈ R
D can be represented by the spherical

coordinates (r, φ1, · · · , φD−1) where r = ‖ϕ‖2 ∈ R+,

(φ1, · · · , φD−2) ∈ [0, π]D−2 corresponds to the vector

angles in each dimension, and φD−1 ∈ [0, 2π] being the

angle formed by the projection of ϕ in the “xs” plane

with x = eD.

The change of coordinates between the Cartesian

and the spherical representations of ϕ in E is then

defined as ϕ1 = r cosφ1, ϕ2 = r sinφ1 cosφ2, ...,

ϕD−1 = r sinφ1 · · · sinφD−2 cosφD−1, and ϕD =
r sinφ1 · · · sinφD−2 sinφD−1, while, conversely, r =
‖ϕ‖2, tanφ1 = (ϕ2

D+ · · ·+ϕ2
2)

1/2/ϕ1, ..., tanφD−2 =
(ϕ2

D+ϕ2
D−1)

1/2 /ϕD−2, and tanφD−1 = ϕD /ϕD−1.9

We now seek a lower bound on p1. Computing this

probability amounts to estimating

p1 = P[ ∀u ∈ B∗
δ (x), ∀v ∈ B∗

δ (s), 〈ϕ,u〉〈ϕ,v〉 ≤ 0 ]

= µ(Wδ), (24)

where Wδ := {ϕ : 〈ϕ,u〉〈ϕ,v〉 ≤ 0, ∀u ∈
B∗

δ (x), ∀v ∈ B∗
δ (s)} is the set of all vectors ϕ such

that its inner product with u and v result in different

signs.

Note that if B∗
δ (x) ∩ B∗

δ (s) 6= ∅, then p1 = 0 since

p1 ≤ P[ ∀u ∈ B∗
δ (x) ∩ B∗

δ (s), 〈ϕ,u〉2 = 0 ] = 0.

This non-empty intersection is avoided when dS(x, s) ≥
4
π arcsin δ/2. Furthermore, since arcsinλ ≤ π

2λ for any

0 ≤ λ ≤ 1, this occurs if dS(x, s) ≥ δ.

The remainder of the proof is devoted to finding an

appropriate way to integrate the set Wδ . To this end,

we begin by demonstrating that estimating p1 can be

simplified with the following equivalence (proved just

after the completion of the proof of Lemma 6).

9This change of coordinates can be very convenient. For instance, the
proof of Lemma 2 relies on the computation P[Ai(x) 6= Ai(s)] =
µ(A = {ϕ : φD−1 ∈ [0, π dS(x, s)] ∪ [π, π + π dS(x, s)]}) =
dS(x, s), since for (almost) all ϕ ∈ A, x and s live in the two
different subvolumes determined by the plane {u : 〈ϕ,u〉 = 0}
[55, 56].
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Lemma 7. The set Wδ ⊂ R
D is equal to the set

V−
δ = {ϕ : 〈ϕ,x〉〈ϕ, s〉 ≤ 0,

‖x − PΠ(ϕ) x‖ ≥ δ, ‖s − PΠ(ϕ) s‖ ≥ δ},
where PΠ(ϕ) is the orthogonal projection on the plane

Π(ϕ) = {u ∈ R
D : 〈ϕ,u〉 = 0}.

Using the hyper spherical coordinate system devel-

oped earlier and denoting the angle π dS(x, s) by θ,

membership in V−
δ can be expressed as

ϕ = (r, φ1, · · · , φD−1) ∈ V−
δ

⇔





tanφD−1 ∈ [0, tan θ],

sinφ1 · · · sinφD−2 | sinφD−1| ≥ δ,

sinφ1 · · · sinφD−2 | sin(φD−1 − θ)| ≥ δ.

(R1)

(R2)

(R3)

Indeed, requirement (R1) enforces 〈ϕ,x〉〈ϕ, s〉 ≤ 0,

while (R2) and (R3) are direct translations of the require-

ments that ‖x − PΠ(ϕ) x‖ = |〈ϕ̂,x = eD〉| ≥ δ and

‖s − PΠ(ϕ) s‖ = |〈ϕ̂, s = cos θ eD − sin θ eD−1〉| ≥ δ,

with ϕ̂ = 1
‖ϕ‖ϕ.

