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Abstract

We examine the complex nonlinear flow-magnetic field dynamics in magnetohydrodynamic
(MHD) turbulence. Using direct numerical simulations (DNS), we investigate the dynamical
interactions subject to the influence of a uniform applied background magnetic field. The ini-
tial magnetic and kinetic Reynolds numbers (based on Taylor microscale) are 45 and there are
no initial magnetic field fluctuations. The sum total of turbulent magnetic and kinetic energies
decays monotonically. With time, the turbulent magnetic fluctuations grow by extracting energy
from velocity fluctuations. Expectedly, the distribution of energy between kinetic and magnetic
fluctuations exhibits large periodic oscillations from the equipartition state due to Alfven waves.
We perform a detailed analysis of the flow-magnetic field coupling and posit a simple model for
the energy interchange. Such dynamical analysis can provide the insight required for turbulence
control and closure modeling strategies.
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Characterization of Flow-
Magnetic Field Interactions
in Magneto-Hydrodynamic
Turbulence
We examine the complex nonlinear flow-magnetic field dynamics in magneto-
hydrodynamic (MHD) turbulence. Using direct numerical simulations (DNS), we investi-
gate the dynamical interactions subject to the influence of a uniform applied background
magnetic field. The initial magnetic and kinetic Reynolds numbers (based on Taylor
microscale) are 45 and there are no initial magnetic field fluctuations. The sum total of
turbulent magnetic and kinetic energies decays monotonically. With time, the turbulent
magnetic fluctuations grow by extracting energy from velocity fluctuations. Expectedly,
the distribution of energy between kinetic and magnetic fluctuations exhibits large peri-
odic oscillations from the equipartition state due to Alfvén waves. We perform a detailed
analysis of the flow-magnetic field coupling and posit a simple model for the energy inter-
change. Such dynamical analysis can provide the insight required for turbulence control
and closure modeling strategies. [DOI: 10.1115/1.4023323]

1 Introduction

The nonlinear physical phenomenon of turbulent fluid flow is
of great importance in nature and industrial applications. The
multiscale, multiphysics interactions that characterize turbulence
render it inherently complex. The nonlinear interactions among
the various scales of turbulent motion lead to further proliferation
of scales—a process known as energy cascade. The nonlinearity
in the governing equations also leads to chaotic behavior and
intermittency. In magneto-hydrodynamic (MHD) turbulence, the
flow field evolution is significantly influenced by the magnetic
field through the so-called Lorentz force. Like many nonlinear
systems, MHD turbulence displays a tendency toward energy
equipartition [1–5]. The objective of this study is to examine the
nonlinear coupling between velocity and magnetic field fluctua-
tions for the purpose of developing a fundamental understanding
of MHD turbulence. We particularly seek to pursue a dynamical
system approach to this study for developing simple models of
interaction and ultimately utilize this insight to constructing turbu-
lence control strategies.

Magneto-hydrodynamics [6] is the study of electrically con-
ducting fluids such as plasmas, liquid metals, liquid superconduc-
tors, and ionic solutions. An imposed external magnetic field can
induce a current in a moving conducting fluid (as per the laws of
Faraday and Lenz), which, in turn, creates body forces in the fluid.
The body force can significantly modify the fluid motion, render-
ing it very different from pure hydrodynamic flow. Furthermore,
the flow of a conducting fluid generates a secondary magnetic
field that changes the total magnetic field lines from that due to
the imposed background field. Thus, in MHD turbulence, there
exists a strong coupling between the Navier–Stokes equations that
govern hydrodynamic motion and Maxwell’s equations of electro-

magnetism. The coupling can lead to many interesting phenomena
not witnessed in hydrodynamic flows.

Much like hydrodynamic flow, MHD flows become turbulent at
high Reynolds numbers [7,8]. Magnetohydrodynamic turbulence
plays a major role in many flows in nature and engineering: e.g.,
electric propulsion, flow control, and materials. Electric propul-
sion (EP) concepts utilize electric and magnetic fields to direct
the flow of plasma to generate thrust. Such propulsion concepts
include ion thrusters [9], Hall thrusters [10], and VASIMR (Vari-
able Specific Impulse Magnetoplasma Rocket) [11]. Turbulence
influences plasma jet production and propagation in EP [11,12].
The flow-magnetic field coupling determines how well MHD gen-
erators and accelerators perform in different conditions [13].

