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Abstract

This paper focuses on applications of Bayesian approaches to acoustic modeling for speech
recognition and related speech processing applications. Bayesian approaches have been widely
studied in the fields of statistics and machine learning, and one of their advantages is that
their generalization capability is better than that of conventional approaches (e.g., maximum
likelihood). On the other hand, since inference in Bayesian approaches involves integrals and
expectations that are mathematically intractable in most cases and require heavy numerical
computations, it is generally difficult to apply them to practical speech recognition problems.
However, there have been many such attempts, and this paper aims to summarize these
attempts to encourage further progress on Bayesian approaches in the speech processing
field. This paper describes various applications of Bayesian approaches to speech processing
in terms of the four typical ways of approximating Bayesian inferences, i.e., maximum a
posteriori approximation, model complexity control using a Bayesian information criterion
based on asymptotic approximation, variational approximation, and Markov chain Monte
Carlo based sampling techniques.
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Abstract—This paper focuses on applications of Bayesian which is crucial for practical use. In a real environment,
approaches to acoustic modeling for speech recognition andthere are many fluctuations originating in various factors
related speech processing applications. Bayesian approaches hav%uch as the speaker, context, speaking style and noise. For

been widely studied in the fields of statistics and machine le. th f f ti dels trained usi
learning, and one of their advantages is that their generalization example, the performance o acoustic models trained using

capability is better than that of conventional approaches (e.g., fead speech degrades greatly when the models are used to
maximum likelihood). On the other hand, since inference in recognize spontaneous speech due to the mismatch between
Bayesian approaches involves integrals and expectations thatthe read and spontaneous speech characteristics [5]. More
are mathematically intractable in most cases and require heavy ganarglly, most of the problems posed by current speech
numerical computations, it is generally difficult to apply them to i - .
practical speech recognition problems. However, there have been recognition technlql_Jes result from a lack of robustness. This
many such atternptsl and this paper aims to summarize these lack of robustness is an obstacle to the deployment of com-
attempts to encourage further progress on Bayesian approaches mercial applications based on speech recognition. This paper
in the speech processing field. This paper describes various appli- addresses various attempts to improve the acoustic model

cations of Bayesian approaches to speech processing in terms Oftraining method beyond the conventional ML approach by
the four typical ways of approximating Bayesian inferences, i.e., . .

maximum a posteriori approximation, model complexity control employing Bayesmnapproaches. . .

using a Bayesian information criterion based on asymptotic N Bayesian approaches, all the variables that are introduced

approximation, variational approximation, and Markov chain  when models are parameterized, such as model parameters and
Monte Carlo based sampling techniques. latent variables, are regarded as probabilistic variables, and
their posterior distributions are simply obtained by using the
gl‘obabilistic sum and product rules. The difference between
the Bayesian and ML approaches is that the estimation target
is aprobability distributionin the Bayesian approach whereas
it is a parameter valuein the ML approach. Based on

Speech recognition systems, which convert speech into tekis posterior distribution estimation, the Bayesian approach
make it possible for computers to process the informatiaran generally achieve more robust model construction and
contained in human speech. The current successes in spegassification than an ML approach [6]-[8]. However, the
recognition and related speech processing applications Bagyesian approach requires complex integral and expectation
based on pattern recognition that uses statistical learniogmputations to obtain posterior distributions when models
theory. Maximum likelihood (ML) methods have become thkeave latent variables. For example, to infer the posterior
standard techniques for constructing acoustic and languatistribution of HMM/GMM model parametei® given speech
models for speech recognition. They guarantee that ML deature vector®, we need to calculate the following equation:
timates approach the stationary values of the parameters. ML »(0,7Z|©)p(©)
methods are also applicable to latent variable models, such as p(®]0) = Z —_— 1)
hidden Markov models (HMMs) and Gaussian mixture models Z r(0)
(GMMs), thanks to the expectation-maximization (EM) algoyhere Z is a set of HMM state and GMM component se-
rithm [1]. Acoustic modeling based on HMMs and GMMs igjuences. Once we obtain the posterior distribution, we classify
one of the most successful examples of the ML-EM approagtegory ¢ (phoneme or word) given new speech feature
and it has been greatly developed in previously report¢gdctorsx based on the following posterior distribution:
studies [2]-[4].