We are now ready to integrate to find p1 = µ(V−
δ ):

p1 = 1
(2π)D/2

∫
R+

dr rD−1e−r2/2 . . .
ï( ∫ π

0
dφ1 sinD−2 φ1

)
· · ·

( ∫ π

0
dφD−2 sinφD−2

) ò
. . .

[ ∫
[0,θ]∪[π,π+θ]

dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1−θ)
]
,

with χλ(φ) = 1 if | sinφ | ≥ λ and 0 else, for some

λ ∈ [0, 1], and g(δ,ϕ) = δ/(sinφ1 · · · sinφD−2).

However,

∫
[0,θ]∪[π,π+θ]

dφ χλ(φ)χλ(φ− θ)

= max(2θ − 4 arcsinλ, 0),

and max(2θ − 4 arcsinλ, 0) ≥ 2θ − 2πλ, since λ ≤
arcsinλ ≤ π

2λ for any λ ∈ [0, 1]. Consequently,

µ(V−
δ ) ≥ 1

(2π)D/2

∫
R+

dr rD−1e−r2/2 . . .
ï( ∫ π

0

dφ1 sinD−2 φ1

)
· · ·

( ∫ π

0

dφD−2 sinφD−2

) ò
· · ·

(
2θ − 2πδ

(sinφ1 ··· sinφD−2)

)

=
θ

π
− 2πδ

ID−3 ID−4 · · · I0
(2I0) I1 · · · ID−2

=
θ

π
− π δ

ID−2
,

with In :=
∫ π

0
dφ sinn φ and knowing that (2π)D/2 =

(2I0) (I1 · · · ID−2)
∫
R+

dr rD−1e−r2/2 since

µ(RD) = 1 = (2π)−D/2
∫
R+

dr rD−1e−r2/2 . . .

(
∫ 2π

0
dφD−1) (I1 · · · ID−2).

Using the fact that In =
√
π Γ(n+1

2 )/Γ(n2 + 1) ≥√
π/
»

n
2 + 1

4 , we obtain ID−2 ≥
√
π√

D
2
− 3

4

≥
»

2π
D , and

thus

p1 ≥ dS(x, s) −
»

π
2D δ.

If we want a meaningful bound for p1 ≥ 0, then we must

have dS(x, s) ≥
√

π
2D δ ≥ δ. Therefore, as soon as the

lower bound is positive, the aforementioned condition

dS(x, s) ≥ δ always holds.

The lower bound for p0 is obtained similarly. It

is straightforward to show that p0 = µ(V+
δ ), with

V+
δ = {ϕ : 〈ϕ,x〉〈ϕ, s〉 > 0, ‖x − PΠ(ϕ) x‖ ≥

δ, ‖y − PΠ(ϕ) s‖ ≥ δ}. Lower bounding µ(V+
δ ) as for

µ(V+
δ ), the only difference occurring with the integral

on φD−2 given by

∫
[θ,π]∪[π+θ,2π]

dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1−θ)

= 2π−2θ−4 arcsin g(δ,ϕ) ≥ 2(π−θ)−2πg(δ,ϕ).

Therefore, the lower bound of p0 amounts to change

θ → π − θ in the one of p1, which provides the result.

Proof of Lemma 7: If δ = 0, there is nothing to

prove. Therefore δ > 0 and if ϕ∗ belongs to either Vδ or

Wδ , we must have 〈ϕ,x〉〈ϕ, s〉 < 0. It is also sufficient

to work on the restriction of Vδ and Wδ to unit vectors.

