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Abstract

This paper proposes a decoupled three-phase load flow analysis method for unbalanced distribu-
tion systems. The power flows are solved through nodal current injection mismatch equations
written in rectangular coordinates. The voltage changes resulting from nodal current injection
mismatches and nodal admittance matrix have been decoupled into one contribution from the
real part, conductance matrix, and the other contribution from the imaginary part, susceptance
matrix. The method determines voltage changes resulting from conductance and susceptance
matrices respectively, and determines the voltages of a node as a linear combination of those
voltage changes. The relative contributions are determined based on the diagonals of the con-
ductance and susceptance matrices. The constant active power and voltage magnitude(PV) nodes
have been converted into constant active and reactive power(PQ) ones based on a sensitivity ma-
trix determined through Kron reduction of the nodal admittance matrix, and the corresponding
reactive powers are adjusted after each solution has converged. The zero- impedance branches
are merged with adjacent impedance branches, and the three phases of a balanced-voltage PV
bus are merged into one single- phase PV bus to be modeled in the nodal admittance matrix.
Numerical examples on IEEE 37 node test feeder and IEEE 123 node test feeder are presented
to demonstrate the effectiveness of the proposed method.
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Abstract-- This paper proposes a decoupled three-phase load 

flow analysis method for unbalanced distribution systems. The 
power flows are solved through nodal current injection 
mismatch equations written in rectangular coordinates. The 
voltage changes resulting from nodal current injection 
mismatches and nodal admittance matrix have been decoupled 
into one contribution from the real part, conductance matrix, 
and the other contribution from the imaginary part, 
susceptance matrix. The method determines voltage changes 
resulting from conductance and susceptance matrices 
respectively, and determines the voltages of a node as a linear 
combination of those voltage changes. The relative 
contributions are determined based on the diagonals of the 
conductance and susceptance matrices. The constant active 
power and voltage magnitude(PV) nodes have been converted 
into constant active and reactive power(PQ) ones based on a 
sensitivity matrix determined through Kron reduction of the 
nodal admittance matrix, and the corresponding reactive 
powers are adjusted after each solution has converged. The 
zero-impedance branches are merged with adjacent impedance 
branches, and the three phases of a balanced-voltage PV bus 
are merged into one single-phase PV bus to be modeled in the 
nodal admittance matrix. Numerical examples on IEEE 37 
node test feeder and IEEE 123 node test feeder are presented 
to demonstrate the effectiveness of the proposed method. 
 

Index Terms-- Load flow; Three phase systems; Distribution 
systems; Decoupled. 

I.  INTRODUCTION 
HREE phase load flow analysis is a fundamental 
technique for a distribution management 
system(DMS) to evaluate and monitor the real time 
steady-state performance of distribution systems. 

Various methods for solving three-phase power flow 
problems are known. These methods differ in the form of 
the equations describing the system, or in the numerical 
techniques used. Usually, either topology- or matrix-based 
methods are employed. Topology-based methods are 
suitable for radial systems, and include the 
Backward/Forward sweep and Ladder methods [1]-[2]. 
Compensation schemes [2]-[4] must be used when loops  or  
constant  active  power  and  voltage magnitude (PV)  buses   
are  present   in   the   system.    The admittance-matrix 
based methods include the Implicit Z-bus method [5]-[6], 
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the Newton-Raphson method [7]-[8], the Fast Decoupled 
method [9], and the Sequence Decoupling method [10]. All 
of these methods have their own limitations when applied to 
large systems, either in terms of modeling capabilities, or in 
terms of computational efficiency. 

This paper proposes a new decoupled three-phase load 
flow method. It formulates the power flows as nodal current 
injection mismatch equations in rectangular coordinates, and 
decouples the power flow problem into solving conductance 
matrix contributions and susceptance matrix contributions 
separately. An effective procedure is provided to obtain the 
best contribution factors of the two matrices to the final 
solution. The method requires no additional assumptions 
regarding decoupling, hence it is much more robust and 
reliable. It replaces the step of nodal complex admittance 
matrix factorization with two real matrix factorizations. The 
matrices are kept constant and require factorization only 
once, and as a result the method is very robust for a larger 
range of resistance-to-reactance ratio. The constant active 
power and voltage magnitude(PV) nodes have converted 
into constant active and reactive power(PQ) nodes to be 
modeled. A PV sensitivity matrix method is used to adjust 
the reactive powers of PV nodes to maintain required 
magnitude of voltages. The PV sensitivity matrix is easily 
obtained by Kron reduction of the nodal admittance matrix 
to eliminate non-PV nodes. The proposed method explicitly 
defines zero impedance branches in distribution systems. 
The method models such branches accurately, and avoids 
the occurrences of solution divergence that are usually 
caused by zero impedance branches in conventional 
methods. By embedding the three-phase balanced-voltage 
requirements into the nodal admittance matrix, the three-
phase PV bus model is simplified as a one single-phase 
model. 