However, the performance of current speech recognition p(clx,0) = /p(c|®,x)p<®|0>d@_ )
systems is far from satisfactory. Specifically, the recognition
performance is much poorer than the human capability 8ince the integral and expectation often cannot be computed
recognizing speech. This is because speech recognition suffaralytically, we need some approximations if we are to im-
from a distinct lack of robustness to unknown condition@lement a Bayesian approach for a classification problem in

o Keywords: Speech processing, machine learnin
Bayesian approach, approximate Bayesian inference

I. INTRODUCTION



speech processing. wherep(©|m) is a prior distribution for all distribution param-
There have already been many attempts to undertadiersO, andm denotes the model structure index, for example,
Bayesian speech processing by approximating the abdiie number of Gaussian components or HMM states. Here,
Bayesian inference [8], [9]. The most famous application ofc represents the set of all categories exeeph this paper,
Bayesian approaches employs maximum a posteriori (MARE regard the hyperparameter setting as the model structure,
approximation, which uses the maximum value of the posteriand include its variations in the index. From Eq. (3), prior
distribution instead of integrating out the latent variable dnformation can be utilized via estimations of the posterior
model parameter [7]. Historically, MAP-based speech recodistribution, which depends on prior distributions.
nition approaches constitute the first successful applications offquation (3) generally cannot be calculated analytically due
Bayesian approaches to speech processing. These approaichf®e summation over latent variables. To avoid the problem,
were introduced in the early 90’s to deal with speaker adaltAP approaches approximate the distribution estimation as
tation problems in speech recognition [10], [11]. Aroun@ point estimation. Namely, instead of obtaining the posterior
1995, they started to be applied to more practical speedistribution in Eq. (3), MAP approaches consider the following
processing problems (e.g., continuous density HMM [12}alue

which is a standard acoustic model in speech recognition, OMAP — argmaxp(0.|0, m)

and speaker recognition based on a universal background O,

model [13]). Other successful methods are based on the :argmapr(O,Z\@c,m)p(ec\m). )
Bayesian information criterion (BIC), which is obtained by 0. 7

using asymptotic approximations [14], [15]. Starting aroungiis estimation can be efficiently performed by using the

2000, these methods have been applied to wide areas of Sp§agh 5gorithm. The MAP approximation was first applied
processing, from phonetic decision tree clustering to speakgr ihe estimation of single-Gaussian HMM parameters in

segmentatiqn_[lG]—[lQ]. Recently, advanced B_ayesian topi 9] and later extended to GMM-HMMs in [11], [12]. The
such as variational Bayes (VB) and Markov chain Monte Carlgactiveness of MAP approaches can be illustrated in a

(MCMC) have been actively studied in the machine leaming,qaker recognition task where prior distributions are set
field [8], and these_approaches are also s@artmg to be appl speaker-independent HMMs. For example, [12] compares
to speech processing [20]-[23], by following the successid,qaker adaptation performance by employing ML and MAP
Bayesian applications based on MAP and BIC. _estimations of acoustic model parameters using the DARPA
Focusing on the four major trends as regards approximatig@ya| Resources Management (RM) task [38]. With 2 minutes
Bayesian inferences, i.e., MAP approximation, asymptotic agf adaptation data, the ML word error rate was 31.5 % and
proximation for model complexity control, variational approxyas worse than the speaker independent word error rate (13.9
imation, and MCMC, this paper aims to provide an overvied, que to the over-training effect. However, the MAP word
of the various attempts described above in order t0 encOWfror rate was 8.7 %, clearly showing the effectiveness of the
age researchers in the speech processing field to investiggiep approach. MAP estimation has also been used in speaker
Bayesian approaches and guide them in this endeavor.  recognition based on universal background models [13], and
In addition to the above topics, there are other interestifyg the discriminative training of acoustic models in speech
Bayesian approaches that have been successfully applie¢gihgnition as a parameter smoothing technique [39].
speech recognition, e.g., on-line Bayesian adaptation [24],
[25], structural Bayes [26], [27], quasi-Bayes [28]-[30], graph-  |Il. B AYESIAN INFORMATION CRITERION (BIC)

ical model representation [31]-{33], and Bayesian sensingg|c approaches were introduced into speech recognition to
hidden Markov model [34]. Although we do not focus Oonetqrm model selection [16], [17]. To deal with model struc-

the_se approache_s in d_etail, they have been summarized in of{jet in 4 Bayesian approach, we can consider the following
review and tutorial articles [35]-[37]. posterior distribution:

0,Z|0, (C]
[l. MAXIMUM A POSTERIORI (MAP) p(m|O) = Z/p( | Z?g; Im)p(m) de, (5)
Z

.MAP a_pprpaches were introduced into spegch recognltlonmerep(m) denotes a prior distribution for the model structure
utilize prior mfor_maugn .[10]__[12]' The B_ay?s'a_” approach '$n. However, as with MAP approaches, Eq. (5) cannot be cal-
baged on posterior distributions of the d|str|but|on_ parametefyated analytically due to the summation over latent variables.
}Nh"?‘ the dML_spproach only conls_gterf a partlﬂ%tgar Xalu?he Bayesian information criterion (BIC) only focuses on
or these distribution parameters. = {or € It = models that do not have latent variables. Under the asymptotic

fl’ -, T} be a g'V;n _trammg iiata set TQD—SlmensmnaIf assumption (i.e., the assumption that there is a large amount
eature vegtors anc = {zft = 1., } e a'set' O of data), one can obtain the following equation:
corresponding latent variables. The posterior distribution for

a distribution paramete®. of categoryc is obtained by using log p(m|O) o< log p(O[©,m) — #0) logT. (6)

the well known Bayes theorem as follows:
The first term on the right hand side is a log-likelihood term

p(0.]0,m) = Z/p(o’ Z|6,m)p(6|m) d0_., (3) andthe second term is a penalty term, which is proportional
Z p(O[m) to the number of model parameters, denoted#aP).




This criterion is widely used in speech processing. Fahine learning [45]-[48], to speech recognition. With this VB
example, it enables phonetic decision tree clustering to bBpproach, approximate posterior distributions (VB posterior
performed in [16] and [17] without having to set a heuristidistributions) can be obtained effectively by iterative cal-
stopping criterion as was done in [40]. [16] shows the effeculations similar to the Expectation-Maximization algorithm
tiveness of the BIC/MDL criterion for phonetic decision tree used in the ML approach, while the three advantages of the
clustering in a 5,000 Japanese word recognition task by coBayesian approaches are retained. Therefore, the framework
paring the performance of acoustic models based on BIC/MD4 formulated using VB to replace the ML approaches with
with models based on heuristic stopping criteria (hnamely, tlBayesian approaches in speech recognition. We briefly review
state occupancy count and the likelihood threshold). BIC/MD& speech recognition framework based on a fully Bayesian
selected 2,069 triphone HMM states automatically with aapproach to overcome the lack of robustness described above
80.4 % recognition rate, while heuristic stopping criteriy utilizing the three Bayesian advantages [20], [21]. A
selected 1,248 and 591 states with recognition rates of 7d&ailed discussion of the formulation and experiments can
% and 66.6 % in the best and worst cases, respectively. This found in [49].
result clearly shows the effectiveness of model selection using
BIC/MDL. An extension of the BIC objective function by
considering a tree structure is also discussed in [41], and An Application of variational Bayes to speech recognition

extension based on variational Bayes is discussed in Section;&s we saw earlier, Bayesian approaches aim at obtaining

IV. In _add|t|(()jn,| BI%MDLd'S usedk for Gausman prur11;3ng érll osterior distributions for the model parameters, but these
acoustic models [19], an | Speaker se_gmentagon [18]. osterior distributions cannot generally be obtained analyt-
bfased speaker segme.ntayon IS a particularly 'm.po”am t‘? lly. The goal of VB is to approximate these posterior
nique for speaker diarization, which has been widely studiegt;in tions using some other distributions, referred to as