A comprehensive review of MHD turbulence can be found in
the referenced articles [3,4,6,8,14–29]. Depending on the mag-
netic field configuration, the Lorentz forces can alter the coherent
structures in turbulent flow by generating flows with or against the
hydrodynamic tendency [14]. It can also redistribute energy and
momentum in the system between the kinetic and magnetic
energy modes. In the absence of mean velocity gradients, MHD
turbulence decays with time (since there is then no turbulence pro-
duction). This energy decay exhibits many interesting features
depending upon the parameter regime of the flow.

The focus of this paper is on the dynamics of flow-magnetic
field coupling, specifically magnetic-kinetic energy exchange
brought about by the Lorentz force. In particular, we will investi-
gate the coupling in the presence of a uniform magnetic field. To-
ward this end, we perform direct numerical simulations (DNS) of
decaying MHD turbulence with an imposed uniform external
field. We perform an analysis of the coupling and develop a
simple dynamical model that replicates observed behavior. Fur-
thermore, we try to develop a physical understanding underlying
the observed dynamics.

In Sec. 2, we present the governing MHD equations used in this
study and discuss the various turbulence decay computations
performed. Section 3 contains the detailed results from the simula-
tions. In Sec. 3.2, we present the analysis and provide a simple
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phenomenological model. The physics underlying the dynamics is
investigated in Sec. 4. The conclusions are given in Sec. 5.

The physical investigation and dynamical analysis presented in
this paper is also important in the context of MHD turbulence clo-
sure model development. Turbulence modeling of MHD flows
would entail closures for kinetic/magnetic dissipation and Lorentz
work terms. The standard dissipation closure models are contin-
gent on kinetic energy being an inertial scale invariant. However,
in MHD turbulence, it is only their total energy that is an invariant
in the absence of inviscid effects. Here we develop a simple
dynamic model for the turbulent kinetic and magnetic energies.
Such a model will serve as the foundation of future closure mod-
els for kinetic/magnetic dissipation and Lorentz work.

The closure coefficients of the dynamic model developed in
this work are specific to the parameters and initial conditions used
in the simulations. Clearly, the overall procedure is of most
general applicability and the closure coefficients can be rendered
functions of the dimensionless parameters as more DNS and
experimental data become available.

2 Governing Equations and Simulations

The equations used in the current investigation are those that
govern incompressible MHD flows [6]:

r � v ¼ 0 (1)

q
@v

@t
þ qðv � rÞv ¼ �rp�rðB � BÞ

2l0

þ B � rB

l0

þ lr2v (2)

@B

@t
þ ðv � rÞB ¼ ðB � rÞvþ gr2B (3)

r � B ¼ 0 (4)

where B is the magnetic induction field, v is the velocity field, q is
density, p is pressure, l is dynamic viscosity, l0 is the magnetic
permeability of free space, and g is magnetic diffusivity related to
the conductivity: r ¼ 1=l0g.

The key quantities of interest in this study are the turbulent
kinetic energy, magnetic energy, and Lorentz work [3,15,29]:

EK ¼
ð

v02

2
dV (5)

EM ¼ l0

ð
B02

2
dV (6)

EL ¼
ð

v0 � ðj0 � B0ÞdV (7)

The current density j is given by

j ¼ r� B=l0 (8)

Primed quantities are fluctuating components and over-bars are
averages, e.g., B ¼ �Bþ B0, B0 is the magnitude of B0.

Evolution of hydrodynamic turbulence and kinetic-magnetic
field interactions influence the decay of kinetic and magnetic
energies. The total energy, without any source, decays at a rate
dependent on two parameters: the Taylor Reynolds number,
Rek ¼ v0rmsk=�, (� ¼ l=q, k is the Taylor microscale [6]), and
magnetic Reynolds number, Rem ¼ Rek�=g. We can quantify the
interaction of the two fields in terms of the so-called “interaction
parameter” also known as the Stuart number:

N ¼ r �B2k=qv0rms (9)

The kinetic and magnetic energy evolve as:

@

@t
q

v2

2

� �
¼ v � r q

v2

2
� p

� �
þ v � ðj� BÞ þ v � lr2v (10)

@

@t

B2

2l0

� �
¼ � 1

l0

r � E� Bð Þ � v � ðj� BÞ � l0gj2 (11)

where the electric field, E, is related to the current density as

E ¼ j=r� v� B (12)

The Lorentz work term, v � ðj� BÞ, appears with opposite sign in
the kinetic and magnetic energy equations (Eqs. (10) and (11)).
This is the key mechanism for energy exchange between velocity
and magnetic fields. The energy exchange is also observed as the
action of Alfvén waves [22,30].

