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Abstract

Traditionally rendezvous and proximity maneuvers have been performed using open-loop ma-
neuver planning techniques and ad hoc error corrections. In this paper, a Model Predictive Con-
trol (MPC) approach is applied to spacecraft rendezvous and proximity maneuvering problems
in the orbital plane. We demonstrate that various constraints arising in these maneuvers can
be effectively handled with the MPC approach. These include constraints on thrust magnitude,
constraints on spacecraft positioning within Line-of-Sight (LOS) cone while approaching the
docking port on a target platform, and constraints on approach velocity to match the velocity of
the docking port. The two cases of a non-rotating and a rotating (tumbling) platform are treated
separately, and trajectories are evaluated in terms of maneuver time and fuel consumption. For
the case when the platform is not rotating and the docking port position is fixed with respect to
the chosen frame, an explicit off-line solution of the MPC optimization problem is shown to be
possible; this explicit solution has a form of a piecewise affine control law suitable for on-line
implementation without an onboard optimizer. In the case of a fast rotating platform, it is, how-
ever, shown that the prediction of the platform rotation is necessary to successfully accomplish
the maneuvers and to reduce fuel consumption. Finally, the proposed approach is applied to
debris avoidance maneuvers with the debris in the spacecraft rendezvous path. The significance
of this paper is in demonstrating that Model Predictive Control can be an effective feedback con-
trol approach to satisfy various maneuver requirements, reduce fuel consumption, and provide
robustness to disturbances.
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SUMMARY

Traditionally rendezvous and proximity maneuvers have been performed using open-loop maneuver
planning techniques and ad hoc error corrections. In this paper, a Model Predictive Control (MPC)
approach is applied to spacecraft rendezvous and proximity maneuvering problems in the orbital plane.
We demonstrate that various constraints arising in these maneuvers can be effectively handled with the
MPC approach. These include constraints on thrust magnitude, constraints on spacecraft positioning within
Line-of-Sight (LOS) cone while approaching the docking port on a target platform, and constraints on
approach velocity to match the velocity of the docking port. The two cases of a non-rotating and a rotating
(tumbling) platform are treated separately, and trajectories are evaluated in terms of maneuver time and
fuel consumption. For the case when the platform is not rotating and the docking port position is fixed
with respect to the chosen frame, an explicit off-line solution of the MPC optimization problem is shown
to be possible; this explicit solution has a form of a piecewise affine control law suitable for on-line
implementation without an onboard optimizer. In the case of a fast rotating platform, it is, however, shown
that the prediction of the platform rotation is necessary to successfully accomplish the maneuvers and to
reduce fuel consumption. Finally, the proposed approach is applied to debris avoidance maneuvers with
the debris in the spacecraft rendezvous path. The significance of this paper is in demonstrating that Model
Predictive Control can be an effective feedback control approach to satisfy various maneuver requirements,
reduce fuel consumption, and provide robustness to disturbances. Copyright c© 2011 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Autonomous spacecraft rendezvous and proximity operations (RPO) are among the most important
and difficult elements of modern spacecraft missions. Examples of RPO maneuvers (see [17,32,38]
and references therein) include a transport vehicle approach and docking to the International Space
Station (ISS), a capture and recovery of a tumbling out-of-control satellite, and a fly-by or avoidance
of a space object such as debris.

The requirements of RPO maneuvers invariably include the treatment of pointwise-in-time state
and control constraints. Examples include the thrust magnitude constraints, constraints on the
approaching spacecraft to maintain its position within a Line-of-Sight (LOS) cone emanating from
the docking port on the target platform (see [1, 4, 6, 14] and references therein), and constraints

∗Correspondence to: Prof. Ilya V. Kolmanovsky, Department of Aerospace Engineering, The University of Michigan,
Ann Arbor, Michigan, USA. E-mail: ilya@umich.edu.
† This research was not sponsored by Mitsubishi Electric or its subsidiaries.

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared using rncauth.cls [Version: 2010/03/27 v2.00]



2 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

on the terminal translational velocity of the spacecraft to match the velocity of the docking port
for soft-docking [5]. The docking port may exhibit complicated motion if the target spacecraft is
rotating or tumbling out-of-control (see [4, 10]). Collisions with debris emerging on the spacecraft
path must be avoided during the maneuvers. In addition to satisfying constraints, fuel consumption
and maneuver time must be minimized.

Spacecraft rendezvous control problems have received significant attention in the literature. See,
for instance, [4, 9, 14, 21, 24, 26], and references therein.

The main motivation for this paper is to demonstrate that Model Predictive Control (MPC) can
be an attractive feedback control approach for RPO maneuvering, which has traditionally been
performed via open-loop “∆v” sequencing (see e.g., [14]). In recent years some approaches for
spacecraft rendezvous and docking based on variants of the Model Predictive Control framework
have been proposed. In [33] the authors propose an MPC strategy with variable horizon that requires
the solution of a mixed-integer linear program at every control cycle. Such a strategy is extended
in [4] to generate failure-safe trajectories. The variable horizon approach is further extended in [18]
in the so-called “rubber band” MPC, where the MPC controller is designed by inverse optimality
using techniques similar to [13] with a horizon that first maintains a constant number of moves
(as in standard MPC) and then decreases as in variable horizon MPC. An application of MPC to
spacecraft navigation in proximity of a space station is considered in [36], where an unconstrained
MPC is proposed for guidance to the neighborhood of the space station, while the LOS between the
station and the spacecraft sensors is maintained by a constrained spacecraft attitude controller, and
a control allocation scheme commands the thrusters. In a similar context, in [19] a receding horizon
controller requiring the solutions of non-convex quadratically constrained quadratic programs has
been proposed for passively safe proximity operations, where a statistical model of the uncertainty
is used for improving robustness with respect to position uncertainty.

The available spacecraft computing power may vary depending on the spacecraft, from that being
comparable to a personal computer for high end spacecraft to being significantly more restricted
and even less than in automotive applications for low end spacecraft (nanosats or cubesats). In either
case, solutions which require lower computing effort are in demand for spacecraft applications. Any
saved capacity can be used to deploy additional control, communications, and fault management
functions, and/or reduce electric power consumption which is a very significant concern in these
applications.

Thus, motivated by considerations of computational feasibility for on-board implementation
in orbiting spacecraft, and differently from the previously mentioned literature, our approach to
treating RPO problems is based on utilizing to a maximum extent the linear quadratic Model
Predictive Control framework with constant horizon, real-valued optimization variables, and
dynamically reconfigurable linear constraints. The MPC cost function is specified with stage and
terminal costs defined based on Lyapunov stability considerations. The on-line computations in
the case of such a linear quadratic MPC reduce to solving a quadratic program subject to linear
constraints (see [25]) and in many cases, such as when approaching a non-rotating platform, this
problem can be solved explicitly off-line using the parametric quadratic programming techniques
developed in [2, 3]. With such an explicit MPC approach, the solution can simply be stored in the
form of piecewise affine feedback law for on-line implementation. Preliminary results using this
approach have been discussed by the authors in [27–29], and are here analyzed with more details,
and using problem specifications closer to the ones of real spacecraft applications.

For the general case of a rotating platform, the approach developed in this paper aims at
overcoming a limitation of the standard MPC approach, namely the assumption of completely time-
invariant plant and prediction model. Although not yet fully adaptive as a (constrained) Generalized
Predictive Control (GPC) [7, 8], where the entire plant model and optimal controller are identified
online, the proposed MPC with dynamically reconfigurable constraints reduces the gap between
MPC and GPC, by allowing some degrees of adaption to modified external conditions (i.e., different
docking port position and orientation in the considered application).

To illustrate our approach in detail, in the paper we consider spacecraft maneuvering in close
proximity to a disk-shaped target platform orbiting the Earth along a circular orbital track. Our
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MPC APPROACH TO SPACECRAFT RENDEZVOUS AND PROXIMITY MANEUVERING 3

treatment is based on the assumption of point mass spacecraft, circular orbit and in-orbital plane
motion. These assumptions are reasonable for many maneuvers, and can be relaxed. We first
consider a scenario when the platform is non-rotating relative to its center of mass and then a
scenario when the platform is rotating with known constant angular velocity relative to its center
of mass. A Clohessy-Wiltshire-Hill (CWH) relative motion model is used by the MPC controller
for repeated prediction and constrained optimization of spacecraft motion in response to the thrust
sequence. Constraints on LOS cone positioning, terminal velocity for soft-docking, thrust magnitude
and debris avoidance are dynamically reconfigured and approximated by linear constraints, which
are then enforced by the MPC controller.