II.  PROPOSED METHOD  

A.  GB Decoupled Three-phase Load Flow 
Using polar coordinates, the power flows can be solved 

by using the nodal current injection equations:  
[ ] [ ][ ]VYI =                                        (1) 

where [ ]I  and [ ]V  are the vector of equivalent complex 
current injections, and complex voltages for all nodes,  and 
[ ]Y  is the complex nodal admittance matrix. All buses in 
the system are converted to nodes to be modeled. The total 
number of nodes for each bus is equal to the number of 
available or modeled phases at the bus. The nodal 
admittance matrix [ ]Y  is constructed based on the nodal 
admittance model for each impedance branch in the system. 
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The constant impedance load and shunt compensation at the 
bus are treated as self admittances, to be embedded into the 
nodal admittance matrix.  

Due to the dependency of nodal current injections on 
nodal voltages, the solution of Equation (1) is obtained 
through iteratively solving the following nodal current 
injection mismatch equations: 

[ ] [ ][ ]VYI Δ=Δ                                              (2) 
Equation (2) only includes the nodes for PQ and PV 

buses. The nodes associated with the swing bus are not 
included, because their complex voltages are known. At 
each iteration, a current injection mismatch for each node 
[ ]IΔ  is first determined based on the properties of 
connected loads and sources and the most recently 
computed nodal voltages. Then, an incremental voltage 
change [ ]VΔ  is computed using the factorized nodal 
admittance matrix. 

The initial voltages for each bus are set to the values at 
the swing bus multiplied by an aggregated voltage 
amplifying factor matrix introduced by the transformers or 
voltage regulators along the shortest path between the swing 
bus and the current bus: 

swing
st

Vp VAV
st∏=)0(                                 (3) 

where, )0(
pV  is the vector of initial complex voltages of bus 

p, swingV  is the complex voltage of the swing bus, 
stVA  is 

the voltage amplifying factor matrix of a regulator or 
transformer between the two buses, bus s and bus t residing 
on the shortest path from the swing bus to the bus under 
consideration. 

The complex admittance matrix Y consists of two 
integrated parts, one real part and one imaginary part. The 
real part is a conductance matrix G, and the imaginary part 
is a susceptance matrix B. Accordingly, the equation (2) can 
be rewritten in rectangular coordinates as: 
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where, rIΔ  and mIΔ  are the real part and imaginary part of 

the nodal current injection mismatches, and rVΔ  and mVΔ  
are the real part and imaginary part of the incremental nodal 
voltage changes. Both G and B matrices contribute to the 
changes of nodal voltages. 

The effects of G and B matrices on nodal voltage changes 
are decoupled into two separate equations, and each set of 
equations considers the contribution of only one matrix. The 
final voltage change is formed as a weighted  linear 
combination of the two contributions. 

Ignoring the effects of B matrix, the nodal voltage 
changes resulting from G matrix can be determined as: 
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where 1rVΔ  and 1mVΔ  are the corresponding real and 
imaginary parts of the voltage changes resulting from matrix 
G. Hence, the first set of decoupled equations is given by: 

[ ] [ ][ ]1rr VGI Δ=Δ                               (6) 

[ ] [ ][ ]1mm VGI Δ=Δ                              (7) 
Ignoring the effects of matrix G, the nodal voltage 

changes resulting from matrix B can be determined as: 
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where 2rVΔ  and 2mVΔ  are the corresponding real and 
imaginary parts of voltage changes resulting from matrix B. 
Similarly, the second set of decoupled equations is given by: 

[ ] [ ][ ]2rm VBI Δ=Δ                                  (9) 

[ ] [ ][ ]2mr VBI Δ−=Δ                              (10) 
The net nodal voltage change is given by a weighted 

combination of the two decoupled changes: 
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where Α  is a diagonal weight matrix that represents the 
contribution of matrix G towards the whole voltage update, 
and I is an identity matrix.  