recently [42]. L Lo 2 : o
. . - _ variational distributions, which are optimized so that they are
MAP and BIC, together.wnh Ba¥e5|§1n Predictive Class'f'és close as possible, in some sense yet to be defined, to the
Cat'?r? EB;C) [?fS],t[44:c], Wh'CP margina Ilzei_m(:dgl pa(rjamet;[eEFue posterior distributions. The variational distributions are
S0 that the eflect of over-training 1S mitigated and robu nerally assumed to belong to a family of distributions of
cIaSS|f|9§1t|on is obtained, can be pr.act|cally realized in spee E§impler form than the original posterior distributions. Here
re cognition. However, wh|l_e Bayesian approaches can pOtWé consider an arbitrary posterior distributignand assume
tially have the three following advantages:

that it can be factorized as
(A) Effective utilization of prior knowledge through prior
distributions (prior utilization) q(©,7,m|0) = [T ¢(©.|0.,m)q(Z.|O.,m)q(m|0.), (7
(B) Model selection that obtains a model structure with the( - 2,ml0) 1:[ (6clOc, m)g(Zel Oc, m)a(m|Oc),  (7)
highest probability of posterior distribution of model

structures (model selection) where c is a category index (e.g., a phoneme if we deal
(C) Robust classification by marginalizing model parametef¥th & phoneme-based acoustic model). Variational Bayes then
(robust classification) focuses on minimizing the Kullback-Leibler divergence from

MAP, BIC and BPC each have only one. In general, the§&®:Z,m|O) to p(©,Z,m|0O), which can be shown to be
advantages make pattern recognition methods more robggtivalent to maximizing the following objective functional:
than those based on ML approaches. For example, a MAR,

based framework approximates the posterior distribution of the [9(8c|Oc, m), 4(Ze|Oc, m)]
parameter by using a MAP approximation to utilize prior infor- _— <1Og P(Oc; Ze|Oc, m)p(Oc|m) >

mation. BIC/MDL and BPC based frameworks, respectively, 4(0¢|O0c,m)q(Ze|Oc,m) / (6. 100.m) (2. |0wm)
perform some sort of model selection and robust classification. (8)
These approaches are simple and powerful frameworks with o

which to transfer some of the advantages expected froffiere the bracketg denote the expectation, i.€4(y)),,(,)
Bayesian approaches to speech recognition systems. Howeyeky)p(y)dy for a continuous variablg and (g(n)),,,,, =
they also lose some of these advantages due to the approxitha-9(n)p(n) for a discrete variable. Eq. (8) can be shown
tions they introduce, as shown in Table I. In the next sectiof, be @ lower bound of the marginalized log likelihood. The
we introduce another method for approximating a Bayesig,ptimal posterior distribution can be obtained by a variational
inference variational approximationwhich includes all three Method, which due to the factorization assumption (7) leads
Bayesian advantages simultaneously unlike the MAP, BIC, and

BPC approaches. TABLE |
V.V B COMPARISON OFVBEC AND OTHER BAYESIAN FRAMEWORKS IN TERMS
. VARIATIONAL BAYES OF BAYESIAN ADVANTAGES

This section presents an application of variational Bayes

(VB), a technique originally developed in the field of ma- ~Bayesian advantage Y;
(A) Prior utilization

1BIC and Minimum Description Length (MDL) criteria have been inde- (B) Model selection
pendently proposed, but they are practically the same. Therefore, they are (C) Robust classification
identified in this paper and referred to as BIC/MDL.

C | MAP | BIC/MDL | BPC
\/ —
- v

< X3
< | |




to:

4(©.]0.,m) = argmax F"[q(0.|O0.,m),q(Z.|O., m)], 90
4(©.10,m) . 80
4(Zc|O;,m) = argmax F™[q(Oc|Oc, m), q(Z|Oc,m)], = 10 ¢
q(Z|0,m) = 60
oy m 9
1m|0) = argmax)y  77(q(Oc|Oc,m), (el Oc, m) £ 50|
q(m ¢ o
©) g 40 - ML-BIG/MDL
By assuming thap(m) is a uniform distribution, we obtain = 30
the proportion relation betwee(m|O) and 7™, and an § 20 ~“-—+—  -®-VBEC

optimal model structure where the maximum a posteriori

probability can be selected as follows: 10 100 1,000 10,000 100,000
(1 min.) (10 min.) (100 min.) (1,000 min.) (10,000 min.)
m= ar?ﬂ:?am (m|0) = ar?ﬂaxrm' (10) Number of training utterances