The paper is organized as follows. In Section 2 we discuss spacecraft and target platform
equations of motion, as well as various modeling details. The constraints in the RPO problem
and their dynamic reconfiguration by linear constraints are the subject of Section 3. In Section 4
we develop MPC controllers for the cases without and with prediction of the platform motion.
In Section 5 we examine the simulated trajectories for the case of a non-rotating platform, and we
analyze the impact of the weights in the MPC cost function on fuel consumption-related metrics and
time-to-dock. The robustness of the MPC controller is demonstrated by simulating the spacecraft
motion as affected by unmeasured disturbances and comparing the closed-loop trajectories to the
open-loop trajectories. The disturbances can occur due to air drag on a Low Earth orbit (LEO) or
due to errors in generating spacecraft thrust. An explicit MPC controller is also constructed in this
section. For a rotating target platform, which is the case considered in Section 6, the trajectories, the
fuel consumption and the time-to-dock are compared for the implementation of the MPC controller
with the prediction of the target’s platform motion and without such a prediction. Finally, in Section
7, we demonstrate that our approach can be applied to the debris avoidance maneuvers. Concluding
remarks are made at the end of the paper, in Section 8.

The main contributions of the paper are summarized as follows. First, we demonstrate that various
constraints in the RPO problem can be handled using a linear quadratic MPC approach coupled with
dynamic reconfiguration of the (linear) constraints. This approach is feasible for implementation
on-board of the spacecraft either through an on-line solution using a quadratic programming solver
or, in the case of non-rotating platform, using an explicit MPC approach. Second, we demonstrate
the capability of the spacecraft, controlled with MPC, to perform an approach of either a non-
rotating platform or of a rotating platform, and avoid debris on the spacecraft path. Fly-over
imaging maneuvers involve controlling spacecraft motion on a periodic orbit around another object
and can be handled using techniques developed here for approaching a rotating platform. Third,
we demonstrate the robustness to unmeasured disturbances through the mechanism of systematic
feedback corrections with MPC. Fourth, we demonstrate a direct connection between weights
in the MPC cost function and fuel consumption and time-to-dock maneuver attributes. These
results suggest that the currently employed open-loop guidance schemes coupled with ad-hoc error
correction procedures can be replaced in the future by a closed-loop guidance based on Model
Predictive Control that systematically compensates for disturbances and enforces constraints.

2. EQUATIONS OF MOTION

We consider autonomous rendezvous and docking maneuvers between a target platform and a
spacecraft. The target platform is assumed to have a disk shape of radius rp [m]. If the platform
does not have disk shape to begin with or for fly-over maneuvers, the platform can be over-bounded
by a disk of a sufficiently large radius, see Figure 1. The center of mass of the platform is on a
circular orbit around the Earth, and the orbital radius is R0 [m], see Figure 2. A docking port is
located on the platform surface. The platform rotates at a constant angular velocity ωp ≥ 0 [rad/s]
around its center of mass. The spacecraft is represented by a point mass and it has to approach the
target platform for docking to the port.

We confine the motion of the target and of the spacecraft to the orbital x-y plane, where y
corresponds to the along the orbital track direction and x corresponds to the radial direction along the
radius-vector from the center of the Earth to the target platform. The disturbances, for instance, due
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4 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

to air drag, solar pressure and non-spherical gravity perturbation (J2) effects [37], are neglected in
the model formulation since their effects during the short time of the maneuver can be compensated
by the MPC feedback, as we will show later via simulations.

The treatment of planar spacecraft motion is consistent with requirements of typical rendezvous
and docking maneuvers [14]. The out-of-plane relative dynamics are decoupled from the planar
dynamics and are stable, and hence are neglected, here.

Figure 1. Schematics of spacecraft and target platform with LOS cone.

The spacecraft translational motion is actuated by thrusters. We assume that thrusters can be
operated to generate prescribed propulsive forces in x and y directions, and that the thrust magnitude
is limited. The prescribed thrust forces can be physically realized by control allocation to appropriate
thruster on-off times, see [14, 36]. For a single main thruster spacecraft configuration, we assume
that the spacecraft orientation is changed appropriately by the attitude control system to realize the
prescribed thrust vector. The MPC feedback can be relied upon to compensate for thrust vector
direction and magnitude errors, as it will be shown later in simulations.

To express the motion of the spacecraft relative to the target platform we use the Clohessy-
Wiltshire-Hill (CWH) equations [9, 37]. Since the target platform is in a circular orbit around the
Earth of radius R0 [m], the orbital rate is n =

√
µ
R3

0
[rad/s], where µ [m3/s2] is the gravitational

constant of the Earth. The reference Hill’s frame is located at the target platform center of mass,
hence it rotates with orbital rate n with respect to the inertial reference frame which is located at the
center of the Earth. The position vector to the target’s center of mass from the center of the Earth
is expressed as "R0 = R0 ı̂. The relative position vector of the spacecraft with respect to the platform
is expressed as δ"r = δxı̂+ δŷ, where δx, δy [m] are the components of the position vector of the
spacecraft relative to the platform center. The position vector of the spacecraft with respect to the
center of the Earth is thus given by "R = "R0 + δ"r = (R0 + δx)̂ı+ δŷ. The equations of motion for
the spacecraft are nonlinear and can be expressed in vector form as

"̈R = −µ
"R

R3
+

1

mc

"F , (1)

where "F denotes the vector of forces applied to the spacecraft, and mc [kg] is the mass of the
spacecraft. Given that R =

√
(R0 + δx)2 + δy2 [m], we obtain

"̈R = (δẍ− 2nδẏ − n2(R0 + δx))̂ı+ (δÿ + 2nδẋ− n2δy)̂.

For δr << R, the CWH equations [9, 37] approximate the relative motion dynamics as

δẍ− 3n2δx− 2nδẏ =
Fx

mc
= ux,

δÿ + 2nδẋ =
Fy

mc
= uy,

(2)
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MPC APPROACH TO SPACECRAFT RENDEZVOUS AND PROXIMITY MANEUVERING 5

where ux, uy [m/s2] are acceleration components of the spacecraft in x and y directions, induced
by the thrust forces Fx, Fy [N ], respectively. The spacecraft accelerations are subsequently treated
as control signals, as it is common in these applications [14].

Figure 2. Relative frame centered at the target platform and relative coordinates.

Model (2) can be formulated as
Ẋ = AX +BU, (3)

where X ∈ R4 is the state vector, U ∈ R2 is the control vector and

X =





δx
δy
δẋ
δẏ



 , A =





0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



 , B =





0 0
0 0
1 0
0 1



 , U =

(
ux

uy

)
.

For the development of the MPC controller, the continuous-time spacecraft model (3) is
discretized in time with sampling period Ts [s] leading to the discrete-time model

X(k + 1) = AdX(k) +BdU(k), (4)

where X(k) ∈ R4 and U(k) ∈ R2 denote, respectively, the state and input vectors at the sampling
instant k ∈ Z0+.

The coordinates of the docking port in Hill’s frame at time instant k are associated to the state
variables rx(k), ry(k) [m] and have dynamics

rx(k + 1) = cos(ωpTs)rx(k)− sin(ωpTs)ry(k),

ry(k + 1) = sin(ωpTs)rx(k) + cos(ωpTs)ry(k),
(5)

where ωp [rad/s] is the angular velocity of the platform about its center of mass. If the target
platform is not rotating, then ωp = 0 and rx(k + 1) = rx(k), ry(k + 1) = ry(k). In the rotating
platform case, (5) enables to use MPC for docking to a moving port. The relative coordinates of
the spacecraft with respect to the docking port are defined as

σx(k + 1) = δx(k)− rx(k),

σy(k + 1) = δy(k)− ry(k).
(6)

The state vector, augmented with the position of the docking port and the relative coordinates
from Equation (6), has the following form

X̄ =
(
δx δy δẋ δẏ rx ry σx σy

)T
.

From (4), (5), (6) we can formulate the system model as,

X̄(k + 1) = ĀX̄(k) + B̄Ū(k), (7)

with appropriately defined Ā, B̄ and Ū = [UT s]T , where s is an auxiliary slack variable used in the
definition of the constraints, as explained next.