B.  Zero-impedance branches 
Many branches in a distribution system can be regarded 

as zero-impedance branches, such as step voltage regulators, 
switches, ideal transformers, very short lines and jumpers. 
Those branches have been merged with adjacent impedance 
branches to be modeled. Fig.1 shows an example of a 
distribution system with a generalized three-phase zero-
impedance branch. 

 
Fig.1. An Equivalent Model of Zero-impedance Branch 
 

In the Fig. 1, the zero-impedance branch connects bus m 
and bus p with an ideal transformer. One of the buses, for 
example the bus m, is assigned to be a master bus, and the 
other bus p is assigned to be a slave bus. The slave bus is 
connected with a load current pI . The transformer's 

functionality is represented by two voltage amplifying factor 
matrices, 

mpVA  and 
pmVA , and two current amplifying factor 

matrices, 
mpIA  and 

pmIA . Those amplifying factor matrices 

are determined by the winding connection and tap positions 
for a transformer or a voltage regulator, and by the phase 
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connection for a switch, a short line, or a jumper. 
The relationship of bus voltages and branch currents of 

the zero-impedance branch can be described as: 

pmImp IAI
mp

=
                                  (12) 

mpIpm IAI
pm

=
                                 (13) 

pVm VAV
mp

=                                   (14) 

mVp VAV
pm

=                                   (15) 

where, mpI and pmI are the phase currents flowing into the 

branch through the master bus m, and slave bus p 
respectively, and mV  and pV   are the phase-to-ground 

voltages at the master bus and slave bus. 
As shown in Fig. 1, the zero-impedance branch is merged 

into adjacent impedance branches, such that the slave bus is 
not considered in analysis of the model. In the example of 
Fig. 1, the zero-impedance branch is connected to two 
branches by the slave bus p, and to two other branches by 
the master bus m. Taking one adjacent branch between slave 
bus p and bus s as example, the relationship between the 
branch currents, and bus voltages for the branch can be 
described as: 
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where psI  and spI are the vectors of phase currents flowing 

through bus p and bus s into the branch, respectively, pV and 

sV are the vectors of phase voltages at bus p and bus s, 

ppY and ssY  are the self admittance matrices at bus p and   

bus s,  and psY and spY  are the mutual admittance matrices 

between bus p and bus s, and bus s and bus p, respectively.  
In the equivalent model, the zero-impedance branch and 

the slave bus p are removed. There are no changes for the 
branches connected to the master bus m. The branches 
connected to the slave bus p are reconnected to bus m, and 
the branch admittance matrices and the current injections at 
the master bus m are modified accordingly. The load current 

pI at bus p is modeled as equivalent currents at bus m, 

using pI IA
mp

− . The branch between bus p and bus s in the 

system is replaced with a new branch directly between bus 
m and bus s, and the branch currents, msI , smI , and the 

nodal voltages, mV  and sV ,  are related as 
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The voltage amplifying matrix may be given in terms of 
line-to-line voltages for transformers with ungrounded 
connections. In this case, the following equation is used to 
convert the matrix from one based on given line-to-line 
voltages to one based on phase-to-ground voltages: 
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=                                (18) 

where LL
Vpm

A is the amplifying matrix associated with the 

line-to-line voltages of bus p and bus m, and PL
VC   is a 

voltage conversion matrix that is used to convert the line-to-
line voltages into phase-to-ground ones according to: 
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LP
VC is a voltage conversion factor matrix that is used to 

convert the phase-to-ground voltages into line-to-line 
voltages according to: 
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 The definition of LP
VC is straightforward, but not the 

same as for PL
VC . The conversion from line-to-line voltages 

into phase-to-ground voltages is not trivial. Due to unknown 
neutral-to-ground voltages, multiple results may be obtained 
based on the same line-to-line voltages. Equation (20) is 
proposed to uniquely convert the line-to-line voltages to the 
phase-to-ground voltages. The conversion expressed in 
equations (19) is accurate when the voltages only include 
positive and negative sequence components, and is a good 
approximation if the zero-sequence components are small 
enough.  