2.1 Computational Approach: The Lattice Boltzmann
Method. The computational algorithm employed in this study
is the lattice Boltzmann method (LBM) [31–45]. The lattice
Boltzmann equation is a discretized form of the Boltzmann equa-
tion of statistical thermodynamics. Equations (1) and (2) may be
derived from Boltzmann’s equation using the Chapman–Enskog
expansion [34,35]. A vector analog yields Eq. (3) and satisfies
Eq. (4) [46]. Macroscopic properties (e.g., q;qv;B) are computed
as moment integrals of the velocity distribution functions obtained
from solving these equations. These linearized Boltzmann-type
equations are integrated to second order along each equation’s
discrete characteristic velocity sets. First, the velocity space is dis-
cretized into a set of small number and highly symmetric points
so that a sufficient number of the members of the associated
velocity distribution function are preserved exactly by the numeri-
cal quadratures. Second, the discrete velocity set co-locates points
in a lattice in space so that the numerical integration consists of
two simple steps: collision (local) and advection (to nearest neigh-
bor lattices) [34,35]. Polynomial representation of the equilibrium
distributions and corresponding times to relax to equilibrium (that
also yield the diffusive coefficients) are sufficient to accurately
resolve macroscopic properties of interest [46].

In Refs. [36] and [41], DNS of decaying isotropic turbulence is
performed and all of the critical physics including power-law
decay are clearly demonstrated. Effects of temperature fluctua-
tions [36] and system rotation [43] are also accurately replicated.
In Ref. [44], LBM–DNS is performed for time-varying homoge-
neous shear flow. In [45], LBM–LES (large-eddy simulation) is
performed for rectangular and square jets. In summary, LBM is
well established as an excellent computational tool for DNS and
LES of turbulence.

Successful MHD–LBM computations require three key ele-
ments: (i) a strategy to account for the effect of the magnetic
field on the velocity field; (ii) a means of solving the magnetic
induction equation; and (iii) a velocity field solver. We use the
fully-validated MHD–LBM computer code of Riley et al. [12,47]
based on the discretized magnetic field scheme proposed by Dellar
[46]. Riley et al. [47] establish the accuracy and robustness of this
method for MHD turbulence simulations.

For example, the MHD–LBM calculations of the Hartmann
flow is performed and compared against analytical data resulting
in precise agreement [48]. Rectangular plasma jet vorticity
dynamics have been resolved using LBM [12,47]. Turbulent flow
characteristics have been quantified using LBM [36,41–45,49]
and compares very well with DNS based on the spectral method
[50–52]. More importantly, MHD turbulence calculations in
Ref. [25] show that the vorticity budget and turbulence small-
scale structure (orientation between vorticity and strain-rate eigen-
directions) are well-captured. Important magnetic field invariants
such as helicity and cross-helicity are also investigated. At this
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stage of development the MHD–LBM code is well-proven for
further investigations.

2.2 DNS Parameters. We conduct studies of uniform mean
magnetic fields of strengths of 0:001 T and 0:0025 T, for which
the interaction parameter are N ¼ 0:05 and 0:3, respectively. The
initial strength and the alignment of the magnetic field relative to
velocity fluctuations strongly influence the evolution of MHD
turbulence. In the present simulations, the magnetic field is
initially uniform with no fluctuations. Thus the velocity field inter-
actions with the uniform background field solely initiate magnetic
fluctuations. Subsequent evolution of magnetic fluctuations
depends on the nonlinear interplay between velocity and magnetic
fluctuations.

In all simulations, the velocity field is initially random, iso-
tropic and incompressible, specified as discussed in Kerimo and
Girimaji [53]. The initial isotropic velocity field has an energy
spectrum of the form [5]

EKðj; 0Þ / j4e�2ðj=j0Þ2 (13)

Initially, only wave numbers j ¼ 2; 3; 4 are energized. The initial
Taylor Reynolds and magnetic Reynolds numbers are both 45.
The magnetic Prandtl number is unity. It is clearly demonstrated
in Ref. [25] that all of the important nonlinear aspects of
turbulence are already in evidence at this relatively low Reynolds
number of 45. For example, the correct power-law exponent
is seen in LBM–DNS. Even more importantly, it is seen that vor-
ticity aligns principally with the intermediate strain-rate eigendir-
ections, which is an important signature of small-scale effects.
This is the range of Reynolds and Prandtl numbers investigated in
Refs. [19], [20], and [23]. Thus, the dimensionless parameters
used in the current study are well in keeping with relevant physics
and other works in literature. The value of resolution indicator
jmaxgj is about 2 during the peak of cascade, where gj is the
Kolmogorov microscale. This indicates that the smallest scales
are well resolved. The computational domain is a 1283 uniform
mesh with periodic boundaries.