3. CONSTRAINTS MODELING AND DYNAMIC RECONFIGURATION

For computational efficiency reasons, we base our approach to RPO maneuvering on the application
of a linear quadratic MPC with linear inequality constraints. Various constraints in the RPO control
problem and the procedure to handle them by dynamically reconfigurable linear constraints are now
discussed.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
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6 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

3.1. Thrust constraints

For a single thruster spacecraft, the constraint on the maximum thrust magnitude has the following
form,

u2
x + u2

y ≤ u2
max. (8)

This constraint is nonlinear but in the linear quadratic MPC, we can only enforce linear input
constraints. By constraining

−umax√
2

≤ ux(k) ≤
umax√

2
, − umax√

2
≤ uy(k) ≤

umax√
2

, (9)

constraint (8) can be conservatively enforced. To avoid unnecessary control authority reduction, we
impose the thrust magnitude constraints in the form

−umax ≤ ux(k) ≤ umax, − umax ≤ uy(k) ≤ umax, (10)

and if ux(k)2 + uy(k)2 > u2
max occurs for some k, we modify the computed ux(k) and uy(k) by

directionality preserving scaling [14],

u′
x(k) =

ux(k)√
ux(k)2 + uy(k)2

umax, u′
y(k) =

uy(k)√
ux(k)2 + uy(k)2

umax. (11)

Remark 1
The approach mentioned above can be generalized to enforcing constraint

−γ̄umax ≤ ux(k) ≤ γ̄umax, − γ̄umax ≤ uy(k) ≤ γ̄umax, (12)

where γ̄ ∈ [1/
√
2, 1] is a parameter, chosen offline, that trades-off conservativeness of the

constraints and reliability of the trajectory prediction. In fact for γ̄ = 1/
√
2, (12) reduces to (9),

which is more conservative than (10) hence limiting the performance, but it ensures that the
acceleration for the planned trajectory can always be achieved. Instead for γ̄ = 1, (12) reduces to
(10), which is less conservative, yet it may occasionally happen that the acceleration for the planned
trajectory cannot be actually achieved. For γ̄ ∈ (1/

√
2, 1) the intermediate trade-offs are obtained.

Remark 2
The constraint (8) is a convex quadratic constraint. Hence, if added to the quadratic program that
is generated by linear-quadratic MPC, it results in a convex Quadratically Constrained Quadratic
Program (QCQP). The QCQPs are indeed more complex than linearly constrained QPs, but
specific algorithms that exploit their structure to provide faster solution are becoming available [43].
Alternatively, the problem can be formulated and solved as a Second Order Cone Program
(SOCP) [44], for which the solution usually requires more time and resources than what is typically
available for this application. Since here we focus on obtaining a controller that can execute even
with limited computational resources, we choose to apply approximation (12), solve the resulting
QP, and perform scaling (11), if needed.

3.2. Line-of-Sight Constraints

The LOS constraints confine the spacecraft to the intersection of the LOS cone, with vertex moved
slightly inside the platform, and a half-plane. See lines a, b, and c in Figure 3. Let γ denote
the half of the LOS cone angle and let rtol [m] denote the distance by which the vertex of LOS
cone is moved inside the platform. The value rtol > 0, which is chosen offline, slightly relaxes
the LOS constraints to mitigate ill-conditioning of the problem caused by the LOS constraints,
corresponding to a and b, becoming borderline feasible as the spacecraft approaches the docking
port. The constraint corresponding to the half-plane c, defined by a tangent line to the platform at
the position of the docking port, ensures that collisions of the spacecraft with the target platform are
avoided with the relaxed cone constraints.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
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MPC APPROACH TO SPACECRAFT RENDEZVOUS AND PROXIMITY MANEUVERING 7

Figure 3. Geometric representation of the LOS constraints.

The LOS constraints are mathematically defined by





a: sin(ϕ(k)+γ)
(rp−rtol) sin γ δx(k)−

cos(ϕ(k)+γ)
(rp−rtol) sin γ δy(k) ≥ 1,

b: − sin(ϕ(k)−γ)
(rp−rtol) sin γ δx(k) +

cos(ϕ(k)−γ)
(rp−rtol) sin γ δy(k) ≥ 1,

c: cosϕ(k)
rp sin γ δx(k) + sinϕ(k)

rp sin γ δy(k) ≥ 1,

(13)

where ϕ(k) is the angle between the platform docking port and the x-axis at the time instant k.
For the case where the platform is not rotating and ϕ(k) is constant i.e., ϕ(k) = ϕ, the LOS

constraints are linear inequalities in δx(k) and δy(k). For the case where the platform rotates, i.e.,
ϕ(k) changes in time, we will consider and compare two approaches for the treatment of LOS
constraints (13) over the prediction horizon of the MPC problem. In the first approach, ϕ(k) is
assumed to remain constant over the prediction horizon and the constraints remain frozen. In the
second approach (see Section 4.2), we will approximately predict the changes in the LOS constraint
due to the platform rotation.

3.3. Soft-docking Constraint

The soft-docking constraint ensures that the relative velocity of the spacecraft, once it approaches
the docking port, is close to the docking port velocity. This ensures that the spacecraft can follow
the port and avoid excessive mechanical shock when docking occurs.

Since the soft-docking constraint is a terminal constraint, to handle it using the conventional
MPC formulation, we consider a related pointwise-in-time constraint, requiring that the 1-norm of
the spacecraft velocity relative to the docking port is bounded by an affine function of the 1-norm
of the distance of the spacecraft relative to the docking port. A similar approach was used in our
previous work [11] to handle the soft-landing constraints for an electromagnetic actuator.

In this paper we use the notation a(j|k) to indicate the value of a variable a predicted j steps
ahead from step k. Let σx(j|k), σy(j|k) be the predicted values of the spacecraft position in x and
y directions relative to the docking port j steps ahead, given that k is the current time instant at
which the computations are performed. Similarly, let the predicted relative velocities be denoted by
δẋ(j|k) and δẏ(j|k) [m/s]. The docking port velocities can be predicted by vpx(j|k) = −ωpry(j|k)
and vpy (j|k) = ωprx(j|k), that we use to enforce over the MPC prediction horizon the constraint

|σx(j|k)|+ |σy(j|k)| ≥ η{|δẋ(j|k)− vpx(j|k)|+ |δẏ(j|k)− vpy (j|k)|− s(j|k)}− β. (14)

Here, η > 0 and β > 0 are constant parameters that define the shape of the feasible set in the
position-velocity space. The variable s(j|k) is a slack variable that was introduced as a component
of Ū in (7), which is introduced to avoid infeasibility of the constraint (14).

To handle the constraint (14), which is pointwise-in-time but still “mildly” nonlinear, we replace
it by a related linear constraint based on the assumption that over the prediction horizon the signs
of σx(j|k), σy(j|k), δẋ(j|k)− vpx(j|k) and δẏ(j|k)− vpy (j|k) do not change. This leads to a
dynamically reconfigurable constraint of the form,

sgn(δx(k))(σx(j|k)) + sgn(δy(k))(σy(j|k)) ≥ η{sgn(δẋ(k)− vpx(k))(δẋ(j|k)− vpx(j|k))
+sgn(δẏ(k)− vpy (k))(δẏ(j|k)− vpy (j|k))− s(j|k)}− β,

(15)
where sgn(·) indicates the well known sign function. The mismatch between the predicted trajectory
based on this simplifying assumption and the actual spacecraft trajectory is compensated due to
MPC recomputing the solution at every time instant and updating the constraint representation in
real-time.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
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8 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

With a limited loss of performance, constraint (15) can be further simplified to

ζ(k) ≥ η{sgn(δẋ(k)− vpx(k))(δẋ(j|k)− vpx(j|k))
+sgn(δẏ(k)− vpy (k))(δẏ(j|k)− vpy (j|k))− s(j|k)}− β.

(16)

where
ζ(k)

∆
= |δx(k)− rx(k)|+ |δy(k)− ry(k)|
= |σx(k)|+ |σy(k)|.

(17)

The approach taken here to approximately handle the soft-docking constraint (and related
approach for debris avoidance in Section 7) simplifies the optimization problem to a level which
enables its treatment by computationally effective, conventional MPC techniques based on linear
models with linear constraints. Our subsequent simulation results indicate that this approach does
not compromise the response properties and enforces satisfactorily the constraints.

4. MODEL PREDICTIVE CONTROLLER DESIGN

Based on the dynamic model and constraints defined in Section 3, we design the MPC controller for
the cases of non-rotating and rotating platforms.

In order to define the cost function for the MPC controller, we first compute the value function of
the infinite horizon unconstrained LQ problem for stabilizing the relative position and velocity of
the spacecraft to the origin, i.e.,

min
U(·)

J =
∞∑

k=0

X(k)TQX(k) + U(k)TRU(k), (18)

where

Q =





Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44



 =

(
Q1 02×2

02×2 Q2

)
, R =

(
R11 R12

R21 R22

)
,

U(·) = {U(0), U(1), · · · } and 0n×m denotes an n×m zero matrix. In (18) Q is a positive-definite
state weighting matrix and R is a positive-definite control weighting matrix. Let P denote the
solution of the Riccati equation for solving problem (18), and K the corresponding LQR feedback
gain,

P =





P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44



 =

(
P1 P2

P3 P4

)
, K =

(
K11 K12 K13 K14

K21 K22 K23 K24

)

so that the value function is ν(X(0)) = X(0)TPX(0) for the LQ problem. We use P in the terminal
cost of the MPC problem, consistently with the classical MPC theory (see [13,22,48]), as a stability
enforcing mechanism.