C.  Three-phase PV buses with balanced voltages 
A PV bus in the distribution system can be modeled as 

three independent PV nodes if active power and voltage 
magnitude of each phase is regulated independently. 
However, if a PV bus is connected to a three-phase 
synchronous generator, the three-phases of the PV bus 
cannot  be modeled separately, since the three phases of the 
generator are balanced, three phases must have same 
magnitude of voltages, and constant phase angle difference 
between each two phases such that phase a always leads 
phase b by 120 degrees, and lags phase c by 120 degrees.  
The regulated parameters of those generators are the 
magnitude of balanced voltages, and the total active power 
of three phases. Such three-phase PV bus has merged into 
one single phase PV bus, to be modeled in power flow 
equations based on admittance matrices. Fig. 2 shows an 
example of a distribution system with three-phase ganged 
regulated PV buses.  

In the Fig. 2, bus p is a three-phase PV bus with balanced 
voltages. The total power generation of bus p, pS  can be 
determined as: 
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where, x
pV  and x

pI  are the phase-to-ground voltage  and 

phase current for phase x, and *x
pI is the conjugate of x

pI . 
The three phases a, b, and c are combined as an 

equivalent single-phase e. The equivalent phase can be any 
phase. Taking phase a as an example, the phase voltage for 
the equivalent phase of bus p, e

pV can be set as: 
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a
p

e
p VV =                                      (22) 

where, a
pV  is the phase voltage for phase a. The current at 

the equivalent phase e, e
pI  can be calculated as the 

summation of all three phase currents after rotation to the 
selected phase, e.g.,  currents at phase b and at phase c are 
rotated 120 degrees and -120 degrees, respectively: 

p
Te

p IRI =                                    (23) 

where, pI  is the vector of three phase currents, R is a 
rotation vector defined as: 

[ ]Tjj oo

eeR 1201201 −=                    (24) 
TR is a transpose of R . The total power of three phases at 

bus p can be replaced with the power at the equivalent 
phase:  

*e
p

e
pp IVS =                                  (25) 

 
Fig.2. An Equivalent Model of Three-phase PV bus with balanced Voltages 
 

The nodal admittance model for each branch connected 
with the three-phase PV bus needs to be modified 
accordingly. In Fig. 2, the three-phase PV bus p is connected 
to two branches. Taking one branch between bus p and bus s 
as an example, the relationship between the phase currents 
of the branch and phase voltages of its terminal buses can be 
described by Equation (16). In the equivalent model, the 
three phases of PV buses with balanced voltages are 
combined into one single phase, and the new branch model 
can be described as: 
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D.  Equivalent Nodal Current Injections 
The calculation of nodal current injection mismatches 

depends on the associated bus type that itself is determined 
by the type of  distribution loads, or the regulation type of 
equivalent sources or distribution generation sources 
connected to the bus.  

The buses connected to constant power loads, or constant 
current loads, are modeled as PQ buses. A constant power 
load is specified by the active and reactive power injection 
at the bus. A constant current load is modeled as constant 
equivalent injected powers. The equivalent injected powers 
are based on estimated voltages, and are recalculated when 

the updated voltages become available during the iterations 
of the solution procedure. Equivalent sources, which 
represent the impacts of transmission systems on 
distribution systems, are modeled as swing buses or PV 
buses. Dependent on their regulation patterns, buses 
connected with distribution generators can be modeled as 
either PQ or PV buses. Buses connected to constant-power-
factor generators are treated as PQ buses, and buses 
connected to constant-voltage generators are treated as PV 
buses.  

The equivalent current injection mismatch,  x
iIΔ  of a PQ 

bus i at phase x can be determined from the scheduled power 
injections and the calculated equivalent current: 

)()(* kx
i

kx
i

schx
i

x
i IVSI −=Δ −      },,,{ ecbax =    (27) 

where schx
iS − is the scheduled complex power injections for 

bus i at phase x, )(kx
iV  is the voltage of bus i at phase x 

obtained at the latest iteration k, )(kx
iI is the equivalent 

current injections calculated from equation (1) based on the 
voltages at iteration k, and phase x can be one of phase a, 
phase b, phase c, or the equivalent phase e. The scheduled 
active power and reactive power are given and kept constant 
during the iterations for a constant power load or a PQ type 
generation source, but are recalculated when the voltages are 
updated for a constant current load. 

A PV bus uses the same equation (27) to determine the 
equivalent current injection mismatches. The scheduled 
active power is specified by the generation regulation 
specification. The scheduled reactive power is determined 
by an estimated power factor at the first iteration. The power 
factor can be a given rated power factor of the generator, or 
the average power factor of the system loads, if the rated 
power factor is not provided. The scheduled reactive powers 
for the iterations after the first one are updated from the 
difference between the scheduled and solved voltages. 
When a converged power flow is obtained, if the voltage 
magnitudes at PV nodes are not equal to the scheduled 
values, reactive powers are adjusted to maintain the 
scheduled voltages at the PV nodes.  