(i) Vδ ⊂ Wδ: By contradiction, let us assume that ϕ∗ ∈
Vδ but ϕ∗ /∈ Wδ . Without any loss of generality,

〈ϕ∗,x〉 > 0 and 〈ϕ∗, s〉 < 0. Since ϕ∗ /∈ Wδ ,

there exist two vectors u∗ ∈ B∗
δ (x) and v∗ ∈ B∗

δ (s)
such that 〈ϕ∗,u∗〉〈ϕ∗,v∗〉 > 0. If 〈ϕ∗,u∗〉 > 0 and

〈ϕ∗,v∗〉 > 0, then, since 〈ϕ∗, s〉 < 0 and by continuity

of the inner product, there exist a λ ∈ (0, 1) such that

〈ϕ∗, s(λ)〉 = 0 with s(λ) = s + λ(v∗ − s). Therefore,

s(λ) ∈ Π(ϕ) and, by definition of the orthogonal

projection, ‖s−PΠ(ϕ) s‖ ≤ ‖s−s(λ)‖ ≤ λδ < δ which

is a contradiction. If 〈ϕ∗,u∗〉 < 0 and 〈ϕ∗,v∗〉 < 0,

we apply the same reasoning on x and u∗. Therefore,

Vδ ⊂ Wδ .

(ii) Wδ ⊂ Vδ: If ϕ∗ ∈ Wδ with ϕ∗ /∈ Vδ , we have

either ‖x − PΠ(ϕ∗) x‖ < δ or ‖s − PΠ(ϕ∗) s‖ < δ.

Let us say that ‖x − PΠ(ϕ∗) x‖ < δ. Then, for

w = x + δ (PΠ(ϕ∗) x− x)/‖PΠ(ϕ∗) x− x‖ ∈ B∗
δ (x),

〈ϕ∗,x〉〈ϕ∗,w〉 = (〈ϕ∗,x〉)2
(
1− δ/‖PΠ(ϕ∗) x−x‖

)
+

δ 〈ϕ∗,PΠ(ϕ∗) x〉 < 0. However, ϕ∗ ∈ Wδ and

〈ϕ∗,x〉〈ϕ∗, s〉 < 0, leading to 〈ϕ∗,w〉〈ϕ∗, s〉 > 0,

which is a contradiction.
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APPENDIX E

THEOREM 3: GAUSSIAN MATRICES PROVIDE BǫSES

The strategy for proving Theorem 3 will be to count

the number of pairs of K-sparse signals that are Eu-

clidean distance δ apart. We will then apply the con-

centration results of Lemma 3 to demonstrate that the

angles between these pairs are approximately preserved.

We specifically proceed by focusing on a single K-

dimensional subspace (intersected with the unit sphere)

and then by applying a union bound to account for all

possible subspaces.

Let T ⊂ [N ] be an index set of size |T | = K,

Σ∗(T ) = {w ∈ R
N : suppw ⊂ T, ‖w‖2 = 1} be

the sphere of unit vectors with support T . We first use

again the fact that the sphere Σ∗(T ) can be δ-covered by

a finite set of points QT,δ . That is, for any w ∈ Σ∗(T ),
there exists a q ∈ QT,δ such that w ∈ B∗

δ (q) = Bδ(q)∩
Σ∗

T = {w′ ∈ Σ∗
T : ‖w′ − q‖2 ≤ δ} [15]. Note that the

size of QT,δ is bounded by |QT,δ| ≤ Cδ = (3/δ)K .

Let ΦT be the matrix formed by the columns of Φ
indexed by T and note that ΦTw = Φw. Given ǫ′ ≥ 0,

for all pairs of points p, q ∈ QT,δ , we have

P

Å

∀u ∈ B∗
δ (p), ∀v ∈ B∗

δ (q),

∣∣ dH
(
A(u), A(v)

)
− dS(p, q)

∣∣ ≤ ǫ′ +
»

π
2K δ

ã

≥ 1 − 2 ( 3δ )
2K e−2ǫ′2M . (25)

This follows from Lemma 3 with D = K, since ΦT is a

Gaussian matrix and by invoking the union bound, since

there are
(
Cδ

2

)
≤ C2

δ = (3/δ)2K such pairs x, s.

The bound (25) can be extended to all possible index

sets T of size K via the union bound. Specifically, for

all T ⊂ [N ] and all pairs of points p, q ∈ QT,δ , we have

now jointly

P

Å

∀u ∈ B∗
δ (p), ∀v ∈ B∗

δ (q),

∣∣dH
(
A(u), A(v)

)
− dS(p, q)

∣∣ ≤ ǫ′ +
»

π
2K δ

ã

≥ 1 − 2 ( eNK )K ( 3δ )
2K e−2ǫ′2M (26)

since there are no more than
(
N
K

)
≤ (eN/K)K possi-

ble T .