This indicates that by maximizing tot#™ with respect to not
only q(96|007 m) andq(Zc|Oc7 m) but alsom, we can obtain Fig. 1. Superi'o[’ity of VBEC based acoustic model construction for a small
. R ._amount of training data.
the optimal parameter distributions and can select the optlmg]
model structure simultaneously [47], [48]. The VB approach is
applied to a continuous density HMM (left-to-right HMM with
a GMM for each state) in the Variational Bayesian Estimation
and Clustering for speech recognition (VBEC) framework
[20], [21]. The continuous density HMM is a standard acoustic
model that represents a phoneme category for speech recog-
nition. VBEC is afully Bayesian frameworkwhere all the
following acoustic model procedures for speech recognition
(acoustic model construction and speech classification) are re-
formulated in a VB manner:

« Output distribution setting
— Output and prior distribution setting
o Parameter estimation by ML Baum-Welch
— Posterior estimation by VB Baum-Welch 1 10 100
« Model selection by using heuristics Number of adaptation utterances
— Model selection by using variational lower bound

* CIaSS|f|ca_t|0n usmg_ML es“m_ates . . Fig. 2. Robust classification based on marginalization effect.
— Bayesian predictive classification using VB posteriors

Consequently, VBEC includes the three Bayesian advantages

_l;gglree Ithe conventional Bayesian approaches, as IIIUStratedrr'1r<lathod by selecting appropriate model topologies without

using a development set, which shows the effectiveness of
) (B) a model selection function in Bayesian approaches. Fi-
B. Experiments and related work nally, Figure 2 shows a comparison of word accuracies with
We briefly illustrate the effectiveness of the VBEC frame€orpus of Spontaneous Japanese (CSJ) data [5] in speaker
work using the results of speech recognition experimerdaslaptation experiments. VBEC and MAP used the same prior
(see [49] for details). Figure 1 compares word accuracies distributions, and the difference between them is whether or
Japanese read speech data (JNAS) for various amountsnaf the model parameters are marginalized (integrated out).
training data used in acoustic model construction. The d¥BEC also significantly improved the performance for a small
ference between VBEC and conventional ML and BIC/MDlamount of training data, which shows the effectiveness of (C)
based acoustic modeling is whether or not the approaahobust classification function in Bayesian approaches. Thus,
utilizes prior distributions. VBEC significantly improved thethese results confirm experimentally that VBEC includes the
performance for a small amount of training data, whicthree Bayesian advantages unlike the conventional Bayesian
shows the effectiveness of (A) a prior utilization function irapproaches, as shown in Table 1.
Bayesian approaches. Table Il shows experimental results fol/B is becoming a common technique in speech processing.
the automatic determination of the acoustic model topolo@able Ill summarizes the technical trend in speech processing
by using VBEC and the conventional heuristic approadechniques involving VB. Note that VB has been widely
that determines the model topology by evaluating ASR pepplied to speech recognition and other forms of speech
formance on development sets. In the various ASR taskspcessing. Given such a trend, VBEC is playing an important
VBEC obtained comparable performance to the conventiorrale in pioneering the main formulation and implementation
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TABLE I
AUTOMATIC DETERMINATION OF ACOUSTIC MODEL TOPOLOGY

Japanese read spee¢hJapanese isolated worfd Japanese lectur¢ English read speech
(INAS) (JEIDA) (CSJ) (WSJ)
VBEC 91.7 % 97.9 % 745 % 91.3 %
(# states, # components (912, 40) (254, 35) (1986, 32) (2504, 32)
ML + dev. Set 91.4 % 98.1 % 74.2 % 91.3 %
(# states, # components (1000, 30) (1000, 15) (3000, 32) (7500, 32)
TABLE Il

TECHNICAL TREND OF SPEECH RECOGNITION USING VARIATIONAIBAYES

Topic References
Feature extraction [50], [51]

Speech GMM for noise robust ASR and voice activity detectjofi52], [53]
Formulation of Bayesian speech recognition [20], [21], [54], [55]
Selection of number of GMM components [56]-[58]

Acoustic model adaptation [59]-[62]
Determination of acoustic model topology [63]-[67]
Non-parametric Bayes for acoustic models/speaker diarization [68]-[71]