3 Analysis of Simulation Results

One of the most important features of MHD turbulence is the
coupling dynamics between flow and magnetic fluctuations [25]
leading to energy interchange. The energy exchange is the focus
of this work. Previous studies [25] have been performed to under-
stand the dynamics of this exchange in decaying homogeneous
MHD flows with and without imposed background magnetic
fields. The energy exchange in the absence of an imposed back-
ground magnetic field is straightforward: there is a monotonic
evolution toward kinetic-magnetic energy equipartition. However,
the presence of a background magnetic field complicates the flow-
magnetic field coupling. Some of the important findings for the
case of turbulence decay under the influence of a uniform back-
ground magnetic field with no initial magnetic fluctuations are
summarized in our previous study [25]:

(1) Initially, the Lorentz force rapidly transfers energy from
velocity to magnetic fluctuations. Indeed, the magnetic
energy overshoots kinetic energy. Subsequently, the
Lorentz force tries to impose equipartition. The evolution
toward equipartition is oscillatory with intermittent large
fluctuations. Alboussiérre et al. [1] have also observed these
oscillations in their numerical and experimental work.

(2) Over time, the amplitude and frequency of the oscillations
in kinetic and magnetic energy decrease, partly due to
kinetic energy decay, and partly due to the initially iso-
tropic fluctuating velocity field adjusting to the directional-
ity of the mean magnetic field (see Figs. 1 and 2).

(3) Comparing MHD turbulent flows with different uniform
mean magnetic field strengths, the so-called interaction

parameter was demonstrated to be key in the strength and
frequency of the resulting oscillations in the energy.

(4) The evolution of cross-helicity is in Figs. 3 and 4. Although
the definition of magnetic helicity, HM ¼

Ð
B � ðr � BÞd3x,

given in Ref. [25] does not necessarily satisfy a conserva-
tion law [29], it is linked with the so-called “a-effect” in
dynamos [3,15,29] and hence serves as an indicator of
dynamo action, if any. In all cases considered, the kinetic
helicity is dominant and cross-helicity is negligible.

(5) In the uniform magnetic field cases, the kinetic helicity
exhibits oscillations similar to the ones seen in other quanti-
ties. The kinetic and magnetic helicities oscillate and decay

Fig. 1 Kinetic and Magnetic Energy Decay with eddy turnover
time, s. (B 5 0: solid; N 5 0:0: _. _. ; N 5 0:3: ... ; N 5 0:05: - - -) [25].

Fig. 2 Evolution of EM , EK , Et and Lorentz work with s. (a)
N 5 0:3; (b) N 5 0:05 (solid: Kinetic Energy; _._. : Total Energy;
... : Lorentz work, - - - : Magnetic Energy) [25].
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as in the respective forms of energy. The opposite signs
indicate the exchange mechanism found in the respective
forms of energy. The scaling of helicity with total energy
(kinetic and magnetic, Et ¼ EK þ EM) accounts for energy
decay. The scaled helicity further unveils the oscillations
(Figs. 4(a) and 4(b)) seen in the energy (Fig. 1).

It is well established that the large oscillations in kinetic and
magnetic turbulent energies are due to the influence of Alfvén
waves propagating through the flow field. This effect manifests
via the Lorentz force. However, the details of the interactions
between the velocity and magnetic fluctuations under the influ-
ence of the Alfvén waves are not quantitatively established.
Such quantification is critical for the development of turbulence
feedback control strategies and closure modeling. The present
work addresses this gap in literature. In this section, we present
the dynamic analysis and modeling of the observed simulation
results. The quantities of interest are the turbulent kinetic energy,
EK , magnetic energy, EM, and the Lorentz work EL. As the turbu-
lence field is homogeneous, these averages are only functions of
time and not space.

