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to select reliable feature points. These features are described using gradients computed from
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Each shape is represented by an analytic decision function obtained by training SVM, with a Radial Basis Function (RBF)
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1 INTRODUCTION

Shape of an object represents the geometrical information
that is independent of the transformational (scaling, rota-
tion, articulation, etc) effects. Understanding shape is essen-
tial in many computer vision applications from recognition
of people and their actions in video surveillance to design
and inspection in industrial manufacturing [6], [28].

Recent psychophysical findings [54] suggest that the
perceptual representation of a shape is primarily based on
qualitative properties whose topological structures remain
relatively stable over transformational conditions. Other
empirical studies [29], [44] have shown that the neural
processing of shape in the brain is broadly distributed
throughout the ventral (what) pathway that is involved in
object recognition, and the dorsal (where) pathway that is
involved in spatial localization. In other words, an adequate
mathematical representation of shape needs to be invariant
to viewpoint changes and articulated object motion, and
discriminative enough to enable detection and classification.

Two main approaches dominate previous work on shape
representation: global approaches model an object as a
whole segment, while part-based approaches advocate seg-
mentation of shape into constituent regions. The drawback
of a purely global approach is the exclusion of articulation
and the sensitivity to occlusion. The drawback of a purely
part-based approach is that a consistent partitioning is
generally not possible in the face of numerous combina-
tions of possibilities and object shape variations. Besides,
segmentation itself is ill-posed, except under controlled
environments or in restricted application domains.
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Global models cover a wide range of methods. Prominent
global shape representations include variational [11] and
level set approaches [45], [39]. These approaches have been
applied for scene segmentation [13] and tracking [46], [48].
Brookstein initiated the use of thin-plate splines [8] to an-
alyze deformable shape, which were then improved by [9],
[10]. These methods are landmark-based and suffer from
inconsistency in landmark selection. [59] fits a parametric
model to a shape using mixture of Gaussian densities. This
method requires a clustering process to estimate cluster
centers and therefore has the same drawback with other
landmark-based approaches. [22] assigns every internal
point of the silhouette a value proportional to mean time
of random walk from the point to the boundary. This can
be achieved by solving a Poisson equation. Other popular
methods are statistical moments [41], eigenshapes [23],
curvature scale space [1], elastic matching [3], parametric
curves (polylines), image signatures, etc. Zernike moments
are a class of orthogonal moments that are invariant to
rotation and translation. Eigenshapes decompose a dis-
tance matrix of boundary points into an ordered set of
eigenvectors and finds the modes of these eigenvectors.
Elastic matching evaluates the similarity as a sum of local
deformations needed to change one shape into another.
Scale space representation successively smoothens to the
contour while decreasing the number of curvature zero
crossings. In general, global models need additional mech-
anisms to compensate for articulated motion and non-rigid
deformation.

In comparison, part-based approaches describe shapes in
terms of their part structure. Parts are defined to be nearly
convex shapes separated from the rest of the object at con-
cavity extrema [31], [32], [33], [37]. It is possible to build
a discriminative classifier from a collection of parts [24]
or a bag-of-feature to solve correspondence [5]. These
methods often require a multitude of training samples, prior
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knowledge on the number of parts, and precise formulation
of articulation. Other part-based methods try to learn the
part structure by considering the shape interior. For in-
stance, shock graphs [51] are defined as the cyclic tree of
singularities of a curve evolution. The inner distance [35],
geodesic distance [25] and random walk [21] also consider
the interior of the shape to build descriptors. Given a pair
of points, the inner distance is determined by finding their
closest points on the shape skeleton, then measuring the
distance along the skeleton. The geodesic distance is the
length of the shortest path on the surface. While shock
graphs benefit from the skeletons robustness to articulation
they suffer from boundary noise. The inner and geodesic
distances are robust to disturbances along boundaries, yet
they are highly sensitive to occlusions and fragmentations.
Recently, [18] proposed Gibbs Random Fields to model
shapes as spatial compositions of simple parts.

Pioneering work on the spin image [27] describes the
relative spatial distribution of shape points around a set of
feature points. It considers a cylindrical support region and
accumulates a histogram of points. The shape context [4],
[19] is similar to the spin image except that the support
region is a sphere. Since both generate sparse matrices,
the distance computation is sensitive to the shape structure.
In [7] each shape is indexed based on a variety of features
such as inner distance, Euclidean distance, contour distance,
etc. that characterize pairwise geometric relationships be-
tween interest points on the shape. Shapes in the database
are ordered according to their similarity with the query
shape and similar shapes are retrieved using a scheme
which does not involve shape-wise alignment.

The above methods provide satisfactory results under
ideal conditions with strong priors and clean segmentation
masks. Their representation capacity substantially degrades
when the shape boundary is noisy (part-based methods,
shock graphs), shape has internal crevices, branching off-
shoots and excessive discontinuities (inner-distance, spin
images, shape context), and non-conforming articulations
(global models). Besides, they would not necessarily extend
to higher dimensions or generalize over most shape classes.

Quite different from existing approaches, we propose a
novel implicit shape representation based on SVM the-
ory. Each shape is represented by a classification de-
cision function obtained by training SVM with interior
and exterior shape points providing positive and negative
training samples, respectively. The RBF kernel is used with
SVM to make our representation rotation and translation
invariant. The decision boundary is a hypersurface on the
high-dimensional feature space that separates the positive
labeled points, shape, from the negative labeled points, its
surroundings. Our shape representation is not just the shape
boundary or the decision function boundary but the function
itself. Instead of using the edge or surface gradients on a
discrete grid, we use the gradient of the classification deci-
sion function, which is an analytic function that is defined
everywhere in the data space. Furthermore, the use of the
RBF kernel enables SVM to model any complicated shape
due to the infinite dimensional nature of the associated

Hilbert space. Several other advantages are explained in
the following section.