Statistical speech synthesis [72]

of VB-based speech recognition, which is a core technology Formulation
in this field. In addition to the approximation of Bayesian
inferences, the variational techniques are used as an effectivc_aL) Multi-scale mixture model (F): M3 considers two

approximation method in some speech processing problerp es of observation vector sequences. One is an utterance-

€.g., approximating the Kullpack—LeibIer d“’ergef‘ce.b‘?tw??sr segment-) level sequence and the other is a frame-level
GMMs [73], and the Bayesian treatment of a discriminativ; equence. AD-dimensional observation vector (e.g., MFCC)

HMM by using minimum relative entropy discrimination [74]'at frame¢ in utteranceu is represented as, ;(¢ RP). A

set of observation vectors in utteraneeis represented as
V. MARKOV CHAIN MONTE CARLO o, 2 {o, t};ful
u U, =1"

In previous sections, we described Bayesian approachegye assume that the frame-level sequence is modeled by a
based on deterministic approximations (MAP, asymptotic ag,ssian Mixture Model (GMM) as usual, and the utterance-
proximation, and VB). Another powerful way to implemenje | sequence is modeled by a mixture of these GMMs.
Bayesian approaches is to rely orsampling methodwhich 1y, kinds of latent variables are involved in®Mor each
obtains expectations by using Monte Carlo techniques [gaquence: utterance-level latent variabigsand frame-level
[8]. The main advantage of the sampling approaches is thafent variables, ;. Utterance-level latent variables may rep-
they can avoid local optimum problems in addition t0 Proregent emotion, topic, and speaking style as well as speakers,
viding other Bayesian advantages (mitigation of data sparggspending on the speech variation. The likelihood function
ness problems and capacity for model structure optimization}. ;7 gpservation vectors@ 2 {o,}Y_,) given the latent

While their heavy computational cost could be a problem {piapie sequenceZ(2 {z}, andV 2 {v,,}..) can be
practice, recent improvements in computational power and (8¢, ecced as follows: o

development of theoretical and practical aspects have allowe

researchers to start applying them to practical problems (e.g.,

[75], [76] in natural language processing). This paper describes U T,

our recent attempts to apply a sampling approach to acousti©|Z,V,®) = H hz, H Wy 00 N (OutlBsy s Do va)s
modeling based on Markov chain Monte Carlo, in particular u=1 t=1

Gibbs sampling [23], [71], [77]. Gibbs sampling is a simple R (11)
and widely applicable sampling algorithm [78] that sample&here {hs}ts, {ws itk {Hskts s {Zs it k(= ©) are the
the latent variablez; by using the conditional distribution Utterance-level mixture weight, frame-level mixture weight,
plzi]z,;) Wherez,, is the set of all latent variables except mean vector, and covariance matrix parameters, respgctwely.
By iteratively samplingz, for all ¢ based on this conditional andk denote utterance-level and frame-level mixture indexes,

distribution, we can efficiently sample the latent variable&SPectively\” denotes a normal distribution.

which are then used to compute the expectations (e.g., EqLet us now consider the Bayesian treatment of this multi-
(1)) required in Bayesian approaches. Here, we focus on soale mixture model. We assume a diagonal covariance matrix
example of a hierarchical GMM, called a multi-scale mixturéor the Gaussian distributions as usual, wheredtakdiagonal
model, used as an acoustic model in speaker clustering, atgiment of the covariance matrix is expressed gs and use
introduce a formulation based on Gibbs sampling. the following conjugate distributions as the prior distributions



Algorithm 1 Gibbs sampling based multi-scale mixture model.
1: Initialize ®°

Utterance
level weight

Q Utterance-level 2: repeat
Frame :ﬁa\ e 3. for u = shuffle (1 ---U) do
level weight @ ~ Frame—leyel 4 for ¢ = shuffle (1 - Tu) do
latent variable .
5: Samplewv, ; by using Eq. (13)
@\ L] Feature vector 6: end for
. | Frame index 7 end for
o Utterance index 8. for u = shuffle(1- . U) do
9 Samplez, by using Eq. (15)