3.1 Energy Evolution Equations. Here, we briefly present
the various steps involved in deriving the evolution equations of
turbulent kinetic and magnetic energies. During averaging, we
invoke the following:

(1) Mass conservation: v0i;i ¼ 0:
(2) Solenoidal magnetic field (divergence free): B0i;i ¼ 0:
(3) Homogenous turbulence and magnetic field (spatial deriva-

tive of volume averaged terms is zero): ð �AÞ;i ¼ ð �AÞ;i ¼ 0:

We start with writing the Lorentz work term in Eqs. (10)
and (11) in indicial notation prior to averaging:

v0 � ðj0 � B0Þ ¼ 1

l0

v0 � ððr � B0Þ � B0Þ ¼ �1

l0

ðv0iB0k;iB0k � v0iB
0
i;kB0kÞ

Volume-averaging the Lorentz work term gives

v0 � ðj0 � B0Þ ¼ � 1

l0

ðv0iB0k;iB0k � v0iB
0
i;kB0kÞ (14)

Consider the term v0iB
0
k;iB
0
k in Eq. (14)

v0iB
0
k;iB
0
k ¼ ðv0iB0kB0kÞ;i � v0i;iB

0
kB0k � v0iB

0
kB0k;i

¼ ðv0iB0kB0kÞ;i � v0i;iB
0
kB0k � v0iB

0
kB0k;i

¼ 0� 0� v0iB
0
kB0k;i (15)

Similarly,

v0iB
0
i;kB0k ¼ ðv0iB0iB0kÞ;k � v0i;kB0iB

0
k � v0iB

0
iB
0
k; k

¼ ðv0iB0iB0kÞ;k � v0i;kB0iB
0
k � v0iB

0
iB
0
k; k

¼ 0� v0i;kB0iB
0
k � 0 ¼ �v0i;kB0iB

0
k (16)

Thus, the final expression for the volume averaged Lorentz work
term is

v0 � ðj0 � B0Þ ¼ � 1

l0

B0 � ððB0 � rÞv0Þ (17)

Fig. 3 Evolution of helicities with s (a) N 5 0:3; (b) N 5 0:05
(solid: Cross Helicity; ... : Kinetic Helicity, - - - : Magnetic Helic-
ity) [25] Fig. 4 Evolution of helicities (scaled to kinetic plus magnetic

energy) with s. (a) N 5 0:3; (b) N 5 0:05 (solid: Cross Helicity; ... :
Kinetic Helicity, - - - : Magnetic Helicity) [25]
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Consider the first term on the RHS (which is the divergence
of the Poynting vector) in the instantaneous magnetic
energy equation, Eq. (11). Using Eq. (12) and noting that
ðv0 � B0Þ � B0 ¼ v0 � ðB0 � B0Þ ¼ 0,

� 1

l0

r � E0 � B0ð Þ ¼ � 1

rl0

r � j0 � B0ð Þ (18)

¼ g
l0

B0k;iB
0
k;i þ B0kB0k;ii � B0k;iB

0
i;k � B0kB0i;ki

� �
(19)

Next, consider the Joule dissipation term on the RHS of the
instantaneous magnetic energy equation, Eq. (11),

gl0j02 ¼ g
l0

r� B0ð Þ � r � B0ð Þ ¼ g
l0

�B0k;iB
0
k;i þ B0k;iB

0
i;k

� �
(20)

Combining Eqs. (18) and (20) we get

�r � E0 � B0ð Þ
l0

� gl0j02 ¼ g
l0

B0kB0k;i

� �
;i
� B0k;iB

0
k;i

� �
(21)

Averaging gives

� 1

l0

r � E0 � B0ð Þ � gl0j2 ¼ � g
l0

B0k;iB
0
k;i

� �

The turbulent kinetic and magnetic energies,

EK ¼ qv0iv
0
i=2; EM ¼ B0iB

0
i=2l0 (22)

evolve as

dEK

dt
¼ �l v0k;iv

0
k;i

� �
� 1

l0

v0i;kB0iB
0
k

� �
(23)

dEM

dt
¼ � g

l0

B0k;iB
0
k;i

� �
þ 1

l0

v0i;kB0iB
0
k

� �
(24)

The two equations are quite similar in form and contain dissipa-
tion terms. The second term (Lorentz work term) is the same
in both equations, but appears with opposite signs. This is the
coupling term which is responsible for the transfer of energy from
the kinetic to magnetic mode as noted with Eqs. (10) and (11).
Summing Eqs. (23) and (24), the resulting equation for the total
energy is

dEt

dt
¼ �lðv0k;iv0k;iÞ �

g
l0

B0k;iB
0
k;i

� �

While the evolution of total energy is simple monotonic decay
[14], the partition and interchange between kinetic and magnetic
energies is clearly more complex.