4.1. MPC Controller without Prediction of Platform Motion

For the case of an MPC controller that does not use the prediction of the platform motion over the
horizon, the prediction model is based on (7), (13) with ωp = 0 and ϕ(k) = ϕ. We can express the
prediction model in the form

X̄(j + 1|k) = ĀX̄(j|k) + B̄Ū(j|k), (19a)
Ȳ (j|k) = C̄X̄(j|k) + D̄Ū(j|k), (19b)
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where (19b) represents the constrained output due to (7) and (14). These output constraints are
imposed as

Ȳ (j|k) ≥ Ȳmin(k), (20)

where Ȳmin(k) =
(
1 1 1 −β − ζ(k)

)T . The matrices Ā, B̄, C̄ and D̄ in (19) are expressed
as

Ā =




Ad 04×4

02×2 02×2 Ω 02×2

I 02×2 −I 02×2



 , B̄ =

(
Bd 04×1

04×2 04×1

)
,

C̄ =




C̄11 C̄12 0 0 0 0 0 0
C̄21 C̄22 0 0 0 0 0 0
C̄31 C̄32 0 0 0 0 0 0
0 0 C̄43 C̄44 C̄45 C̄46 0 0



 , (21)

D̄ =

(
03×2 03×1

01×2 η

)
,

where
Ω =

(
cos(ωpTs) − sin(ωpTs)
sin(ωpTs) cos(ωpTs)

)
, I =

(
1 0
0 1

)
,

and by assuming ϕ(j|k) = ϕ(k) = ϕ,

C̄11 =
sin(ϕ+ γ)

(rp − rtol) sin γ
, C̄12 = − cos(ϕ+ γ)

(rp − rtol) sin γ
, C̄21 = − sin(ϕ− γ)

(rp − rtol) sin γ
,

C̄22 =
cos(ϕ− γ)

(rp − rtol) sin γ
, C̄31 =

cosϕ

rp sin γ
, C̄32 =

sinϕ

rp sin γ
.

Here, C̄11, C̄12, C̄21, C̄22, C̄31 and C̄32 are used to represent the LOS constraints (13). The
elements C̄43, C̄44, C̄45 and C̄46 of C̄ are used to model (16), which approximates the soft-docking
constraint (14). Note that if δẋ(k)− vpx(k) ≥ 0, then C̄43 = −η, C̄46 = ηωp, otherwise, C̄43 = η,
C̄46 = −ηωp. If δẏ(k)− vpy (k) ≥ 0, then C̄44 = −η, C̄45 = −ηωp, otherwise, C̄44 = η, C̄45 = ηωp.

At every time instant k, the MPC controller determines the control action based on the solution
of the following optimization problem

min
Ū(k)

X̄(NJ |k)T P̄ X̄(NJ |k) +
NJ−1∑

j=0

X̄(j|k)T Q̄X̄(j|k) + Ū(j|k)T R̄Ū(j|k), (22a)

s.t. X̄(j + 1|k) = ĀX̄(j|k) + B̄Ū(j|k), (22b)
Ȳ (j|k) = C̄X̄(j|k) + D̄Ū(j|k), (22c)
X̄(0|k) = X̄(k), (22d)
Ū(j|k) = K̄X̄(j|k), j = NU + 1, . . . , NJ − 1, (22e)

Ȳ (j|k) ≥ Ȳmin(k), j = 0, . . . , NC , (22f)
Ū(j|k) ≥ Ūmin, j = 0, . . . , NU , (22g)
Ū(j|k) ≤ Ūmax, j = 0, . . . , NU , (22h)

where Ū(k) = {Ū(0|k), · · · , Ū(NU |k)}, NJ denotes the prediction horizon, NU denotes the control
horizon, and NC denotes the constraint horizon. Smaller values of NU , and Nc tend to reduce
the complexity of the optimal control problem (22), and hence computational requirement of the
platform where the MPC controller is executed. The input constraints in (22) are defined by (10).
The matrices P̄ , Q̄, R̄ and K̄ are constructed from Q and R in (18) and the solution, P , of the Riccati
equation and the LQR gain K̄ for (18) as

P̄ =




02×2 02×2 02×2 02×2
02×2 P4 02×2 P3
02×2 02×2 02×2 02×2
02×2 P2 02×2 P1



 , Q̄ =




02×2 02×2 02×2 02×2
02×2 Q2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 Q1



 ,
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R̄ =

(
R 02×1

01×2 ρ

)
, K̄ =

(
02×2 K13 K14 02×2 K11 K12

02×2 K23 K24 02×2 K21 K22

)
.

In (22), ρ > 0 is a large weight on the slack variable causing this to be zero whenever feasible.
At every control cycle, from the measured/estimated state X̄(k) the MPC controller solves (22)

with respect to the finite sequence of control actions, Ū(k), and applies the first element of the
optimal sequence Ū∗(k) to the plant, Ū(k) = Ū∗(0|k). The MPC feedback law is defined implicitly
as the solution of the constrained optimization problem (22), however due to the structure of (22)
this feedback law is a static (nonlinear) function of the current state, Ū(k) = ŪMPC(X̄(k)).

4.2. MPC Controller with Prediction of Platform Motion

Even if the constraints in (22) change with time, as the initial state of the finite horizon optimal
control problem X̄ changes, the bounds are assumed constant in prediction. In this section we
propose a method to incorporate a prediction of the LOS constraints (13) changes due to the rotation
of the docking port for the MPC optimization problem. In order to continue exploiting a linear-
quadratic MPC framework, we employ the approximations based on the Taylor series expansion

ϕ(j|k) ' ϕ(k) + ϕ̇(k)jTs = ϕ(k) + ϕ̄(j, k, Ts), (23)

sin(ϕ(j|k) + γ) ' sin(ϕ(k) + γ) + cos(ϕ(k) + γ)ϕ̄(j, k, Ts),

cos(ϕ(j|k) + γ) ' cos(ϕ(k) + γ)− sin(ϕ(k) + γ)ϕ̄(j, k, Ts),
(24)

where k denotes the current time instant and j ∈ Z0+ is a future time instant with respect to k. By
substituting (23) and (24) into the LOS constraints (13), we can obtain the following LOS constraints
for prediction of the platform motion:






a′ : L1δx(j|k)− L2δy(j|k) + {L2δx(k) + L1δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

b′ : −L3δx(j|k) + L4δy(j|k)− {L4δx(k) + L3δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

c′ : L5δx(j|k) + L6δy(j|k)− {L6δx(k) + L5δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

(25)

where
L1 =

sin(ϕ(k) + γ)

(rp − rtol) sin γ
, L2 =

cos(ϕ(k) + γ)

(rp − rtol) sin γ
, L3 =

sin(ϕ(k)− γ)

(rp − rtol) sin γ
,

L4 =
cos(ϕ(k)− γ)

(rp − rtol) sin γ
, L5 =

cos(ϕ(k))

rp sin γ
, L6 =

sin(ϕ(k))

rp sin γ
.

In addition, to predict the future position of the LOS cone we introduce the auxiliary state vector,

Z(j|k) =
(

z1
z2

)
=

(
ϕ(j + 1|k)
ϕ(j|k)

)
=

(
ϕ(j|k) + ωpTs

ϕ(j|k)

)
, (26)

with dynamics defined by

Z(j + 1|k) =
(

2 −1
1 0

)
Z(j|k) = ΘZ(j|k). (27)

Considering (7), (25), (27) the augmented prediction model has state vector

X̃ =
(
δx δy δẋ δẏ rx ry σx σy z1 z2

)T
, (28)

and dynamics formulated as a linear system subject to time-varying constraints

X̃(j + 1|k) = ÃX̃(j|k) + B̃Ũ(j|k), (29a)
Ỹ (j|k) = C̃X̃(j|k) + D̃Ũ(j|k), (29b)
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where
Ã =

(
Ā 08×2

02×8 Θ

)
, B̃ =

(
B̄

02×3

)
, D̃ = D̄, Ũ = Ū ,

C̃ =





C̄11 C̄12 0 0 0 0 0 0 0 C̃LOS1

C̄21 C̄22 0 0 0 0 0 0 0 C̃LOS2

C̄31 C̄32 0 0 0 0 0 0 0 C̃LOS3

0 0 C̄43 C̄44 C̄45 C̄46 0 0 0 0



 ,

C̃LOS1 = L2δx(k) + L1δy(k),

C̃LOS2 = −L4δx(k)− L3δy(k),

C̃LOS3 = −L6δx(k)− L5δy(k),

so that we have the auxiliary state vector and terms for the LOS constraints in the new model.
The output constraints (cf. (20)) are