The following equation is used to determine the required 
amount of compensation currents applied to the bus in order 
to eliminate the voltage magnitude mismatch: 

[ ] [ ][ ]CCC VYI Δ=Δ                            (28) 

where [ ]CIΔ  is the vector of compensated currents for the 

PV nodes,  [ ]CVΔ  is the vector of required voltage changes, 

and [ ]CY  is a sensitivity matrix of nodal compensation 
currents with respect to nodal voltage changes for the PV 
nodes. The dimension of [ ]CY  is equal to the number of PV 
nodes. The sensitivity matrix is derived from the admittance 
matrix [ ]Y  in Equation (2) using a Kron reduction method 
to eliminate all elements related to all non-PV nodes. The 
compensation current vector contains one element for each 
three-phase ganged regulated PV bus, and three elements for 
each three-phase independent regulated PV bus.  

Assuming that the phase angles of node voltage keep their 
values from the latest iteration k, the required voltage 
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changes for a PV bus i at phase x, x
Ci

VΔ  can be determined 
as 
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where, schx
iV −  is the scheduled voltage magnitude for bus i 

at phase x.  
By solving equation (28), approximated compensated 

currents can be determined to eliminate the voltage 
magnitude mismatch at the last iteration. Then, the required 
compensated reactive power at bus i on phase x, schx

iQ −Δ , 
can be determined as: 

}Im{
*)( x

C
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i
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i i
IVQ Δ=Δ −   },,,{ ecbax =     (30) 

where,
*x

Ci
IΔ is the conjugate of the compensated current at 

bus i on phase x, and }Im{•  is the imaginary part of 
complex number. The required reactive power generation 
for a PV node is: 

schx
ii

kschx
i

schx
i QQQ −−− Δ+= β)(   },,,{ ecbax =  (31) 

where, )(kschx
iQ −  is the scheduled reactive power calculated 

at the last iteration k, and iβ  is an accelerating factor to 
limit the reactive power changes within given maximum 
change, or the resulting reactive power generation within its 
capacity. 

E.  G matrix contribution factors 
The selection of a contribution matrix of conductance or 

susceptance is crucial to the convergence performance of the 
method. The nodes in the system are divided into two 
groups, based on the relative magnitude of the 
corresponding diagonals of conductance and susceptance 
matrices, where one is the set of nodes for which the 
conductance is greater than susceptance, and the other is the 
set for which conductance is less than susceptance. A 
uniform contribution factor is used for each group. The 
maximum ratio of conductance to susceptance is used to set 
the contribution factor of the first group, and the minimum 
ratio is used for the second group. Only one uniform 
contribution factor is used if all nodes belongs to either the 
first or the second group. 

The following computational procedure is used for 
determining the optimal value of the relative contribution 
factors, based on the diagonals of nodal conductance and 
susceptance matrices. Two control parameters, a lower ratio 

threshold α , e.g. 0.45, and an upper ratio threshold α , e.g. 
0.55, are used to help determine the contribution factor for 
each node. The procedures includes: 

(1) . Determining the contribution factor of G matrix for 
each node based on the diagonals of G and B matrices at the 
corresponding row: 

)( iiiiiii bgg +=α                                (32) 

where iα is the G contribution factor for the i-th row, 

and iig  and iib  are the i-th diagonal elements of G and B 
matrices respectively; 

(2). Determining the lower and upper bounds for G 
contribution factors according to: 

ii
αα maxmax =                              (33) 

ii
αα minmin =                               (34) 

(3). Comparing the G contribution factors for all nodes 
against the lower ratio threshold α . If all factors are greater 
than the lower threshold, the method proceeds to the next 
step (4). Otherwise, the method proceeds to step (5). 