3.2 Modeling the Energy Exchange. The evolution of
the kinetic, magnetic, total energy, and the Lorentz work is
shown as a function of the eddy turnover time (s ¼ tEk=e, where
e ¼ lðv0k;iv0k;iÞ), in Fig. 2(a) for two values of the interaction
parameter N. The total energy

Et ¼ EK þ EM (25)

seems to decay exponentially similarly to other quantities
observed in turbulence [7,8,14]. Therefore we postulate the fol-
lowing decay law

dEt

dt
¼ �KEt (26)

with solution (E0
t being the initial value of the total energy)

Et ¼ E0
t e�Kt (27)

The exponential decay model for the total energy requires
further discussion. It is well-known that in fluid (non-MHD)
turbulence, the kinetic energy experiences power-law decay. In
Ref. [25], it is seen that there are important differences in kinetic
energy decay due to the presence of a magnetic field. The results
shown here support an exponential decay model for the total
energy.

Equation (25) also suggests

EK / lðv0k;iv0k;iÞ; EM /
g
l0

B0k;iB
0
k;i

� �
(28)

The data for the N ¼ 0:3 case (Fig. 2(a)) yield E0
t ’ 0.11 and

K ’ 1:2.
The exponential decay is easily removed from the kinetic and

magnetic energy plots by normalization with the total energy. The
normalized kinetic and magnetic energy (Fig. 5) are symmetric
about the line E ¼ 0:5. We conclude that, at times, all energy is
present in the kinetic mode. Then the action of the Lorentz work
transfers energy to the magnetic mode and very quickly energy is
equipartitioned between the kinetic and magnetic modes. After a
few oscillations, the Lorentz work again deposits all energy in the
kinetic mode and the pattern repeats. The difference between suc-
cessive oscillations is the damping of the intermittent oscillations
to an extent that oscillations are totally dissipated.

The Fourier spectrum of the normalized kinetic energy reveals
three peaks at frequencies

x1 ¼ 11; x2 ¼ 22; x3 ¼ 33

Note that the frequencies are commensurate, with ratio of
x1 : x2 : x3 ¼ 1 : 2 : 3:

While the amplitudes corresponding to different frequencies are
not the same, the simplest model represents EK and EM as sums of
three modes

EK ¼
X3

j¼1

EKj; EM ¼
X3

j¼1

EMj (29)

Fig. 5 Kinetic and magnetic energy (normalized with total
energy) vs. eddy turnover time
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We now posit the following simple phenomenological model for
the kinetic energy

EKj ¼
E0

t

2
e�Kt 1þ cos2 xjt

� �� �
(30)

EK ¼
E0

t

2
e�Kt

X3

j¼1

1þ cos2 xjt
� �� �

(31)

and a corresponding expression for the magnetic energy as

EMj ¼
E0

t

2
e�Kt sin2 xjt

� �
; EM ¼

E0
t

2
e�Kt

X3

j¼1

sin2 xjt
� �

(32)

Both energies are nonnegative and the total energy then decays
exponentially as required by Eq. (27).

However, the amplitudes corresponding to different fre-
quencies are not the same. This suggests the following model
representation:

EK ¼
E0

t

c1 þ c2 þ c3

e�Kt
X3

j¼1

cj cos2 xjt
� �

þ D
3

� �

¼ E0
t e�Kt

2
X3

j¼1

cj

X3

j¼1

cj 1þ cos 2xjt
� �� �

þ 2D
3

� �
(33)

and similarly

EK ¼
E0

t

c1 þ c2 þ c3

e�Kt
X3

j¼1

cj sin2 xjt
� �� �

¼ E0
t e�Kt

2
X3

j¼1

cj

X3

j¼1

cj 1þ cos 2xjt
� �� �� �

(34)

Note that

EKj þ EMj ¼
E0

tX3

j¼1

cj

e�Kt cj þ
D
3

� �
(35)

which enables specifying the initial conditions for each j ¼ 1; 2; 3
as

E0
Mj ¼ 0; E0

Kj ¼
E0

t

2
X3

j¼1

cj

cj þ
D
3

� �

The above model also verifies the postulate in Eq. (18).
From Fourier analysis we get

c2
1 ¼ 15; c2

2 ¼ 8; c2
3 ¼ 5 (36)

c1 ¼ 3:873; c2 ¼ 2:828; c3 ¼ 2:236 (37)

Figures 6 and 7 show the comparisons of the model with the com-
putational results. The model matches the data for first two peaks
very well. The lag after the first two peaks can be attributed to the
omitted phase shifts and nonlinear changes in the period.