To summarize the main contributions, this paper

• proposes a novel method to represent 2D and 3D
shapes using support vector classifiers,

• provides an in depth theoretical analysis for a better
understanding of this representation, and

• presents a variety of detailed experimental results to
evaluate its performance on challenging datasets.

Section 2 introduces the SVS and explains in detail
the SVS representation, choice of classification algorithms,
and their stability and robustness properties. Sections 3
and 4 present alternative ways of selecting feature points
and constructing local descriptors. Experimental results on
several benchmark datasets are presented in Sec. 5 for 2D
shapes and Sec. 6 for 3D range images.

2 SUPPORT VECTOR SHAPE

We define the SVS representation to be the decision
function of a classifier. The name SVS comes from the
fact that the decision function is parameterized by a set
of support vectors that is learned from Support Vector
Machine (SVM). Through out the paper, the terms “SVS”
and “decision function” are used interchangeably. This
representation facilitates the extraction of feature points that
correspond to salient components of the shape, which are
then described using local statistics of the decision function
around each point.

To the best of our knowledge, we are the first to consider
the shape representation as a classification problem. This
classifier based representation offers several advantages.
First, it is general enough to be applied to 2D shapes
and 3D volumes. Second, the classification function de-
pends only on a sparse subset of key points, which makes
the representation robust against noise, missing data, and
other artifacts including interior fragmentations. Finally,
the descriptors are also more discriminative and stable
against transformation and disturbances than edge-based
descriptors [27], [61], [35] since they are extracted from
the dense gradient field of the decision function but not
from the original data.

Basically, SVS involves the following tasks:

1) Learn a decision function from a given shape,
2) Select feature points using the gradient, i.e. the first

derivative, of the decision function. (sec. 3),
3) Compute local descriptors (sec. 4).

which are explained in the following sections.
As it will be clear, SVS enables selecting a small set

of salient features for shape matching and retrieval. These
features are described using local statsitics of the decision
function around each point. For instance, a 2D variant of
SVS features picks the high gradient points of the decision
function as the feature points and uses the local histogram
of oriented gradients computed on the decision function as
the descriptors.
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2.1 Learning a Decision Function:
Let S = {xn}Nn=1 be a set of points representing a shape1

and S̄ be the set of points not in S, i.e outside. We wish
to learn a classifier:

f(x) =

{
≥ 0, x ∈ S
< 0, x ∈ S̄

(1)

Two classifiers, f(x) and g(x), are said to represent the
same shape if

sign[f(x)] = sign[g(x)] =

{
≥ 0, x ∈ S
< 0, x ∈ S̄

(2)

The following theorem states that if the binary shapes gen-
erated by taking the zero-level crossings of these classifiers
are equivalent (as in 2) to each other then the decision
functions are equivalent with a constant factor:

Theorem 1 (Curtis ‘87 [15]). Let f(x) and g(x) be real,
2D, band-limited and irreducible functions. If f(x) and
g(x) take on both positive and negative values in a closed
bounded region D ⊂ R2, and sign[f(x)] = sign[g(x)] for
all x in D, then f(x) = κg(x), where κ is a real positive
constant.

Here, irreducible function means that its Fourier trans-
form is not factorable. The band-limited condition implies
the Fourier transform will exist and it will have a com-
pact region of support for finite-energy signals (interested
readers are referred to [53] for further discussions on band-
limitedness condition).

The above theorem suggests that the gradient orientation
is equivalent for such two functions satisfying the above
constraints. In other words, two decision functions rep-
resenting the same shape will be consistent and exhibit
invariance properties in terms of their gradient orientations
if these functions are real, 2D, band-limited, irreducible,
and have almost identical responses.

One such example is the radial basic function (RBF)
that support vector machine (SVM) [58] operates on. It
is real and band-limited: it has the form of the sum of
finite number of weighted exponential, thus, its Fourier
transform is a sum of weighted exponentials, which has
finite-energy and a compact region of support especially
when insignificant coefficients of the radial kernels are
disregarded. A Theorem for the irreducibility of the general
class of functions including the RBF kernel is given below
with the proof in Sec. 7.

Theorem 2. A function of the following form:

f(x) =

m∑
i=1

αig(x− x∗
i ), m ≥ 5 (3)

is irreducible if the Fourier transform of g(x) does not have
any zero (either real or complex).

For an ideal shape classifier as defined in Eq. 1, the
decision function is positive for the shape regions, zero
on the shape boundary B, and negative otherwise. In other

1. We denote vectors in bold letters

words, the gradient of the decision function along the
tangent space of a point on the boundary B is zero (see
Figure 1). This means that the gradient of the decision
function must be perpendicular to the tangent plane, thus,
the gradient itself coincides with the normal vector of the
shape.

Proposition 1. Gradient ∇f(x) at a shape boundary point
is a close approximation for the normal vector at that point.

Fig. 1. Illustration of SVS decision boundary. The dotted line
is the tangent space.

This property is very desirable for SVS since the normal
direction is an essential input for the construction of many
descriptors [4], [16], [27]. It is especially useful for comput-
ing descriptors from 3D point clouds where the knowledge
about points orientations is missing.