We can reformulate this last result as follows. Let us

take any pair of points on the sphere x, s ∈ SN−1 such

that their joint support T = supp (x) ∪ supp (s) has

a size |T | ≤ K. We have obviously x, s ∈ Σ∗(T ).
Taking the covering set QT,δ defined for Σ∗(T ), there

exist two points p, q ∈ QT,δ such that x ∈ B∗
δ (p) and

s ∈ B∗
δ (q). From (26), with a probability exceeding

1− 2 ( eNK )K ( 3δ )
2K e−2ǫ′2M , we have

∣∣ dH
(
A(x), A(s)

)
− dS(p, q)

∣∣ ≤ ǫ′+
»

π
2K δ. (27)

To obtain our final bound, consider that x ∈ B∗
δ (p)

implies that π dS(x,p) ≤ 2 arcsin δ/2 ≤ πδ/2, and

dS(s, q) can be similarly bounded. Thus, dS(x, s) ≥
dS(p, q) − δ and dS(x, s) ≤ dS(p, q) + δ, and (27)

becomes

∣∣dH
(
A(x), A(s)

)
− dS(x, s)

∣∣ ≤ ǫ′ + (1 +
»

π
2K) δ.

Let us define the probability of failure as

2 ( eNK )K ( 3δ )
2K e−2ǫ′2M = η, where 0 < η < 1,

and set ǫ′ = (1+
√

π
2K) δ and 2ǫ′ = ǫ. Solving for M ,

we finally get that |dH(A(x), A(s)) − dS(x, s) | ≤ ǫ
with a probability bigger than 1− η if

M ≥ 2
ǫ2

(
K log( 9eNK )+2K log( 2(1+

√
2πK)

ǫ )+log( 2η )
)
.

Since K ≥ 1, we have that 2(1 +
√
2πK) ≤ 2(1 +√

2π)
√
K < 35

√
K/

√
9e, and thus the previous relation

is satisfied if

M ≥ 2
ǫ2

(
K log( 9eNK ) + 2K log( 35/

√
9e

ǫ

√
K) + log( 2η )

)
,

= 2
ǫ2

(
K log(N) + 2K log( 35ǫ ) + log( 2η )

)
.

APPENDIX F

LEMMA 4: STABILITY WITH MEASUREMENT NOISE

In Lemma 4, since Φ ∼ NM×N (0, 1), each yi =
(Φx)i follows a Gaussian distribution N (0, ‖x‖22), and

furthermore, since we have independent additive noise,

zi = yi + ni = (Φx)i + ni follows the Gaussian

distriubtion N (0, ‖x‖22 + σ2).

We begin by bounding the probability that any noisy

measurement zi has a different sign than the orig-

inal corresponding measurement yi, i.e., we bound

p̃ := P(ziyi < 0). This quantity is interesting since

M dH
(
An(x), A(x)

)
follows a Binomial distribution

with M trials and probability of success p̃ and thus we

also have E
(
dH

(
An(x), A(x)

))
= p̃.

To solve for the bound, we compute

p̃ =

∫

R

du P(ziyi < 0 | yi = u ) fyi(u)

=

∫

R

du P(u2 + uni < 0) g(u; ‖x‖2),
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with the pdf fyi
(t) = g(t;σ′) = 1√

2πt
exp(−t2/2σ′2).

This leads to

p̃ =
∫∞
0

du P(ni < −u) g(u; ‖x‖2)
+

∫ 0

−∞ du P(ni > −u) g(u; ‖x‖2)
=

∫∞
0

du 2Q(u/σ) g(u; ‖x‖2)
≤

∫∞
0

du e−
u2

2σ2 g(u; ‖x‖2)
= 1√

2π‖x‖2

∫∞
0

du exp− (‖x‖2
2+σ2)u2

2σ2‖x‖2
2

= 1
2

σ√
‖x‖2

2
+σ2

,

where Q(u) =
∫∞
u

dt g(t; 1) denotes the tail integral of

the standard Gaussian distribution which is bounded by

Q(t) ≤ 1
2e

−t2/2 for t ≥ 0 (see for instance [69, Eq.