Now, based on the improved model we want to quantify the
equipartition of energy. The data supports the statement that at
any given instant, kinetic and magnetic energy are equally spaced
on either side of half of the total energy, i.e.,

EK ¼
Et

2
þ f and EK ¼

Et

2
� f (38)

Thus

f ¼ EK � EM

2
¼ ce�Kt

2
X3

j¼1

cj

X3

j¼1

cj cos 2xjt
� �� �

þ ce�Kt

2
X3

j¼1

cj

D (39)

Fig. 6 Comparison of computational data with proposed
model

Fig. 7 Kinetic and Magnetic Energy plot from the model

Fig. 8 Evolution of EM=Et and EK =Et with s. (solid:Kinetic
Energy; - - - : Magnetic Energy)
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This leads us to the following final observation. Although there
is a continuous exchange of energy between the kinetic and
magnetic mode, the energy is not equally partitioned. There is a
part of kinetic energy that is not exchanged. The percentage of
un-exchanged energy is given by

cX3

j¼1

cj

e�KtD

cX3

j¼1

cj

e�Kt
X3

j¼1

cj þ D

 ! ¼ DX3

j¼1

cj þ D

(40)

This indicates as much as 31% of the energy is not exchanged for
the N ¼ 0:3 case.

4 Dynamics and Kinematics of Energy Exchange

It is necessary to closely examine the kinetic and magnetic
energies to better identify the cause and effect relationship of the
dynamics in MHD turbulence in a uniform magnetic field. We
now look more closely at the fields and their variations in a spe-
cific time range.

The interaction between the velocity and magnetic energies
is brought about by Lorentz work as previously shown [25]. In
Fig. 2, the evolution of Lorentz work is shown and the two

Fig. 9 The Lorentz force at (a) s 5 0:12, (b) s 5 0:18, (c) s 5 0:2 and (d) s 5 0:25
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energies are also presented to demonstrate the exchanges clearly.
Note the nonmonotonic approach to equipartition in the cases
with a mean magnetic field applied. To examine the exchange
between kinetic and magnetic energies without the complications

of dissipation, we present the individual energies normalized by
the total energy at that time instance in Fig. 8. The figure covers a
time period s ¼ ð0; 0:25Þ which represents the first full wave-
length of oscillatory exchange. That pattern repeats itself with

Fig. 10 Current density progression indicating propagation of Alfvén wavesas also seen in other
studies [1] (a) s 5 0:12, (b) s 5 0:138, (c) s 5 0:158, (d) s 5 0:18, (d) s 5 0:2 and (e) s 5 0:25
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minor modifications at later times. Much of the physics of interest
to this study is indeed resident in the time period s ¼ 0 to
s ¼ 0:25.

We closely examine the behavior of key variables at the peaks
and troughs in the oscillations. The times at which the peaks and

troughs occur are at the following approximate eddy turnover
times: s ¼ 0:12; 0:18; 0:2, and 0.25. These are times when EK

and EM reach extremum values. For example, EMðs ¼ 0:12Þ is a
maximum of magnetic energy while EMðs ¼ 0:25Þ is a minimum
of magnetic energy (other than the initial conditions). Conversely,

Fig. 11 Streamlines at eddy turnover times, (a) s 5 0:18 and (b) s 5 0:25

Fig. 12 Vorticity field “streamlines” at eddy turnover times, (a) s 5 0:18 and (b) s 5 0:25
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the s ¼ 0:12 and 0:25 are times that correspond to a minimum and
a maximum of kinetic energy, respectively. The s ¼ 0:12 and
0:25 are also times when the rate of change of kinetic and mag-
netic energies vanish. The s ¼ 0:2 is a “crossover” time where the
magnetic and kinetic energy curves cross: EM ¼ EK .

Now we present observations regarding the helicities of the
cases in Figs. 3(a)–4(b). In Fig. 3(a), at s ¼ 0:12, there is a
trough in the kinetic helicity in correspondence with the kinetic
energy. Similarly, there is a peak at 0.18 in both kinetic and
magnetic helicity. After this time, the frequency of oscillation
slows down. Note that there are stronger oscillations in the
N ¼ 0:3 case with the stronger magnetic field whereas the
oscillations seem to be weaker for the N ¼ 0:05 case. This is
an indication of a greater likelihood of dynamo action at stron-
ger magnetic fields [3,15,29], although none of these cases con-
sidered here has sustained helicity large enough to cause such
action.