Ỹ (j|k) ≥ Ỹmin(k), Ỹmin(k) = Ȳmin(k), (30)

Thus, for the case where prediction of the port motion is performed, the MPC optimal control
problem is formulated from (28)–(30) as

min
Ũ(k)

X̃(NJ |k)T P̃ X̃(NJ |k) +
NJ−1∑

j=0

X̃(j|k)T Q̃X̃(j|k) + Ũ(j|k)T R̃Ũ(j|k), (31a)

s.t. X̃(j + 1|k) = ÃX̃(j|k) + B̃Ũ(j|k), (31b)
Ỹ (j|k) = C̃X̃(j|k) + D̃Ũ(j|k), (31c)
X̃(0|k) = X̃(k), (31d)
Ũ(j|k) = K̃X̃(j|k), j = NU + 1, . . . , NJ − 1, (31e)

Ỹ (j|k) ≥ Ỹmin(k), j = 0, . . . , NC , (31f)
Ũ(j|k) ≥ Ũmin, j = 0, . . . , NU , (31g)
Ũ(j|k) ≤ Ũmax, j = 0, . . . , NU , (31h)

where Ũ(k) = {Ũ(0|k), · · · , Ũ(NU |k)},

P̃ =

(
P̄ 08×2

02×8 02×2

)
, Q̃ =

(
Q̄ 08×2

02×8 02×2

)
, R̃ = R̄, K̃ =

(
K̄ 02×2

)
,

and the input constraints in (31) are defined by (10).

5. SIMULATED APPROACH OF A NON-ROTATING PLATFORM

In the simulations we have used the following parameters representative of spacecraft maneuvering
in close proximity of a non-rotating target platform: the radius of the target rp is 2.5 m, the half
angle of the LOS cone γ is 10 deg, the tolerance rtol is 0.5m, and the orbital rate n is 1.107× 10−3

rad/s (corresponding to the orbit of 500 km above the Earth). The controller sampling period is
Ts = 0.5 s. The total maneuver simulation time is 100 sec. In (14), η = 1 and β = 2.5

10 . The slack
variable weight is set as ρ = 1010. The weighting matrices are chosen in the form

Q = 3× 103
(

102I 02×2

02×2 I

)
, R = 102I,

The value of R was subsequently modified to study the sensitivity of fuel consumption and time-to-
dock. In the simulations, we use umax = 0.2 m/s2 for the input constraints.

For all simulations, the prediction horizon of the MPC problem was set as NJ = 40, the constraint
horizon for both input and output constraints was set as NC = 5, and the control horizon was set as
NU = 5. These values were determined by tuning closed-loop response using simulations.
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Figure 4. Radial approach to a non-rotating platform with the MPC controller. Top row: Trajectory on the x-
y plane (left), control accelerations u′x and u′y (right). Bottom row: Relative velocity 1−norm versus relative

position 1−norm (left), and the plot of u′y versus u′x with magnitude saturation (right).

5.1. Radial Approach

In the radial approach the spacecraft approaches the platform along the radial line from the center of
the Earth to the center of the target. To simulate the radial approach, we choose the initial location for
the spacecraft as (δx0, δy0) = (100,−10) [m], which is in the range of admissible initial conditions
for RPO maneuvers, and the initial position of the docking port as (rx0, ry0) = (2.5, 0) [m]. The
closed-loop responses are shown in Figure 4. In this and other plots of spacecraft trajectory on the
x-y plane, the LOS constraints are shown by red dashed lines. The soft-docking, the LOS cone and
thrust magnitude constraints are enforced by the MPC controller, and the spacecraft successfully
completes the maneuver.

5.2. In-track Approach

In the in-track approach the spacecraft approaches the platform in the direction along the orbital
track. To simulate the in-track approach, the initial location of the spacecraft is chosen as
(δx0, δy0) = (−10, 100) [m] and the initial position of the docking port as (rx0, ry0) = (0, 2.5) [m].
The closed-loop responses are shown in Figure 5.

5.3. Trajectories from Different Initial Locations

The initial location of the spacecraft is now varied within the LOS cone. The starting points consist
of points on the boundaries of the LOS cone and points in the interior of LOS cone. The results are
shown in Figure 6 for the radial approach and for the in-track approach. The trajectories near both
boundaries have similar curvature in the both cases.
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Figure 5. In-track approach to a non-rotating platform with the MPC controller. Top row: Trajectory on
the x-y plane (left), control accelerations u′x and u′y (right). Bottom row: Relative velocity 1−norm versus

relative position 1−norm (left), and the plot of u′y versus u′x with magnitude saturation (right).
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Figure 6. Trajectories from different initial spacecraft locations for a non-rotating platform for radial
approach (left), and for in-track approach (right).

5.4. Analysis of Fuel Consumption-Related Metrics

We consider three fuel consumption-related metrics

J1 =
Td∑

k=0

|ux(k)|+ |uy(k)|,

J2 =
Td∑

k=0

(ux(k))
2 + (uy(k))

2,

J3 =
Td∑

k=0

√
(ux(k))2 + (uy(k))2,

(32)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

Table I. Metrics in radial approach when α varies between 102 and 107.

α 102 103 104 105 106 107

J1 20.43 20.44 20.43 20.34 20.63 20.63
J2 3.37 3.37 3.37 3.35 3.36 3.31
J3 17.72 17.72 17.74 17.62 17.70 17.76
td 53.0 53.0 53.0 52.5 52.5 54.0

Table II. Metrics in radial approach when α varies between 107 and 2.5× 108.

α 107 2.5× 107 5× 107 7.5× 107 108 2.5× 108

J1 20.63 20.59 20.17 20.13 19.96 19.53
J2 3.31 3.34 3.27 3.31 3.28 3.22
J3 17.76 17.91 17.67 17.76 17.66 17.39
td 54.0 57.5 63.5 67.0 69.5 74.5

Table III. Metrics in radial approach when α varies between 2.5× 108 and 109.

α 2.5× 108 5× 108 7.5× 108 109

J1 19.53 19.19 18.94 18.77
J2 3.22 3.14 3.08 3.03
J3 17.39 17.12 16.91 16.77
td 74.5 74.5 71.5 65.5

where Td = ceil(td/Ts), ceil is the rounding to the closest larger integer, and td is the “time to dock”
in seconds, i.e., the time it takes from the initial condition to achieve docking. In the simulation,
docking is considered to occur when the spacecraft reaches a distance of 0.1 m from the docking
port.

The metric J1 is relevant to the fuel consumption of the spacecraft which has sets of orthogonal
thrusters that can be simultaneously fired. The metric J2 represents a quadratic penalty on the control
effort and is closely related to the control cost in the MPC cost function, but not directly to the fuel
consumption. Finally, the metric J3 is relevant to the spacecraft with a single thruster which is re-
oriented (e.g., by controlling the spacecraft attitude) as necessary to realize the desired propulsive
force. In what follows we highlight the relationship between these metrics for the MPC maneuvers,
based on the results of our simulations.

Tables I, II and III summarize the results in the radial approach for different values of the matrix
R scaled by a parameter α, which is varied between 102 and 109, i.e.,

R = αI. (33)

Note that when α ranges between 102 and 107, J1, J2, J3 and td are essentially constant. The
Ji, i = 1, 2, 3, all decrease and td increases for 107 ≤ α ≤ 2.5× 108. For α ≥ 2.5× 108 the
trajectories start to behave differently. They are faster in the initial phase, approach the platform
a bit higher on the y-axis than the docking port and then proceed (“slide”) to the docking port . The
Ji, i = 1, 2, 3, continue to decrease as α increases, however, td also decreases (from 74.5 sec at
α = 2× 108 to 65.5 sec at α = 109).

Overall, the three different metrics, J1, J2, and J3, appear to exhibit similar trends which are
opposite to that of td, except for very large values of α, when however the controller tends to
be scarcely robust to external disturbances. These results indicate that the quadratic type MPC
cost function that does not directly account for the fuel consumption yet allows to formulate
the controller as a linear-quadratic MPC, has a direct influence on the final attributes (fuel
consumption and time to dock). The cost function weights can be used as tuning knobs to adjust
the fuel consumption versus the time-to-dock performance of the spacecraft. Figure 7 illustrates the
influence of α on the spacecraft trajectory during radial approach as α varies as in Table I, II and III
.
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Figure 7. Trajectories when α varies between 102 and 109.