As moving from the boundary B to the interior of shape,
the gradients ∇f(x) are resulted from combining effects
of local edge segments. This effectively creates fusions of
local topologies that enhance the discriminative power of
local descriptors (Section 4).

We are interested in representing a shape by a continuous
function that has the mathematical form of Eq. 3 and at the
same time satisfies Eq. 1 as much as possible. Notice that
the class of functions in Eq. 3 contains the decision function
of SVM with the RBF kernel [50], [49]. Therefore, we em-
ploy SVM to learn our parametric shape representation. To
our advantage, the SVM decision function is analytic, i.e., it
is in the form of weighted sum of kernel responses, thus its
gradient can be efficiently computed at a point in the space.
Furthermore, the RBF kernel functions can effectively map
data xn to an ∞-dimensional space where S and S̄ would
be linearly separable, thus even for intricate boundaries a
high classification performance, therefore accurate shape
representation, is guaranteed.

SVMs construct a hyperplane in a high (or infinite)
dimensional feature space between a set of labeled input
vectors x that can be either +1 for shape pixels, or −1
for non-shape pixels by definition for binary SVMs. The
decision boundary is defined in terms of a typically small
subset of training examples, called as support vectors, that
result in a maximum margin separation between these
classes. The decision function of SVM is given as

f(x) =

m∑
i=1

αi[Φ(x).Φ(x∗
i )] (4)

where x∗
i are support vectors, αi are the corresponding

weights of the support vectors, m is the number of non-
zero support vectors, and Φ is a mapping function in some
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Fig. 2. Orientation of ∇fx remains stable even if the shape
transforms and different set of parameters and points are
used to train the SVS on the right.

dot product space H. By defining a similarity measure k
in H as

k(x,x∗
i ) = Φ(x).Φ(x∗

i ), (5)

every dot product in the decision function is replaced by a
kernel function. This allows efficient computations without
having to venture into the high dimensional feature space
H. The transformation may be non-linear; thus though the
classifier is a hyperplane in H, it may be non-linear in the
original input space. If the kernel used is a Gaussian, the
corresponding feature space is a Hilbert space of infinite
dimension

Φ(x).Φ(x∗
i ) = exp(−γ||x− x∗

i ||2) (6)

where γ stands for the Gaussian kernel width. By using the
RBF, it is always possible to find a decision function that
perfectly represents a shape. Such a decision function has
the form

f(x) =

m∑
i=1

αi exp(−γ||x− x∗
i ||2) (7)

and the final classification is made by l(x) = sign[f(x)].
It is worth noting that the set of support vectors is usually
small in comparison with the entire training set.

Since the decision function in (7) only depends on the
distance between points, the SVS representation is robust
to translation and rotation2. This can be observed from
the Figure 2 which shows that the gradient directions,
computed from SVS decision functions of transformed
versions of the same shape, are almost same.

Furthermore, the γ multiplier in the kernel function is
inversely proportional to the squared scale change. For a
given shape with unknown scale change from its original,
the mean of pairwise distances between all points can
be used to normalize the shape. This scale normalization
technique has been used in shape context [19] and has
been proven to be effective. In addition, our analysis
demonstrates that small variations of γ would not perturb
the best possible classification accuracy.

2. Note that, for linear and polynomial kernels such an invariance does
not apply as they impose inner products of point coordinates

Fig. 3. Support vectors (red circles αi > 0, blue circles
αi ≤ 0), the decision function boundaries f(x) = 0 (yellow),
and the original shape (green) for support vector numbers
25, 44, and 61. Classifier accuracies are 93%, 97.2%, and
99.8%, respectively. Original shape contains ∼54K points
(∼1K points on the boundary), yet only a small fraction (e.g.
61) of points are needed to encode the shape.

For training, we select a random subset of internal points
to be positive training samples from a given shape. Another
random subset of points surrounding the shape is chosen
to be negative samples. Random selection is preferred just
for computational efficiency. The input to the classifier is
the coordinates and the corresponding inside/outside labels
of the training points.

Figure 3 shows support vectors and decision boundaries
for a sample shape. It can be noticed that support vectors
are not required to lie on shape edges. This is because
the kernel mapping data to the high dimensional space,
where non-edge points might happen to lie on the decision
boundary of the learning algorithms. The number of support
vectors typically varies from 0.1% to 3% of the total
number of points.

2.2 ν−SVM and One-Class SVM:
We employ ν−SVM [50] and one-class SVM [49] for
learning the decision function as its parameters have a natu-
ral interpretation for shapes. Given a set of labeled samples
(xi, yi), the learning problem of ν−SVM is formulated as
the minimization of

arg min
w,ξ,ρ

1

2
||w||2 − νρ+

1

l

l∑
i=1

ξi (8)

subject to:
yi.(w.Φ(xi) + b) ≥ ρ− ξi, (9)

ξi ≥ 0, ρ ≥ 0 (10)

where Φ is a function that maps the input data to some
Hilbert space. The above optimization tries to correctly
classify as many data as possible by penalizing the mis-
classified samples through variable ξi. At the same time,
the minimization of ||w|| keeps the model as simple as
possible, and the margin is made as large as possible
through maximization of variable ρ.

The trade-off between the model complexity and the
training error is controlled by parameter ν ∈ [0, 1]. It is
also the lower and upper bound on the number of examples
that are support vectors and lie on the wrong side of the
hyperplane, respectively. The larger (smaller) we make ν
the more (less) points are allowed to lie inside the margin,
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Fig. 4. Comparison of the decision function responses for noise-free and noisy shapes. In the first experiment, a car
shape is distorted by randomly removing 20% and 50% of points and adding speckle noise to the background. In the second
experiment, the letter A is interleaved with blank spaces. The differences of decision function for both cases are hardly
noticeable. They are both trained using one-class SVM.

which gives coarser (finer) shape representations. It is pos-
sible to use a small value which results in a larger number of
support vectors to allow accurate representation of complex
shapes, while smaller numbers of support vectors enhance
the robustness against corrupted training data.