10: end for
11: until some condition is met

Utterance-level
mixture index

Frame-level
mixture index

Fig. 3. Graphical representation of multi-scale mixture model.
(T% and the sufficient statistics as follows:

iLs = hg + ¢s,
of the model parameters: Wsp = wp+ N g,
gs,k = 50 + Ns ks,
0,0
h ~ D) g = Spbtmes
0 Ws ~ D(w°) ~ 0 e
p(©P7) = N(ul. (918 , (12) Ms,k =1+ Nk,
Fos i ~ Npg; (€7) s.k) ~ 0 00,0 \2_ ¢ (~ 2
(s ad) ~ G0, 09 1) Tskodd = Oh gq + Tshodd T 8§ (Wh.a)* — &s,k (s k)

(14)

¢s is the count of utterances assigned tandn; ; is the count
whereh® w, p? 0 69 ... n°(= ®°) are the hyperparame-of frames assigned té in s. m,; andr, 44 are 1st-order
ters.D and G denote Dirichlet and Gamma distributions, reand 2nd-order sufficient statistics, respectively.
spectively. The generative process of M shown in Figure 3. [Utterance-level mixture componentfs with the frame-
Based on the generative model, we derive analytical solutidlesel mixture component case, the Gibbs sampler assigns
for Gibbs samplers of the multi-scale mixture model based oiterance-level mixture at utterance: by using the following
the marginalized likelihood for the complete data. equation:

2) Gibbs sampler: log p(z, = 5|0, V, Z\u)
[Frame-level mlxtu_re com_ponent]l’he funcUo_n form of (Zk S\u %)
the Gibbs sampler, which assigns frame-level mixture compo- 108 —=/=———-+ ng k( — Ys, k(‘I’s\u,k)-
nentk at framet probabilistically, is analytically obtained as
follows: O\, andV\u indicate sets that do not include subsets of the
frame elements inu. \i/s\m is computed by the sufficient
P(vue = KO, V¢, Zny, 2 = 5) statistics using0,,, and'V,,,. Therefore, the posterior proba-
bility can be obtained as follows:

p(zu = 5'10,V,Z\,,)
e (o8 T 1 5, ) i)
- r W\ u. k - X ’
Here, O\, and V\, indicate sets that do not include tith D sk €XP <1Og% + g5k (Po k) — gs,k(‘I's\u,k:))
frame elementsZ, , indicates a set that does not include the (15)

uth utterance elemen@syk\t is computed by the sufficient
statistics usingD\; and' V. g, x(-) is defined as follows:

exp (gs,k’(‘i’s,k’) - gs,k’(li’s,k’\t)) (13)
Zk- €xXp (gs,k(‘i’s,k) - gs,k(‘i’s,k\t)>

These solutions for the multi-scale mixture model based on
Gibbs sampling jointly infer the latent variables by interleaving
frame-level and utterance-level samples.

- B D - . . ._
9o (To 1) 2 Jog T (s 4) — —loggs . Algorithm 1 provides a sample code of the multi-scale

} mixture model.
+ DlogT <775 k) - n;k ZlOg O k,dd>
d

B. Experiments

We describe experimental results obtained with the multi-
where Bs,\fvs,ﬁsyk,é&k,&s,hdd and f]&k(é \il) are the hy- scale mixture model for meeting data, recorded by NTT
perparameters of the posterior distributions @y which are  Communication Science Laboratories to analyze and recognize
obtained from the hyperparameters of the prior distributiomseetings [79]. We used four of the sessions (3,402 utterances)



ported the importance derived from the Gibbs-based Bayesian
60 properties.

B Testset1 (4 speakers) TABLE IV
COMPARISON OFMCMC AND VB FOR SPEAKER CLUSTERING

[ Testset? (4 speakers)

Evaluation data [ Method [[ ACP | ASP [ K value

Diarization error rate (%)

CSJ1 MCMC || 0.808 | 0.898 | 0.851
(# spkrl0, # utt 50) | VB 0.704 | 0.860 | 0.777

. CSJ2 MCMC || 0.852 | 0.892 | 0.871

0 (# spkrl0, # utt 100) | VB 0.695 | 0.846 | 0.782
CSJ3 MCMC || 0.866 | 0.892 | 0.879

0 (# spkri0, # utt 200) | VB 0.780 | 0.870 | 0.823
CSJ4 MCMC || 0.784 | 0.694 | 0.738