5.5. Compensation of the Disturbances

As opposed to robust MPC (see e.g., [45–47] and the references therein), the MPC design that is
proposed here, does not provide an analytically quantifiable robustness. However, it possesses the
intrinsic robustness of feedback control, while resulting in a simpler algorithm that does not need
information on the ranges and type of disturbances, which, for the application at hand, may be
difficult to obtain.

In this section, we demonstrate the intrinsic robustness of the MPC controller to unmeasured
disturbances. In orbit, the disturbances can occur due to thrust errors, air drag in Low Earth Orbit
(LEO) or solar pressure in Geostationary Orbit (GEO). The simulations are performed here for a
non-rotating target platform.

The air drag can be represented by a constant in-track disturbance acceleration [14] with
magnitude,

w =
Fy

mc
= −ρ

2
n2R2

0

(
1

Bc
− 1

Bp

)
,

where Bc is the ballistic coefficient of the spacecraft, Bp is the ballistic coefficient of the platform
and ρ is average air density at spacecraft altitude. The equations (3) with the disturbance acceleration
added take the following form,

X̄(k + 1) = ĀX̄(k) + B̄Ū(k) +





0
0
0
Ts



w. (34)

Motivated by this air drag model, we assume an aggressive scenario when the disturbance is
acting along the orbital track and had large constant magnitude of 10 percent of thrust, i.e.,
w = 0.1× umax.

We first simulate the open-loop spacecraft motion with the control inputs specified as functions of
time and under the effects of the disturbance. These control inputs are the same as in Figure 4 and 5
and successfully complete the maneuver without a disturbance. The closed-loop trajectories are
also simulated, where the control input is recomputed by the MPC at every step using the current
state as an initial condition and without knowledge of the disturbance. The results of the open-
loop and closed-loop maneuvers for radial and in-track approach by the spacecraft affected by the
disturbance are shown in Figure 8 and 9. With the open-loop control, the spacecraft fails to complete
the maneuver due to the disturbances. On the other hand, the MPC controller is able to successfully
guide the spacecraft despite these disturbances: The final error is about 1.2 cm for both radial and
in-track maneuvers.
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Figure 8. Radial approach subject to disturbances. Top row: Open-loop trajectory (left), open-loop control
accelerations (right). Bottom row: Closed-loop trajectory (left), closed-loop control accelerations (right).
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Figure 9. In-track approach subject to disturbances. Top row: Open-loop trajectory (left), open-loop control
accelerations (right). Bottom row: Closed-loop trajectory (left), closed-loop control accelerations (right).

Figures 10 and 11 illustrate additional responses to disturbances for the radial and in-track
approaches, respectively. We consider the cases of: (i) constant disturbance vector with components

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
Prepared using rncauth.cls DOI: 10.1002/rnc



MPC APPROACH TO SPACECRAFT RENDEZVOUS AND PROXIMITY MANEUVERING 17

0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

30

40

x−axis [m]

y−
ax

is
 [m

]

0 20 40 60 80 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

in
pu

t [
m

/s
2 ]

 

 
Ux
Uy

0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

30

40

x−axis [m]

y−
ax

is
 [m

]

0 20 40 60 80 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

in
pu

t [
m

/s
2 ]

 

 
Ux
Uy
Uactx
Uacty

Figure 10. Radial approach subject to disturbances. Top row: Constant disturbance in x-y direction. Closed-
loop trajectory (left), closed-loop control accelerations (right). Bottom row: Random magnitude disturbance
in in x-y direction. Closed-loop trajectory (left), closed-loop control accelerations, solid, and actuated

accelerations, dash, (right).

of magnitude (0.1× umax) on both x and y axis; (ii) random disturbance in acceleration actuation
amplitude and direction. In the second case the disturbance simulates errors in thrust direction, for
instance due to some error in the attitude control, and amplitude, for instance due to realization of
the continuous thrust through thrust pulses [14]. In this case the actuated spacecraft acceleration is

ur(k) = satumax
2 (Rθ(k)U

∗(0|k))
u(k) = satumax

2 ((1 + ud(k))ur(k))

where satumax
2 denotes the saturation in 2-norm by directionality preserving scaling (11), Rθ =[

cos(θ) − sin(θ)
sin(θ) − cos(θ)

]
is the matrix producing a rotation of angle θ, and θ(k) ∈ [−π

6 ,
π
6 ], ud(k) ∈

[−0.15, 0.15] are independent, uniformly distributed discrete-time random variables whose values
change every 5s. In radial and in-track approaches, the MPC controller is able to successfully
compensate the effect of these disturbances. The trajectories obtained for 10 simulations with
random disturbances on both radial and in-track approaches are shown in Figure 12. Finally, in
our simulations, actuation disturbances of up to ±25% magnitude and ±45deg direction appear to
be tolerable for the proposed control strategy.

5.6. Explicit Model Predictive Control

When model predictive control is applied to linear systems with linear constraints and quadratic cost
function, the control law can be explicitly computed by multi-parametric quadratic programming
(see [2,3]). The MPC control law, ŪMPC(X̄), is a piecewise affine state feedback, specified through
the state-space partitioning into polyhedral regions, and an affine state feedback law assigned to each
region. With the use of the explicit MPC control law, the need to perform on-line optimization and
to validate and embed the QP solver in the control software is avoided.
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Figure 11. In-track approach subject to disturbances. Top row: Constant disturbance in x-y direction.
Closed-loop trajectory (left), closed-loop control accelerations (right). Bottom row: Random magnitude
disturbance in x-y direction. Closed-loop trajectory (left), closed-loop control accelerations, solid, and

actuated accelerations, dash, (right).
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Figure 12. Repeated simulations with random disturbances on thrust actuation. Closed-loop radial approach
trajectories (left). Closed-loop in-track approach trajectories (right).

For the case where the target platform does not rotate and the angle of the LOS cone is known
and fixed, we can design an explicit MPC controller. Since the coefficients of C̄ in Equation (20)
change discretely depending on the current state, a slightly modified synthesis procedure is required,
similarly to [12].

First, we enumerate the possible values of C̄ in (19), caused by the changing signs of the current
state in (15) (or (16)), hence obtaining the set of matrices, C = {C̄h}qh=1. Then, we compute the
control laws γMPC(i, X̄), i = 1, . . . , q, by applying multi-parametric programming to the MPC
problem where C̄ = C̄i is a constant. Since each of the corresponding MPC optimization problems
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Figure 13. Regions of the explicit MPC controller.

is a standard quadratic program, each feedback law has a piecewise affine form

γMPC(i, X̄) = F i
j X̄ +Gi

j

j : Hi
jX̄ ≤ Ki

j ,
(35)

where j ∈ Ji, Ji = {1, . . . , qi}, and qi is the number of regions of the MPC law associated to the
case C̄ = C̄i. Note also that the switching conditions on the C̄ coefficients are independent of the
current control input and can be encoded by linear inequalities, such that C̄ = C̄i if and only if
HiX̄ ≤ Ki. Thus, the q control laws can be merged into a single piecewise affine function

u = F i
j X̄(k) +Gi

j , (36a)
i, j : HiX̄(k) ≤ Ki, (36b)

Hi
jX̄(k) ≤ Ki

j , (36c)

where Equation (36c) selects the control law that is active, Equation (36b) selects the control law
region that is currently active, and Equation (36a) is evaluated to obtain the control input.

To construct the explicit solution, we choose the implementation of MPC controller based on (14)
that gives q = 16, and hence 16 control laws are merged in Equation (36). The 16 piecewise affine
feedback control laws are obtained by the 16 choices for the signs† of C̄43, C̄44, C̄45 and C̄46.

For our MPC controller, the total number of polyhedral regions in Equation (36) for the case
where all four components of the matrix C̄ switch (this is 16 control laws case) is 3068. Figure 13
shows the cross-section of the regions in x-y plane, computed for zero velocity and docking port
located at (2.5, 0). The number of regions appears to be acceptable, and suggests that explicit
MPC solutions can be feasible for automation of spacecraft rendezvous and proximity maneuvers.
Furthermore, the complexity of the polyhedral partitioning can be reduced by eliminating small
regions and expanding the neighboring ones. In fact it was verified that about a third of the regions
have Chebyshev radius smaller than 10−3 and can be eliminated. The elimination of these regions
induces minimal perturbations to the closed-loop system and these perturbations are restricted only
to area of the removed regions. Also, in general the controller uses most frequently (i.e., more
than 99% of times) a much smaller subset of regions, usually 10%-20% of the total, which can be
identified by extensive simulations. With these approaches, the controller data memory requirements
can be reduced to fit the platform computational resources.