(13.48)]).

Thus, we have p̃ ≤ e(σ, ‖x‖2) = 1
2

σ√
‖x‖2

2
+σ2

and,

by applying the Chernoff-Hoeffding inequality to the

distribution of dH
(
An(x), A(x)

)
,

P
[
M dH

(
An(x), A(x)

)
> M e(σ, ‖x‖2) +Mǫ

]

≤ P
[
M dH

(
An(x), A(x)

)
> M p̃+Mǫ

]

≤ e−2Mǫ2 ,

which proves the lemma.

APPENDIX G

ASYMPTOTIC BOUND ON ǫ IN THEOREMS 2 AND 3

Both Theorem 2 and Theorem 3 provide guarantees

on the worst-case error ǫ of the form

ǫn ≤ 1
M

(
αK log(N) + β log( 1η ) + γ K log( 1ǫ )

)
, (28)

for some exponent n ∈ {1, 2}, and for given constants

α, β, γ > 0.

In this appendix we show that, considering 0 < η < 1
fixed, the relation (28) implies

ǫn = O
(
K
M log(MN

K )
)

(29)

asymptotically in M/K and N . Notice that, up to a

redefinition ǫn → ǫ and γ/n → γ, it is sufficient to prove

the relation for n = 1. We also define ρ := β log(1/η).

First, we consider N fixed and show ǫ =
O
(
K
M log(MK )

)
. Let us assume this is not the case,

i.e., for all c > 0, and all R0 > 0, there exists a

ratio M/K > R0 such that ǫ > c (K/M) log(M/K).
Therefore,

log 1
ǫ < log M

K − log
(
c log M

K

)
< log M

K − log(c logR0),

Thus (28) becomes

ǫ ≤ 1
M

(
αK logN+ρ+γ K log M

K −γ K log(c logR0)).

Using ǫ > c (K/M) log(M/K), this last inequality

becomes

α logN + 1
K ρ+ γ log M

K >

c log M
K + γ log(c logR0). (30)

For fixed N and η, and since we reasonably have K ≥
1, the parameters c and R0 can always be selected so

that γ log(c logR0) > α logN +ρ/K. In this case, (30)

implies γ log M
K > c log M

K . Taking c > γ, which is still

compatible with the selection of R0 and c above, leads

to a contradiction. Thus ǫ = O
(
K
M log M

K

)
for fixed N .

Next, we assume N varies and R := M/K is fixed,

and show that ǫn = O((1/R) log(RN)). We again

restrict the analysis to n = 1. Now we assume for

all N0 > 0 and all c > 0, there is a N > N0 such

that ǫ > (c/R) log(RN). This means that log 1
ǫ <

− log((c/R) log(RN)) and (28) implies

c
R log(RN) + γ

R log( c
R log(RN)) < α

R logN + ρ.

Since α and ρ are fixed, selecting c >
max(α,Rρ/ logR) and N0 such that log(RN0) > R/C
leads to a contradiction and completes the proof.
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[47] C.S. Güntürk, “One-bit sigma-delta quantization with exponential

accuracy,” Communications on Pure and Applied Mathematics,
vol. 56, no. 11, pp. 1608–1630, 2003.

[48] P. T. Boufounos, “Hierarchical distributed scalar quantization,”
in Proc. Int. Conf. Sampling Theory and Applications (SampTA),
Singapore, May 2-6 2011.

[49] H. Q. Nguyen, V.K. Goyal, and L.R. Varshney, “Frame per-
mutation quantization,” Applied and Computational Harmonic

Analysis (ACHA), Nov. 2010.
[50] P. Indyk and R. Motwani, “Approximate nearest neighbors:

towards removing the curse of dimensionality,” in Proceedings

of the thirtieth annual ACM symposium on Theory of computing.
ACM, 1998, pp. 604–613.

[51] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable distribu-
tions,” Nearest neighbor methods in learning and vision: Theory

and practice (book), 2006.
[52] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for

approximate nearest nieghbor in high dimensions,” Commun.