The formulation and parameters of one-class SVM is
similar with ν−SVM. The only difference is that one-class
SVM allows learning from data with positive samples only.
It separates data from the origin in the feature space instead
of separating positive samples from negative samples. This
becomes extremely useful to deal with missing data due to
occlusion and camera sampling error.

The selection of parameters for SVM algorithms (e.g.
kernel width γ of Eq. 6, error margin ν of Eqs. 8) is
done automatically by imposing a constraint on the cross-
validation accuracy. Specifically, we divide the data points
into two subsets, one for training and another one for
testing. We then perform cross-validation and select the set
of parameters that produce a classification accuracy higher
than 99%. Note that if heavy occlusions are present, we
allow the classification accuracy to be lower.

Figure 4 illustrates the robustness of SVS representation
under different noise effects. In particular, we compare the
color-coded response of the decision functions for a car
shape and an A-letter shape before and after being distorted.
As for the car, we randomly remove pixels from the shape
and also add noise to the background. The A-letter shape
is interwoven with white spaces to create distortion of the
shape boundary. For both cases, it can be seen from the
Figure 4 that the color-coded responses, thus, the associated
decision functions remain quite stable.

From the computational perspective, SVS complexity
is essentially the same with that of SVM algorithms. In
general, it is polynomial in the number of input points. In
our experiments, it takes about 0.15 seconds to compute
SVS for a shape in the MPEG7 dataset [30] using a
2.4 GHz Quad Core machine. The learning process can
be significantly speed up using approximate variants of
SVM [26], [55]. The query of the decision function is
very efficient. It is linear in the number of support vectors,
which is a small fraction of the total number of points (e.g.

1%). In addition, it can be accelerated by two orders of
magnitude [12] using statistical approximations.

3 SVS FEATURE POINTS

Shape matching algorithms using SVS representation com-
prise two constituents: feature (interest) points and their
descriptors. This section discusses possible ways of select-
ing the feature points. All these methods are based on the
previously explained decision function f(x).

The feature points are desired to be stable under local and
global shape perturbations (including affine transformations
and articulated motion) as well as noise and other artifacts.
Such feature points should be reliably computed with high
degree of reproducibility. In addition, the local descriptors
computed at these feature points have to be discriminative
enough for reliable shape matching and registration, there-
fore structure around the feature points should be rich in
terms of local information content. In what follows we will
elaborate on different possibilities of selecting good feature
points for SVS representation.

3.1 Gradient based Feature Points
A corollary of Theorem 1 is that the gradient orientation is
stable while gradient magnitude differs only by a constant
factor. The gradient orientation is given by

∇f(x)

||∇f(x)||
, where (11)

∇f(x) = 2γ

m∑
i=1

αi exp(−γ||x− x∗
i ||2)(x∗

i − x). (12)

To evaluate the stability of the gradient orientation,
we randomly choose a set of 500 points on each of
70 SVSs created from different shapes in the MPEG7
database [30] and examine their gradients as the training
parameters (γ, ν) vary (γ by 6× and ν by 10× with
respect to the smallest value of each parameter). Note that
each different parameterization may generate a different
decision function in magnitude, however we are interested
in how the direction of the gradient of the decision function
changes. Therefore, to account for the multiplication factor



6

Fig. 5. The relative gradient magnitude at a point is com-
puted by dividing its gradient magnitude by mean of gradient
magnitude across the entire shape.

of the decision function, we normalize the decision function
values by their mean value yielding relative magnitudes.

Figure 5 shows how the standard deviation of gradient
direction changes with respect to the relative gradient
magnitudes for 500 points from one of the 70 SVSs. One
can easily notice that the gradients vary with respect to
the training parameters. This is because large variation of
the training parameters (γ, ν) results in different classifi-
cation functions that do not satisfy strictly the condition
sign[f(x)] = sign[g(x)] as in Theorem 1.

However, the variation exhibits a strong dependency on
gradient magnitude. The higher the gradient magnitude
gets, the smaller the standard deviation is. For points with
gradient magnitude of more than two, the standard devia-
tion, which directly corresponds to direction changes, is as
small as 4◦. Note that in practice the variation should be
smaller than what we see in Figure 5 since the constraint of
high classification accuracy implicitly requires a consistent
set of parameters (γ, ν).

Since the gradient orientation is stable especially for
higher gradient magnitude points we choose a small subset
of such points for matching. We apply iterative search
method that finds the maximum gradient magnitude point
on ∇f(x) until it selects 100 points and build a list by
ordering them according to their angles from the center of
the shape in a circular fashion. The starting (0◦) orientation
of circular sweep is set with respect to a dominant gradient
direction of ∇f(x).

Severe occlusions or distortions might lead to change
of the dominant gradient directions. In such a scenario,
we allow the generation of multiple sets of descriptors
corresponding to different tentative orientations. During the
shape matching phase, the distance between two shapes
is the smallest matching cost among all the orientations.
Figure 6 shows the selected feature points for a sample
shape.

Fig. 6. Decision function responses (left) and the gradient
magnitude of the decision function (right) for the SVS repre-
senting Stanford Bunny. Points with higher values in ∇(fx)
seem to be good candidates to be selected as discriminative
feature points. Black circles are the 51 feature points (102
support vectors).