The Lorentz force (vector form) is plotted in Fig. 9. This fig-
ure, not only shows the magnitude of the Lorentz force to be
lowest when the magnetic energy is lowest at s ¼ 0:25, but
also indicates that the Lorentz force switches direction between
s ¼ 0:12 and s ¼ 0:18 in some key locations. The Lorentz force
vectors are extremely small at s ¼ 0:25 corresponding to the
weak Lorentz force. This is coincident with the lowest mag-
netic energy at s ¼ 0:25 as seen in Fig. 8. The changes
observed at these different times are interpreted as passing of
Alfvén waves [1,54–56]. We plot the current density magnitude
contours in Fig. 10 to show Alfvén wave propagation as shown
in other studies [1,54–56]. The time intervals yield the fre-
quency observed in the nonlinear dynamical systems analysis
in the previous section.

The alignment of the velocity with the Lorentz force, i.e., the
alignment of the effect with the cause is given by:

cos Hð Þ ¼ v0 � ðj0 � B0Þffiffiffiffiffiffi
v02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj0 � B0Þ2

q (41)

This average value is nearly 0 at all times, indicating no prefer-
ential statistical alignment between the velocity field and the
Lorentz force. The velocity and magnetic fields suggest local,
if not global, alignments according to the times and locations
where they have their extrema. Figures 11–14 show stream-
lines, vectors or contours of velocity, vorticity or magnetic
induction fields at times that coincide with maxima and minima
of energy in Fig. 8.

(1) Figure 11(a) shows the streamlines more clustered at
s ¼ 0:18. This is when Fig. 8 shows the magnetic energy is
crossing the kinetic energy as it rises to a peak. Figure
11(b) shows the streamlines more dispersed at s ¼ 0:25,
which is when Fig. 8 indicates that the kinetic energy is
highest and the magnetic energy is lowest.

(2) Figure 12(a) shows the equivalent streamlines of the vortic-
ity field at s ¼ 0:18, when the lines are more clustered. Fig-
ure 12(b) shows the vorticity streamlines at s ¼ 0:25, when
the lines are more dispersed which is when the kinetic
energy is highest.

(3) Figure 13(a) shows the equivalent streamlines of the mag-
netic field with a lot of fluctuations. Figure 13(b) shows the
dominance of the mean magnetic field over the fluctuations
at s ¼ 0:25.

The large change in these streamlines from s ¼ 0:2 to s ¼ 0:25
correspond to high energy rates of change during the oscillations
according to the constants in Eq. (36) of the model. These changes
observed at these different times are evidence of the noted
exchange mechanism due to the Lorentz force. The repetition of
these patterns suggests that they are manifestations of Alfvén
waves on the streamline fields [57].

The magnitude of the vorticity field, plotted in Fig. 14,
shows the contours elongated in the direction of the applied
mean magnetic field at s ¼ 0:2 suggesting strong alignment.
Figure 14(d) shows the highest values of the vorticity corre-
sponding with the highest values of the kinetic energy at
s ¼ 0:25 in Fig. 8. These effects on the contours are due to the
Lorentz force exchange mechanism and are also indications of
Alfvén waves [1,54–56].

Fig. 13 Magnetic field “streamlines” at eddy turnover times, (a) s 5 0:18 and (b) s 5 0:25
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5 Conclusion

Under the influence of a uniform magnetic field, MHD turbu-
lence decay exhibits complex flow-magnetic field interactions due
to the presence of Alfvén waves. The main effect of the Alfvén
waves is to cause large oscillations in the turbulent kinetic and
magnetic energies even as the two approach equipartition. This is
in contrast to a monotonic evolution toward magnetic-kinetic
equipartition in the absence of the background field. While the
qualitative aspects of the effects of Alfvén waves are well under-
stood, we present for the first time a quantitative analysis of the
magnetic-velocity field interactions. Subject to the conditions of
this study, the DNS results reveal three dominant frequencies in
the kinetic-magnetic energy exchange—corresponding to three
Alfvén frequencies. A detailed analysis of the flow-magnetic field
coupling is performed and a simple dynamic model is developed
to mimic the observed energy exchange. The underlying physics

is also examined. Overall, the present work provides important
insight required for developing MHD control strategies and turbu-
lence closure models.
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