(# spkrl0, # utt 2,491) VB 0.773 | 0673 | 0.721

0 CSJ5 MCMC || 0.740 | 0.627 | 0.681
BIC MAP Gibbs (# spkri0, # utt 2,321) VB 0.693 | 0.676 | 0.684

Fig. 4. Diarization error rate for NTT meeting data.
VI. SUMMARY AND FUTURE PERSPECTIVE
This paper introduced selected topics regarding Bayesian

applications to acoustic modeling in speech processing. As
to construct a prior GMM in advance, and the other two sestandard techniques, we first explained MAP and BIC based
sions as development (495 utterances spoken by four speakgfproaches. We then focused on applications of VB and
and evaluation sets (560 utterances spoken by four speakegzMmC, following the recent trend of Bayesian applications
respectively. As an observation vector, we used MFCC featurtgsspeech recognition emphasizing the advantages of fully
with log energy,A, and AA components. As a preliminary Bayesian approaches that explicitly obtain posterior distribu-
experiment, the numbers of clusters were set at the corr@ghs of model parameters and structures based on these two
answer. First, a prior GMM (i.e., a universal backgrounghethods. These approaches are associated with the progress
model) was estimated by using the four sessions consistingspfBayesian approaches in the statistics and machine learning
3,402 utterances based on the conventional ML-EM algorithlﬁbkjs' and Speech recognition based on Bayesian approaches
and the values of the GMM parameters were set as thqs€ikely to advance further thanks to the recent progress in
of the hyperparameters in Mw?, u, £9). Figure 4 shows these fields.
the Speaker ClUStering performance of the multi-scale miXtUreOne promising examp|e of further progress is structure
(M? Gibbs), the MAP based approach {WIAP-EM) and the |earning by using Bayesian approaches. This paper introduced
conventional BIC based approach in terms of the frame-levglpowerful advantage of Bayesian model selection for the
error rate of each method based on the diarization error rage,cture learning of standard acoustic models in Sections
defined by NIST [80]. Speaker clustering experiments showfl and V. Furthermore, the recent success of deep learning
that M* Gibbs provided a significant improvement over thgyr acoustic modeling [81] places more importance on the
conventional BIC and M MAP-EM based approaches. Thestructure learning of deep network topologies (e.g., number
main advantage of M Gibbs and M MAP-EM over BIC of |ayers, number of hidden states) in addition to the conven-
is that they can precisely model speaker clusters based tRjhal HMM topologies. To deal with the problem, advanced
the Gaussian mixture model unlike the single Gaussian mod@iycture learning techniques based on nonparameteric Bayes
used in BIC. In addition, M Gibbs further improved on the [82] would be a powerfu| candidate. These approaches have
speaker clustering performance of' MIAP-EM because the recently been actively studied in the machine learning field
Gibbs sampling algorithm can avoid local optimum solution®3]—[85]. In conjunction with this trend, various applications
unlike the MAP-EM algorithm. These superior characteristicsf nonparameteric Bayes have been proposed in speech pro-
are derived from the Gibbs-based Bayesian properties. cessing [22], [23], [86], spoken language processing [75], [76],

MCMC-based acoustic modeling for speaker clustering w§&7], and music signal processing [88]-[90].

further investigated with respect to the difference in the Another important future work is how to involve Bayesian
MCMC and VB estimation methods by [71]. Table IV showspproaches with discriminative approaches theoretically and
speaker clustering results in terms of the average cluster puptgctically, since discriminative training [39], [91], structured
(ACP), average speaker purity (ASP), and geometric meandi$criminative models [92], and deep discriminative learning
those valuesK value) to the evaluation criteria in the speakei81] have become standard approaches in acoustic modeling.
clustering. We used the Corpus of Spontaneous Japanese (€3 promising approach for this direction is the marginal-
dataset [5] and investigated the speaker clustering performaimdion of model parameters and margin variables to provide
for MCMC and VB for various amounts of data. Table IVBayesian interpretations with discriminative methods [93].
showed that the MCMC-based method outperformed the \HBowever applying [93] to acoustic models requires some
method by avoiding local optimum solutions, especially wheextensions to deal with large-scale structured data problems
only few utterances could be used. These results also s{ip#]. This extension enables the more robust regularization
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