3.2 Support Vector based Feature Points
The support vectors are sufficient to construct the decision
function and its gradient, thus they are good candidates for
feature points.

One can ask whether the set of support vectors enable
reliable shape matching. The answer to this question largely
depends on the problem at hand. For non-articulated trans-
formations, the support vectors remain stable. In Figure 7
we show that support vector locations are quite stable when
the kernel width varies 2×. Constraining the classification
accuracy to be sufficiently high (e.g. 99%) and preventing
the kernel width from changing too much would produce
similar support vectors. Yet, if the kernel width changes too
much, e.g. 20×, support vectors change significantly as in
Figure 3. Besides, the support vectors are sensitive to shape
articulations due to the topology changes as illustrated in
Figure 7 bottom-pair.

3.3 Curvature based Feature Points
It is possible to select points with high-curvature on SVS by
looking at the Hessian matrix of a decision function. More
specifically, for the 2D case, we first solve the eigenvalues
of the Hessian matrix, which is proportional to curvatures.

H =

[
∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f
∂x2

2

]
= Q

[
λ1 0
0 λ2

]
Q−1 (13)

Points with high curvatures associate with large eigenvalues
of both dimensions (λ1, λ2). We randomly sample 200
points to compute curvatures. Feature points are chosen
where the first eigenvalue λ1 and the second eigenvalue
λ2 are larger than the median of λ1 and λ2, respectively.
To mitigate noise effects, the decision function can be
smoothed at different scales before computing curvatures.
Gaussian smoothing of the decision function (7) is a
mixture of Gaussian functions, which can be computed
efficiently with a closed-form expression.

An advantage of this selection scheme is that local
descriptors are highly discriminative. For instance, SIFT
can be computed to find point-wise correspondences for
aligning two similar shapes. However, this point selection
method is not appropriate for shape matching. For exam-
ple, choosing only those points around corners makes it
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Fig. 7. Stability of support vectors with respect to variation of
RBF kernel width (γ) and articulation. (top) Support vectors
when γ varies. γ = 0.0027 in the first shape, and γ = 0.0054
in the second shape. 62 out of 78 support vectors in the first
shape appear in the second shape. The overall positioning of
the support vectors is very similar. (bottom) Support vectors
with shape articulation. Blue circles indicate SVs that do not
have correspondences on the other shape. 83 out of 114 SVs
in the first shape appear in the second shape.

impossible to differentiate a rectangle from a square. This
disadvantage arises for shapes characterized mainly by their
dimensions and shapes characterized by the arrangement
of similar local structures. Another disadvantage of this
method is the difficulty of computing curvatures when
generalizing to higher dimension.

3.4 Entropy based Feature Points
Another possibility is selecting a small subsets of points
whose local gradient orientation have high entropy. To com-
pute this entropy, we first create a histogram of gradients
over the local window of size 0.25× 0.25 (with respect to
mean pairwise distances). The entropy is then computed as
follows:

−
n∑
i=1

pilog2(pi) (14)

where pi is the weight of the ith bin and n is the number of
bins in the histogram. High entropy is equivalent to high
variation of gradient orientations. Therefore, it is a good
indication of complex local topologies of SVS, thus, more
discriminative local descriptors. This strategy has similar
philosophy with high-curvature selection method. However,
it does not involve the computation of principal curvatures
which can be difficult for higher dimensional cases.

4 SVS DESCRIPTORS
SVS facilitates the computation of a set of descriptors
extracted from the decision function. Below, we give only
a few examples of possible descriptors for 2D and 3D data.

Fig. 8. Comparison of IDSC with the SVS computed at
four locations indicated by square dots on the shapes. De-
scriptors are displayed from left to right corresponding to
the following order of dots’ colors: red, yellow, green, cyan.
The second image has a crack in the shape. IDSC changes
drastically (it highly depends on the boundary) while the SVS
remains robust generating almost the identical descriptors.
Box color indicates the severity of the mismatch: Green
(< 20%) ; Orange (20→ 50%); Red (> 50%).

4.1 2D Descriptors

We compute a local histogram of oriented gradients (HOG)
descriptor around each of the points on the decision func-
tion gradient ∇f but not on the conventional edge gradient,
thus our HOGf is significantly different from the existing
descriptors.

For a given feature point, a 4×4 array of 8-bin orientation
histograms is constructed within a local window. The size
of the window is set to be 0.25×0.25 (relative with respect
to mean pairwise distance). Our experiments indicated
that this size provides satisfactory results for both very
coarse and fine shapes. A histogram is populated for each
sub-block by aggregating the gradient magnitude of the
decision function into the corresponding orientation bin of
the gradient direction of the decision function.

Since gradients with larger magnitudes are more stable,
the contribution of each gradient to the histogram is set to
be proportional to its magnitude. We impose a Gaussian
kernel to weight gradients based on their relative distances
with respect to the feature point. This spatial weighting puts
more emphasis on the gradients that are closer to the center
and helps improving the discriminative power of the local
descriptors.

To prevent problems due to the coarse binning issues, the
value of each gradient point is interpolated into adjacent
histogram bins. Finally, the mean of gradients for the local
window is taken to be the orientation of the descriptor and
the histogram bins are reoriented accordingly with respect
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Fig. 9. Comparison of Shape Context (SC) with the SVS
computed at four locations indicated by square dots on the
shapes. Descriptors are displayed from left to right corre-
sponding to the following order of dots’ colors: red, yellow,
green, cyan. Box color indicates the severity of the mismatch:
Green (< 20%) ; Orange (20→ 50%); Red (> 50%).

to this mean orientation to achieve the rotation invariance
of the descriptor. The histograms are then concatenated into
a 128-dimensional vector.