ACM, vol. 51, no. 1, pp. 117–122, 2008.
[53] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes

from shift-invariant kernels,” The Neural Information Processing

Systems, vol. 22, 2009.
[54] M. Bridson, “Geometric and combinatorial group theory,” in

The Princeton companion to mathematics, T. Gowers, J. Barrow-
Green, and I. Leader, Eds., chapter IV.10, pp. 431–447. Princeton
Univ. Press, 2008.

[55] M. Goemans and D. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming,” Journ. ACM, vol. 42, no. 6, pp. 1145,
1995.

[56] S. Shariati, L. Jacques, F. X. Standaert, B. Macq, M. A. Salhi, and
P. Antoine, “Randomly driven fuzzy key extraction of unclonable
images,” in IEEE Int. conf. on image proc. (ICIP), 2010.

[57] A. Gupta, B. Recht, and R. Nowak, “Sample complexity for 1-
bit compressed sensing and sparse classification,” in Proc. Intl.

Symp. on Information Theory (ISIT), 2010.
[58] T. Blumensath, “Compressed sensing with nonlinear observa-

24



tions,” preprint, 2010.
[59] T. Hastie, R. Tibshirani, and J. Friedman, The elements of

statistical learning, Springer Series in Statistics, 2nd edition,
Feb. 2009.

[60] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri,
“Are loss functions all the same?,” Neural Comp., vol. 16, no.
5, pp. 1063–1076, Mar. 2004.

[61] N. Srebro, K. Sridharan, and A. Tewari, “Smoothness, low-noise,
and fast rates,” in Advances in Neural Information Processing

Systems (NIPS), Dec. 2010.
[62] R. Tibshirani, “Regression shrinkage and selection via the lasso,”

Royal Statistical Society. Series B (Methodological), pp. 267–
288, 1996.

[63] O. Bartlett, Y. Freund, W. S. Lee, and R. E. Schapire, “Boosting
the margin: a new explanation for the effectiveness of voting
methods,” Annals of Statistics, vol. 26, no. 5, pp. 1651–1686,
1998.

[64] G. Ratsch and M. Warmuth, “Efficient margin maximizing with
boosting,” The J. of Machine Learning Research, vol. 6, Dec.
2005.

[65] A. Blum, On-line algorithms in machine learning, vol. 1442/1998
of Lecture Notes in Computer Science, Springer, 1998.

[66] T. M. Cover, “Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition,” IEEE

Trans. on Electronic Comp., vol. 3, pp. 326–334, Jun. 1965.
[67] L. Flatto, “A new proof of the transposition theorem,” Proc.

American Mathematical Society, vol. 24, no. 1, pp. 29–31, jan
1970.

[68] K. Ball, “An elementary introduction to modern convex geome-
try,” in Flavors of Geometry, Silvio Levy, Ed., vol. 31 of MSRI

Publications, pp. 1–58. Cambridge University Press, Cambridge,
UK, 1997.

[69] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate

distributions, vol. 1, Wiley, 1994.

Laurent Jacques Laurent Jacques received the B.Sc. in Physics,
the M.Sc. in Mathematical Physics and the PhD in Mathematical
Physics from the Universit catholique de Louvain (UCL), Belgium. He
was a Postdoctoral Researcher with the Communications and Remote
Sensing Laboratory of UCL in 2005-2006. He obtained in Oct. 2006
a four-year (3+1) Postdoctoral funding from the Belgian FRS-FNRS
in the same lab. He was a visiting Postdoctoral Researcher, in spring
2007, at Rice University (DSP/ECE, Houston, TX, USA), and from
Sep. 2007 to Jul. 2009, at the Swiss Federal Institute of Technology
(LTS2/EPFL, Switzerland). Formerly funded by Belgian Science Policy
(Return Grant, BELSPO, 2010-2011), and as a F.R.S.-FNRS Scientific
Research Worker (2011-2012) in the ICTEAM institute of UCL, he is
a FNRS Research Associate since Oct. 2012.