If instead we use the simplified constraints (16) we can reduce the effort for computation and
storage to q = 4 piecewise affine feedback control laws. A minor drawback with this approach is
that the parameters vector in the multi-parametric programming algorithm (see [2]) needs to include
the variable ζ(k) defined in Equation (17), and hence the feedback law has one extra dimension.

†Here, we apply a slightly modified definition of sgn(·), where sgn(0) = 1.
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Remark 3
It is important to briefly recall the benefits that can be obtained by deploying the explicit MPC
feedback law in complex embedded control systems [39, 40], rather than the QP-based algorithm.
From a control design perspective, the evaluation of the explicit MPC feedback law allows to
characterize the nominal closed-loop dynamics, and hence allows for a more detailed analysis of the
closed-loop system properties [41]. From a platform requirements perspective, the explicit feedback
is evaluated only through basic operations, i.e., sums, products, and comparisons to 0, which only
requires standard hardware circuits, and which can be implemented even in fix-point numbers. Also,
explicit MPC, while requiring a possibly consistent amount of storage memory (ROM), requires
minimum amount of RAM, as opposed to high-performance QP algorithms, where it shall be noted
that more and more the amount of memory is the limiting constraint in complex embedded control
systems [41,42]. Finally, from a verification perspective, it is much simpler to verify a lookup table
of gains, and to bound the worst-case execution time, instead of a QP algorithm that executes from
an infinite set of initial conditions. At the same time, the implementation with the on-board QP
solver, if feasible from computations and verification standpoint, can improve the reconfigurability
of the MPC controller to changes in parameters.

6. SIMULATED APPROACH OF A ROTATING PLATFORM

The same parameters as in Section 5 were used to simulate the approach to a rotating platform. In
(14), β = 2.5+ωp

10 was made dependent on ωp to relax the constraint in the case of a faster rotating
platform.

In this section we consider the case when the spacecraft approaches the platform rotating in the
counterclockwise direction. We examine two cases. In the first case while the platform rotates, the
changes in LOS cone constraints due to rotation are not accounted for in prediction. In other words,
the MPC controller assumes that the constraints remain frozen as they are at the current time instant.
In the second case the evolution of LOS constraints due to platform rotation is (approximately)
predicted, as described in Section 4.2.

The initial position of the docking port is (rx0, ry0) = (2.5, 0) [m] and the spacecraft starts from
a representative initial condition (δx0, δy0) = (50, 5) [m] in the interior of the initial LOS cone.
Such an initial condition and LOS cone position correspond to a radial approach if the platform
were not rotating. We simulate the maneuvers for a lower platform angular rate of ωp = 0.6 deg/s
and a higher platform angular rate of ωp = 2.25 deg/s.

For ωp = 0.6 deg/s, Figure 14 and 15 show that maneuvers can be successfully completed
regardless of whether the prediction of platform motion and of the LOS cone is performed or not.

Table IV compares the fuel consumption metrics and the docking time for the maneuvers with and
without platform motion prediction as the control weighting α varies. For lower control weighting
values, prediction reduces fuel consumption (about 15 percent for α = 102). The time-to-dock is
approximately the same for the two controllers. The fuel consumption difference is eroded as control
weighting increase and both controllers start to strongly emphasize small control effort and low fuel
consumption. We have also found that this difference is also dependent on the initial position of the
spacecraft within LOS cone, and may be eroded when the spacecraft is close to “active” constraint
boundary. Qualitatively similar conclusions about the fuel consumption benefit of predicting the
platform motion are obtained at angular rates lower and slightly higher than 0.6 deg/s.

Figure 16 compares the spacecraft trajectories when prediction of the platform motion is
employed versus when it is not employed for higher ωp = 2.25 deg/s, α = 102 and (δx0, δy0) =
(50, 5) [m]. The spacecraft is able to successfully perform the maneuver with the prediction of
platform motion but it is not able to keep up and eventually violates the constraints (e.g., collides
with the platform at time 62 sec) when such prediction is not employed. Note that the control inputs
remain saturated at the limits in the case of no prediction, as the controller attempts to keep up with
the constraints.

Figure 17 illustrates the responses for the case of the radial approach and the in-track approach
with ωp = 0.6, and ωp = 2.25 while α = 1× 102 when the initial conditions of the spacecraft vary.
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Figure 14. Radial approach to a platform rotating at ωp = 0.6 deg/s without prediction of platform motion.
Top row: Trajectory on the x-y plane(left), zoomed-in trajectory (right). Bottom row: Control accelerations
u′x and u′y (left), the plot of u′y versus u′x with magnitude saturation (right). Initial position of the LOS cone

is designated by black dashed lines and final position by the red dashed lines.

Table IV. Fuel consumption related metrics and docking time versus α.

ωp = 0.6 deg/s α 102 103 104 105 106 107 5× 107 108 5× 108

J1 17.44 18.16 15.61 17.74 15.66 14.28 13.49 13.16 12.55
non-predicted J2 2.36 2.50 2.14 2.41 2.15 1.88 1.79 1.76 1.63
constraints J3 13.33 13.94 12.18 13.59 12.29 11.51 11.20 11.10 10.64

td [s] 40.5 40.5 40.5 40.5 40.5 42.0 51.0 57.5 63.5
J1 14.35 14.34 14.28 14.38 14.04 13.65 13.12 12.94 12.13

predicted J2 1.93 1.93 1.92 1.93 1.87 1.76 1.72 1.70 1.54
constraints J3 11.57 11.57 11.54 11.58 11.41 11.17 11.00 10.91 10.27

td [s] 40.5 40.5 40.5 40.5 41.0 42.0 51.5 57.5 63.5

The spacecraft is able to successfully complete the maneuvers with the platform motion prediction
for both lower and higher angular rates. We note that for ωp > 2.25 deg the spacecraft mail fail
to complete the maneuvers even with the platform motion prediction as actuator authority may be
insufficient to keep up with a rapidly rotating platform in this case.

To summarize, our simulation results here and in [28,29] suggest that incorporating the prediction
of the platform motion and changes in LOS cone can result in more fuel efficient maneuvers and
in being able to complete the maneuvers for higher rotational rate of the platform. These benefits
are more pronounced for medium range of ωp and are eroded for very low values of ωp, and as ωp

increases to larger values, which exceed the actuators capabilities.

7. COLLISION AVOIDANCE MANEUVERS

In this section we consider the additional objective of avoiding debris on the spacecraft rendezvous
path. There are more than 22,000 debris of 10 centimeter and longer orbiting the Earth today
and this number is growing. Collision with orbital debris is a serious threat that can damage the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2011)
Prepared using rncauth.cls DOI: 10.1002/rnc



22 S. DI CAIRANO, H. PARK, I. KOLMANOVSKY

0 10 20 30 40 50
−25

−20

−15

−10

−5

0

5

10

15

20

25

x−axis [m]

y−
ax

is
 [m

]

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x−axis [m]

y−
ax

is
 [m

]

0 20 40 60 80 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

in
pu

t [
m

/s
2 ]

 

 

ux
,

uy
,

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

ux
,  [m/s2]

u y,  [m
/s

2 ]

Figure 15. Radial approach platform rotating at ωp = 0.6 deg/s with prediction of platform motion. Top
row: Trajectory on the x-y plane(left), zoomed-in trajectory (right). Bottom row: Control accelerations u′x
and u′y (left), the plot of u′y versus u′x with magnitude saturation (right). Initial position of the LOS cone is

designated by black dashed lines and final position by the red dashed lines.

spacecraft. Several collision risk assessment methods have been developed, see e.g., [15, 16, 20, 30]
and references therein, along with debris collision avoidance strategies, see e.g., [15, 34, 35] and
references therein. In [23, 34], for instance, collision avoidance strategies for polyhedral objects as
obstacles have been developed based on mixed-integer linear programming.

To incorporate debris avoidance in our MPC approach, we assume that the debris can be covered
by a virtual disk of radius rd centered at (dx, dy) [m]. See Figure 18.

7.1. Model Predictive Controller Design for Debris Avoidance

Our approach to debris avoidance is based on covering the debris by a disk and assuming that this
“virtual” disk slowly rotates with angular rate ωd [rad/s]. Referring to Figure 18, we impose the
constraint forcing the spacecraft to remain in a specified half-plane relative to a tangent line to the
disk. As the tangent line rotates with the disk, the constraint is dynamically reconfigured and varies
in time. For simplicity, we assume here that the docking port does not rotate, and it is at the origin
of the reference frame, i.e., (rx, ry) = (0, 0), (σx,σy) = (δx, δy).