Figure 8 shows a comparison of the Inner Distance Shape
Context descriptors (IDSC) [35] with the SVS descriptors
for a pair of images where one contains irregularity in the
shape (assuming even after some morphology such artifacts
remain). The inner distance responses change drastically
while the descriptors computed from SVS stays very robust.
Figure 9 demonstrates the strength of the SVS descriptors
even for very noisy data (note that, fitting an outer shell,
morphological filtering, etc. would not help for this shape
as the noise is dispersed into the background). In this
case, we compare with Shape Context (SC) since IDSC
will not work due to the disconnected interior. To our best
knowledge, there is no other representation that can give
such a robustness that SVS provides for heavily noisy and
disconnected data. For all of the experiments presented in
Figure 8, and 9, we use one-class SVM to learn the decision
functions.

4.2 3D Descriptors
Concentric Ring Signature (CORS) [2] is used as the
descriptor for our 3D feature points. CORS is constructed
in a circular fashion around a center point. Each point
is projected onto a fitted plane. The orthogonal distances
are indexed by rotation angles and radial distances. The
advantage of CORS over other 3D descriptors, e.g. spin
image proposed by [27], is that it is more compact and
discriminative. Another advantage is that CORS computa-
tion can be accelerated if points are oriented. Since SVS

provides each point cloud with a stable orientation of the
decision function, it allows the efficient construction of
CORS descriptors.

5 EXPERIMENTS IN 2D
For our experiments, we need to establish the distance
between two shapes. Given two SVS decision functions
fA(x) and fB(x), for shapes A and B respectively, we
compute a distance score between their descriptors.

As we explained before, since the feature points are
already ordered with respect to the dominant gradient
direction, initial alignment for the shapes with similar
overall structures is almost accurate. Next, we use the local
descriptors for comparison of two shapes. The advantage
of using local descriptors is that they are robust against
occlusion and shape articulation.

Let two sets of the descriptors for two shapes A and B
be ΛA : {λA1 , λA2 , ..λAt } and ΛB : {λB1 , λB2 , ..λBs } where
t does not have to be equal to s assuming t ≥ s. The
correspondence is established through a mapping function
h such that h : ΛB → ΛA. If a descriptor λBi is matched
to another λAj then h(i) = j. We define a cost function as

E(h) =
∑

1≤i≤s

ε(h(i), i) (15)

where the descriptor distance is computed using χ2 statistic

ε(h(i), i) =
∑

1≤k≤128

[λAh(i)(k)− λBi (k)]2

λAh(i)(k) + λBi (k)
. (16)

This cost represents the overall distance for the correspond-
ing pairing of the descriptors. Note that, the mapping h is
neither one-to-one nor overlapping, but keeps the ordering
of the descriptors.

To minimize E, we use dynamic programming to find
the solution to Eq. 16. It is worth noting that the start
points and the end points of two sequences are already
roughly aligned for the dynamic programming algorithms to
converge to the correct solution. Under certain conditions,
the initial alignment provided by the ordered lists may not
be valid. To overcome this, we find and compensate for the
angle that maximizes the correlation between two ‘global’
histogram of oriented gradients, which are defined as HOGf
yet computed for the entire shapes, of two given shapes
before minimizing the above cost function.

We run the first set of experiments on the entire MPEG7
shape benchmark dataset [30], which has 70 classes and

TABLE 1
Comparison of MPEG7 classification results using four

different feature point selection methods in Section 3 based
on gradients, support vectors, curvatures, and entropies.
The last column shows the baseline classification result

when gradients are computed from edges instead of SVS.

Method Gradient SV Curvature Entropy Edges
Accuracy (%) 91.07 70.13 72.52 62.25 30.25
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TABLE 2
Comparison on MPEG7 dataset.

Algorithm Accuracy (%)
Gopalan [20] 93.67

IDSC + LCDP [60] 93.32
Mixture of Gaussian + tSL [38] 89.1

Shape-tree [17] 87.7
IDSC + DP + EMD [36] 86.56

Biswas [7] 86.48
Hierarchical Proscrustes [40] 86.35

IDSC + DP [35] 85.4
Shape L’Âne Rouge [47] 85.25
Generative Models [56] 80.03

Curve Edit [52] 78.14
SC+TPS [4] 76.51

Visual Parts [30] 76.45
CSS [43] 75.44

SVS + DP 91.07

20 shapes for each class, a total of 1400 images. The
performance is measured by the standard Bullseye test. For
each shape, the retrieval accuracy is measured by counting
how many of twenty correct shapes are in the top forty
matches.

For the gradient-based method, we apply iterative search
method that finds the maximum gradient magnitude point
on ∇f(x) until it selects 100 features. In the entropy-
based feature selection method, 200 points are randomly
selected in each shape where HOGf descriptors and their
entropy are computed. Points associated with entropy larger
than 1.5 times the median of overall entropy value are
selected for matching. In the curvature based method, we
also randomly sample 200 points to compute curvatures.
Feature points are chosen where the first eigenvalue λ1 and
the second eigenvalue λ2 are larger than the median of λ1
and λ2, respectively. For the support vector-based method,
we randomly select half of the support vectors set as feature
points for shape matching (we observed using only the
most significant support vectors is in fact deteriorates the
performance).