Dr. Jacques main research interests focus on signal and image
processing, sparse representations of general signals (e.g., 1-D,
2-D, sphere), Compressed Sensing reconstruction guarantees and
their interactions with measurement quantization (at high and low
resolution), modeling and designing Compressive Sensors, and on the
solving of Inverse Problems in general for data restoration and data
sampling in audio, optics, computer vision and radioastronomy.

Jason Laska received the B.S. in Computer Engineering from
University of Illinois, Urbana-Champaign in 2005, the M.S. in
Electrical Engineering in 2009 and the Ph.D. in Electrical Engineering
in 2011 from Rice University, Houston, TX. His research interests
include practical compressive sensing architectures, quantization,
and algorithms. He has also spent much time pursuing democracy
and justice in compressive sensing. He shared the Hershel M. Rich
Invention Award from Rice in 2007 for his work on the single-pixel
camera, and is also a cofounder and editor of Rejecta Mathematica.
Jason is currently working on computer vision problems for large,
scalable systems at Dropcam, Inc.

Petros T. Boufounos (S’02-M’06) is a Principal Member of Research
Staff at Mitsubishi Electric Research Laboratories in Cambridge, MA
and a visiting scholar at the Rice University Electrical and Computer
Engineering department in Houston, TX. Dr. Boufounos completed
his undergraduate and graduate studies at MIT. He received the
S.B. degree in Economics in 2000, the S.B. and M.Eng. degrees in
Electrical Engineering and Computer Science (EECS) in 2002, and
the Sc.D. degree in EECS in 2006. Between September 2006 and
December 2008, he was a postdoctoral associate with the Digital Signal
Processing Group at Rice University. Dr. Boufounos joined MERL in
January 2009.

Dr. Boufounos immediate research interests include signal
acquisition and processing, quantization and data representations,
frame theory, and machine learning applied to signal processing. He
is also looking into how signal acquisition interacts with other fields
that use sensing extensively, such as robotics and mechatronics. Dr.
Boufounos has received the Ernst A. Guillemin Master Thesis Award
for his work on DNA sequencing and the Harold E. Hazen Award for
Teaching Excellence, both from the MIT EECS department. He has
also been an MIT Presidential Fellow. Dr. Boufounos is a member
of the IEEE, Sigma Xi, Eta Kappa Nu, and Phi Beta Kappa. He
also serves as an associate editor of the IEEE Signal Processing Letters.

Richard G. Baraniuk received the BSc degree in 1987 from the
University of Manitoba (Canada), the MSc degree in 1988 from
the University of Wisconsin-Madison, and the PhD degree in 1992
from the University of Illinois at Urbana-Champaign, all in Electrical
Engineering. After spending 1992–1993 with the Signal Processing
Laboratory of Ecole Normale Supérieure, in Lyon, France, he joined
Rice University, where he is currently the Victor E. Cameron Professor
of Electrical and Computer Engineering. His research interests lie in
the area of signal processing and machine learning.

Dr. Baraniuk received a NATO postdoctoral fellowship from
NSERC in 1992, the National Young Investigator award from the
National Science Foundation in 1994, a Young Investigator Award
from the Office of Naval Research in 1995, the Rosenbaum Fellowship
from the Isaac Newton Institute of Cambridge University in 1998,
the C. Holmes MacDonald National Outstanding Teaching Award
from Eta Kappa Nu in 1999, the University of Illinois ECE Young
Alumni Achievement Award in 2000, the Tech Museum Laureate
Award from the Tech Museum of Innovation in 2006, the Wavelet
Pioneer Award from SPIE in 2008, the Internet Pioneer Award from
the Berkman Center for Internet and Society at Harvard Law School
in 2008, the World Technology Network Education Award and IEEE
Signal Processing Society Magazine Column Award in 2009, the
IEEE-SPS Education Award in 2010, the WISE Education Award in
2011, and the SPIE Compressive Sampling Pioneer Award in 2012. In
2007, he was selected as one of Edutopia Magazine’s Daring Dozen
educators, and the Rice single-pixel compressive camera was selected
by MIT Technology Review Magazine as a TR10 Top 10 Emerging
Technology. He was elected a Fellow of the IEEE in 2001 and of
AAAS in 2009.

25


	Title Page
	Title Page
	page 2


	Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25