At activation of the constraint, the disk tangent line is perpendicular to the line between the
spacecraft location, (δx(0), δy(0)) [m], and the center of the disk, (dx, dy). The angle ϕd(0)
is defined as the angle between the x-axis and the normal to the tangent line so that ϕd(0) =

tan−1
(

δy(0)−dy

δx(0)−dx

)
. Then ϕd(k + 1) = ϕd(k) + ωdkTs and the debris avoidance constraint is given

by

cosϕd(k)

rd
(δx(k)− dx) +

sinϕd(k)

rd
(δy(k)− dy) ≥ 1. (37)
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Figure 16. Radial approach to a platform rotating at with ωp = 2.25 deg/s. Top row: Plots without
prediction of platform motion. Trajectory on the x-y plane (left), control accelerations u′x and u′y (right).
Bottom row: Plots with prediction of platform motion. Trajectory (left) and control accelerations (right).
Initial position of the LOS cone is designated by black dashed lines and final position by the red dashed

lines.

A similar approach to the one in Section 6 is applied so that (37) is approximated in prediction by

L7(δx(j|k)− dx) + L8(δy(j|k)− dy)

+

(
− L8(δx(k)− dx) + L7(δy(k)− dy)

)
(ϕd(j|k)− ϕd(k)) ≥ 1,

(38)

where

L7 =
cosϕd(k)

rd
, L8 =

sinϕd(k)

rd
,

ϕd(j|k) ' ϕd(k) + ϕ̇d(k)jTs,

and j ∈ Z0+ denotes a future time instant with respect to k. The debris constraint (38) is deactivated
once ϕd becomes equal to ϕd(0) + π so that the constraint does not interfere with the spacecraft
motion after it passes the debris.

Similarly to (28), (29), the state vector for debris avoidance maneuver has the following form

X̂ =
(
δx δy δẋ δẏ dx dy rdx rdy z1 z2

)T
,

and the model is represented by

X̂(j + 1|k) = ÂX̂(j|k) + B̂Û(j|k), (39a)
Ŷ (j|k) = ĈX̂(j|k) + D̂Û(j|k), (39b)
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Figure 17. Trajectory on the x-y plane starting from various initial positions in a rotating platform with
prediction of platform motion. Top row: ωp = 0.6 deg/s. Radial approach (left), in-track approach (right).
Bottom row: ωp = 2.25 deg/s. Radial approach (left), in-track approach (right). Initial position of the LOS

cone is designated by black dashed lines and final position by the red dashed lines.

Figure 18. Schematics of the approach used to achieve debris avoidance.

where

Â =





Ad 04×2 04×2 04×2

02×4 I 02×2 02×2

02×4 02×2 Ωd 02×2

02×4 02×2 02×2 Θ



 , B̂ = B̄, D̂ = D̄,

Û = Ū , Θ is defined in (27),

Ĉ =





L7 L8 0 0 −L7 −L8 0 0 0 Ĉ1

sin γ − cos γ 0 0 0 0 0 0 0 0
sin γ cos γ 0 0 0 0 0 0 0 0
Ĉ2 Ĉ3 Ĉ4 Ĉ5 0 0 0 0 0 0



 .

and

Ωd =

(
cos(ωdTs) − sin(ωdTs)
sin(ωdTs) cos(ωdTs)

)
,

Ĉ1 = L8(δx(k)− dx) + L7(δy(k)− dy),

Ĉ2 = sgn(δx(k)), Ĉ3 = sgn(δy(k)),

Ĉ4 = −ηsgn(δẋ(k)), Ĉ5 = −ηsgn(δẏ(k)).
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Table V. Costs and docking time in maneuvers with and without debris avoidance.

J1 J2 J3 td
w/o debris 17.88 3.03 14.77 45.5
with debris 21.03 3.53 16.18 53.0

and where the constraint

Ŷ (j|k) ≥ Ŷmin, Ŷmin =
(
1 0 0 −β

)T
, (40)

is imposed on the system output, representing the LOS constraints, the soft-docking constraint with
respect to the platform, and the debris avoidance constraint.

Thus, for the debris avoidance case, the MPC optimal control problem is formulated as

min
Û(k)

X̂(NJ |k)T P̂ X̂(NJ |k) +
NJ−1∑

j=0

X̂(j|k)T Q̂X̂(j|k) + Û(j|k)T R̂Û(j|k), (41a)

s.t. X̂(j + 1|k) = ÂX̂(j|k) + B̂Û(j|k), (41b)
Ŷ (j|k) = ĈX̂(j|k) + D̂Û(j|k), (41c)
X̂(0|k) = X̂(k), (41d)
Û(j|k) = K̂X̂(j|k), j = NU + 1, . . . , NJ − 1, (41e)

Ŷ (j|k) ≥ Ŷmin(k), j = 0, . . . , NC , (41f)
Û(j|k) ≥ Ûmin, j = 0, . . . , NU , (41g)
Û(j|k) ≤ Ûmax, j = 0, . . . , NU , (41h)

where Û(k) = {Û(0|k), · · · , Û(NU |k)},

P̂ =

(
P 04×6

06×4 06×6

)
, Q̂ =

(
Q 04×6

06×4 06×6

)
, R̂ = R̄, K̂ =

(
K 02×6

)
,

and the input constraints in (41) are defined by (10).

7.2. Simulation Results

Simulations results are now presented for rd = 2 m. Other parameters are the same as the ones in
Section 6. The debris is located at (dx, dy) = (40, 0) [m] and the initial location of the spacecraft
is (δx0, δy0) = (60, 5) [m]. The docking port is located at the origin of the reference frame and is
represented here as a point mass. The angular rate of the “virtual” disk, ωd, was varied between 5
deg/s and 15 deg/s and the best value of ωd = 12 deg/s was determined in simulations based on
a trade-off between maneuver feasibility (in terms of satisfying the imposed constraints) and speed.
of the virtual disk is a design parameter that can be that the best value of the virtual rotation rate is
multiple simulations. Figure 19 compares the trajectory of the spacecraft when there is no debris
and when the spacecraft performs a rendezvous while avoiding debris. Note that the debris is placed
at a location that makes infeasible the trajectory of the no-debris case. The “x” symbol represents
the initial point of activation of the tangent line constraint. The constraint is deactivated after the
disk covering the debris has rotated π rad. The line tangent to the virtual disk in Figure 19 is in the
position after the disk rotated π rad and the debris avoidance constraint is deactivated. Figure 20
illustrates debris avoidance maneuvers for various initial positions of the spacecraft.

We also report the three fuel consumption-related metrics in (32) and the time-to-dock for the case
with and without the debris in Table V. The debris avoidance results in increased fuel consumption
and longer maneuver time.
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Figure 19. Comparison of the maneuvers. Top row: Trajectory on the x-y plane without debris (left), control
accelerations u′x and u′y without debris (right). Bottom row: Trajectory on the x-y plane with debris (left),

control accelerations u′x and u′y (right) with debris.
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Figure 20. Trajectories from various initial positions without debris (left) and with debris (right).

8. CONCLUSIONS

In this paper we have considered rendezvous and proximity maneuvering between a spacecraft and
(a potentially rotating/tumbling) target platform. Model Predictive Control (MPC) was utilized to
enforce velocity of approach (soft-docking) constraints, LOS cone constraints and thrust magnitude
constraints. The problem was treated in a linear quadratic MPC framework without introducing
integer variables so that the finite horizon optimization problem can be solved by quadratic
programming (QP) algorithms, which are known to be efficient and computationally affordable.
In order to achieve this, we have employed dynamically reconfigurable linear constraints. We
have demonstrated through simulations that the MPC controller is capable of planning efficient
maneuvers, while enforcing all the imposed constraints, and of compensating for the effects of
significant disturbances such as those that may be caused by thrust errors, air drag or solar pressure.
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In addition, we have analyzed the dependence of fuel consumption and “time-to-dock” on the
weights of the MPC cost function by using three different metrics. The weights of the MPC cost
function, e.g., the scaling factor on the control weighting matrix, have been shown to have a direct
influence over the trade-off between the fuel consumption and the docking time. For the case when
the platform is not rotating and the LOS cone angle is fixed and known, an explicit MPC solution can
be generated off-line for on-board use, hence avoiding the need for the deployment and validation
of the QP solver in the spacecraft software. For the case when the target platform is rotating, our
results suggest that predicting the motion of the docking port and of the associated changes in the
LOS constraint permits to perform maneuvers initiated when the spacecraft is further away from the
platform and when the platform is rotating/tumbling at a higher rate. We have also shown that by
incorporating such a prediction into the MPC problem formulation, the fuel consumption is reduced.
Finally, we have demonstrated that related ideas can be applied for debris avoidance during the
rendezvous maneuver. The extensions to more general in and out of plane spacecraft motion, and to
three dimensional spacecraft and platform rotations will be pursued in future works.
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