Table 1 gives the correct retrieval percentages for four
feature point selection methods (gradient based, support
vector based, curvature based, and entropy based) pre-
sented in Section 3. Results indicate that the gradient-based
method produces more consistent feature points and better
matching performances. We also compare our performances
with HOG computed on the edges gradients (30.25%) to
verify that SVS improves the discriminative power of our
descriptors. Edge gradients are commonly used to extract
feature points for 2D shape representation.

As in the Table 1, the best overall accuracy on MPEG7
dataset using the Bulleyes test is 91.07%, which is based
on the gradient based feature selection method. This is
better than the performances of SC [4] (76.51%), IDSC [35]
(85.40%), the post-refined version of [7] (86.48%), and
shape tree [17] (87.70%) as summarized in Table 2. The
best performance 93.67% is reported in [20], however their

TABLE 3
MPEG7 classification results versus the number of features

selected using the gradient-based selection strategy.

] Features 10 50 100 200 300
Accuracy (%) 15.93 68.83 91.07 90.38 89.92

TABLE 4
Random distortion results on partial MPEG7 dataset

Method IDSC Denoised IDSC SVS-BoW SVS-DP
Accuracy 57.0% 85.9% 81.4% 93.7%

part based algorithm is highly sensitive to segmentation
errors especially for noisy data. A matching scheme [60],
which takes into account the influence of the other shapes
while computing the similarity of a pair of shapes, has
reported an accuracy of 93.32%. SVS can be effectively
used as the shape representation in [60]. Fig. 10 shows
sample retrieval results in descending order of matching
scores using the gradient based features.

We also investigate the trade-off between the model
complexity and the classification performance by varying
the number of feature points from 10 → 300. The results
are summarized in the Table 3. In general, more feature
points would yield better accuracies. However, it can be
noticed that the classification accuracy slightly suffers when
going beyond 100 features. It is because a large number
of features inevitably leads to less-discriminative interest
points to be selected, therefore, negatively interfering with
the shape matching algorithm.

In the second experiment, we pick a subset of 6 shape
classes (8 samples per class) from the MPEG7 database
and add random distortions into them. The performance is
measured by counting how many of 8 correct shapes appear
in the first 16 matches for each shape. Instead of using
ν−SVM algorithm like in the first two experiments, we use
one-class SVM for this experiment since it produces better
retrieval results. In addition to classification using SVS
and IDSC, we zero-threshold our SVS representations to
reconstruct the original binary shapes. These binary shapes
are then used as the input for computing IDSC. We call
this scheme denoised IDSC.

The overall performance of IDSC is 57.0%, while the
SVS method, using gradient-based feature points, gives
93.7% as given in Table 4. Besides, Table 4 shows that
denoised IDSC (85.9%) performs significantly better than
IDSC. The result implies that our shape representation
provides some denoising effects over random distortions.
We also compare the performance of SVS when using
the bag-of-word approach (81.4%) instead of the dynamic
progamming technique. Figure 11 shows retrieval results
for both IDSC and SVS methods in descending order
of the matching scores. IDSC’s performance dramatically
degrades on this database because artifacts within a shape
severely changes the inner distances. Shape context and
other edge-based methods will also have the same issue. In
contrast, the SVS method invariably gives accurate retrieval
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Fig. 10. SVS results: red circles show the incorrect matches. Note that none is in top 4 rankings.

Fig. 11. Comparison of the retrieval results for noisy dataset. Accuracy of IDSC is 57.0%, SVS is 93.7%. Red circles show
incorrect matches.

Fig. 12. Samples from the articulation database. Note that,
each column corresponds to a different object.

results thanks to classifier based representation.
In the third set of experiments, we test our matching

algorithm, with the gradient based feature selection strategy,
on the articulation database reported in [35]. This database
includes 40 images from 8 objects with different articula-
tions as shown in Figure 12. This consists of highly similar

TABLE 5
Matching results on the articulation dataset

Descriptor type 1st

Match
2nd

Match
3rd

Match
4th

Match
`2 (baseline) 25/40 15/40 12/40 10/40
SC [4] 20/40 10/40 11/40 5/40
IDSC [35] 40/40 34/40 35/40 27/40
Biswas [7] 40/40 38/40 33/40 20/40
Lin [34] 40/40 38/40 36/40 33/40
SVS HOGf 40/40 38/40 35/40 31/40

shapes like types of scissors with only minor differences but
significant articulations. The recognition result is evaluated
for each shape by choosing four most similar matches and
then sort them according to their matching scores. Table 5
summarizes the matching results. We compare against the
`2 distance on a bag-of-features, the shape context (SC),
the inner distance with shape context (IDSC), the multiple
feature indexing [7], and the layered graph matching [34].
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Fig. 13. Repeatability scores for feature selection using
HOGf -entropy. Two feature locations are similar if they are
within the radius of 5 times the scanner resolution.

In this experiment, the SVS uses the gradient based feature
point selection. It is apparent that our method handles
articulation as well as (even better for later matches) IDSC,
and much more accurately than the SC thanks to the robust
nature of the SVS feature point selection and the locality
of its descriptor.

6 EXPERIMENTS IN 3D
For many recognition and registration tasks, it is desirable
for features to be selected consistently at similar locations
on both target and model shapes. In the first experiment,
we examine the repeatability of our 3D/2.5D feature points
selection using the 3D Stanford shapes [14], [57]. The
database contains both full 3D shapes their 2.5D range
images. Repeatability is the percentage of features, which
are detected on the target shapes and correctly matched to
their associated locations on the 3D model shapes.

Similar to 2D, we use one-class SVM to learn a decision
function for 3D/2.5D data using (x, y, z) coordinates of
points. Features points are selected where entropy of local
HOGf is larger than a predefined threshold. In construction
of HOGf , ∇f(x) is computed at uniformly sampled points
within the local sphere. The sphere’s radius is set to be 5
times the scanner resolution.

After selecting a subset of discriminative points, local
descriptors are computed for recognition and registration
tasks. We use CORS as the local descriptors since it is
compact, discriminative, and easy-to-compute. In addition,
a consistent orientation ∇f at each point enables efficient
approximation of CORS and reduction of computational
cost. Readers are referred to [2] for details on the con-
struction and approximation of CORS descriptors.

Figure 13 shows the repeatability scores obtained by our
method. Figure 14 shows sample features matching between
two range scan images of the Buddha shape.

In the second experiment, we perform 3D objects
recognition and registration using the publicly available
database [42], which contains 5 objects and 50 scenes. Our
goal is to detect if there is any objects of interest in a scene,
and register the full 3D shapes to the any detected objects.
An object is said to be correctly detected if the resulting
errors of the translation and pose estimations, compared
to the ground truth, are smaller than one-tenth of the

Fig. 14. Correspondences between two views of the Bud-
dha range scan images.

Fig. 15. Comparison of the detection rates vs. the percent-
age of occlusions: for spin image [27], tensor matching [42],
Drost method [16], and SVS-CORS.

object’s diameter and 12 ◦, respectively. These criteria are
the same with that of Drost et al. [16], therefore allowing
the comparison to their methods.

Similar to the first experiment, we use one-class SVM to
learn SVSs for 3D point clouds using (x, y, z) coordinates
of points. We adopt a bag-of-feature approach. In this
framework, CORS descriptors are computed from SVSs at
keypoint locations. Approximate k-NN is used to provide
tentative correspondences between 2.5D scenes and the 3D
objects. We use RANSAC to estimate the transformation
matrices. The full 3D shapes are then transformed into the
scene’s coordinates.

The algorithm acknowledges the presences of the objects
within the scenes if the number of overlapping points
between the scenes and the 3D shapes are more than a
threshold, where two points are said to overlap if their
distance is smaller than 3 times the scanner resolution. The
threshold is set to be 15% of the number of points in the 3D
shapes. A lower threshold triggers too many false alarms
and a higher threshold does not allow the detection of many
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Fig. 16. Detection and registration results of Cheff, Parasaurolophus, and T-rex shapes. Yellow color represents partial
scenes and green color represents fully reconstructed 3D models. The average registration error is 0.86, 0.62, and 0.77 for
the three scenes, respectively.

objects in the database with more than 80% occlusion.
Figure 15 shows our detection performance in comparison
with the state of the art. SVS seems more robust for
higher occlusion. Figure 16 shows sample recognition and
registration results for Chef shape, Parasaurolophus shape,
and T-rex shape.

7 PROOF OF SVM-RBF IRREDUCIBILITY

The decision function of SVM with RBF kernel has the
following form:

f(x) =

m∑
i=1

αi exp(−γ||x− x∗
i ||2) (17)

Fourier transform of the function is as follows:

F(ω) =

m∑
i=1

αiF{exp(−γ||x− x∗
i ||2)}

=

m∑
i=1

αiF{exp(−γ||x||2)} exp(−jωx∗
i )

=

m∑
i=1

αi

[√
π

γ

]n
exp

(
−π

2

γ
||ω||2

)
exp(−jωx∗

i )

= Φ(ω)Ψ(ω) (18)

where n is the dimension of x and,

Φ(ω) =

[√
π

γ

]n
exp

(
−π

2

γ
||ω||2

)
(19)

Ψ(ω) =

m∑
i=1

αi exp(−jωx∗
i ) (20)

where n is the dimension of x. The Fourier transform of
RBF kernel obviously does not have any zero.

From now on, consider Φ(ω) as the Fourier transform
of an arbitrary kernel function. By assumption, the entire
function Φ(ω) never vanishes, i.e. it does not have any zero
just like the case of the RBF kernel. Therefore, it remains
to show that the function Ψ(ω) is not factorable to conclude
that f(x) is irreducible.

Assume that Ψ(ω) is reducible. It means that it can
be factored into a product of two entire functions. These

functions are required to have non-empty zeros set (either
real or complex). Then they must have the following form:

K∑
k=1

ak exp(−jωyk)

L∑
l=1

bl exp(−jωzl)

=

K∑
k=1

L∑
l=1

akbl exp{−jω(yk + zl)} (21)

Note that an exponential function ejωτ never vanishes.
This property together with non-empty zeros set constrain
implicitly require:

K ≥ 2, L ≥ 2 (22)

The number of constrains when equating Eq. 21 to Eq. 20
is (KL+m). The breakdown of constrains is as follows:

• KL constrains to equate the set of exponents {yk+zl}
with the set {x∗i }.

• m constrains to equate {akbl} with {αi}.
The total number of variables is 2(K +L), and we require
this to be at least equal to the total number of constrains,
which gives:

2(K + L) ≥ KL+m (23)

It is easy to verify that this condition does not hold because
K ≥ 2, L ≥ 2, m ≥ 5 due to Eq. (22) and our initial our
assumption. Therefore f(x) in Eq. (3) is irreducible.

8 CONCLUSION

We introduced a novel shape representation and explained
its application in 2D and 3D. To our observations, this
representation is very robust against noise, data acquisition
problems, articulation, affine motion, etc. As a future work,
we plan to investigate alternative descriptors especially
tuned for 3D applications.
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