(4). Replacing the G contribution factor iα of all nodes 

with the upper bound maxα ; 
(5). Comparing the G contribution factors for all nodes 

against the upper ratio threshold α . If all factors are less 
than the upper threshold, the method proceeds to the next 
step (6). Otherwise, the method proceeds to step (7); 

(6). Replacing the G contribution factor iα of all nodes 

with the lower bound minα ; 
(7). Counting the total number of nodes that G matrix 

contribution is more than B matrix, that is the G contribution 
factor iα  is greater than 0.5. If more nodes have more G 
contributions than B, the method proceeds to the next step 
(8). Otherwise, the method proceeds to step (9); 

(8). Replacing  the G contribution factor iα  with the 

upper bound maxα  for all nodes that have a contribution 
factor greater than the lower ratio threshold α , and with the 

lower bounds minα for the remaining rows; 
(9). Replacing the G contribution factor iα  with the 

upper bound maxα for all nodes that have a contribution 

factor greater than a upper ratio threshold α , and with the 
lower bounds minα for the remaining rows. 

III.  NUMERICAL EXAMPLES 
The proposed method has been tested on several sample 

systems, including IEEE 37 node feeder, and IEEE 123 node 
feeder. Three different algorithms have been implemented to 
calculate the load flows of the sample systems, including the 
GB decoupled method proposed in this paper, the GB 
coupled equivalent current injection method that solves 
power flows through nodal current injection mismatch 
equations written in rectangular coordinates directly and 
without GB decoupling, and the Newton-Raphson method 
that solves power flows through nodal active and reactive 
power mismatch equations written in polar coordinates. The 
maximum mismatches of nodal active and reactive powers 

are set to be 510− per unit. 
Table I and II gives the computational performances of 

the three algorithms on the IEEE 37 node test feeder, and 
IEEE 123 node test feeder, respectively. Both the 
computational time and total number of iterations are given 
to compare the performance of each algorithm. The 
computational procedure includes two stages, the first stage 
involves the construction of connected islands based on the 
current or study-mode switch status through topology 
analysis, and the second stage involves the calculation of 
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load flows for each island that was constructed during the 
first stage.  

TABLE I 
COMPUTATIONAL PERFORMANCES ON IEEE 37 NODE FEEDER 

 
Algorithm 

Number 
of 

Iterations 

CPU Time(ms) 
Topology 
Analysis 

Load Flow 
Calculation 

Newton-Raphson 6 0.166 62.780 
GB Coupled 5 0.166 36.944 

GB Decoupled 25 0.166 31.360 

TABLE II 
COMPUTATIONAL PERFORMANCES ON IEEE 123 NODE FEEDER 

 
Algorithm 

Number 
of 

Iterations 

CPU Time(ms) 
Topology 
Analysis 

Load Flow 
Calculation 

Newton-Raphson 24 0.633 294.274 
GB Coupled 17 0.633 188.601 

GB Decoupled 65 0.633 102.098 

Taking the results from the IEEE 37 node feeder as an 
example, each algorithm used the same amount of time, 
0.166 ms to complete its topology analysis, but the total 
number of iterations and load flow calculation time are 
different for the three different algorithms. It took 31.360 ms 
and 25 iterations for the proposed algorithm to find the final 
solution with the required precision. In comparison, it took 
62.780 ms and 6 iterations for the Newton-Raphson 
algorithm, and 36.944 ms and 5 iterations for the GB 
coupled algorithm to find the solution with the same 
precision. Although taking more iterations to find the 
solution, the proposed algorithm is more efficient compared 
with the Newton-Raphson method and the GB coupled 
equivalent current injection method. Similar results can be 
found in Table II. Despite of the difference of computation 
time, the results obtained by three different algorithms are 
exactly the same. Table III gives the calculated voltage 
results for a set of sample nodes of the 37 node system. 

 
TABLE III 

RESULTS OF NODE VOLTAGES FOR IEEE 37 NODE FEEDER 
Node 
Name 

Phase-to-phase Voltage (p.u. @deg.) 
A-B B-C C-A 

701 1.0317@-0.08 1.0144@-120.39 1.0183@120.61 
720 1.0205@-0.21 1.0011@-120.66 1.0040@120.53 
740 0.9981@0.08 0.9961@-120.75 0.9846@119.76 

Table IV shows the computational performance of the 
proposed algorithm on the IEEE 123 test feeder with PV 
buses. The first test scenario is the 123 node feeder which 
has no PV buses. It is used as a base for comparing with 
other scenarios with different number of PV buses. With the 
increase in the number of PV buses, the required number of 
iterations and computational time are significantly 
increased. The required number of iterations is heavily 
dependent on the estimation accuracy of the initial reactive 
power generations. The more accurate the estimation 
accuracy, the smaller number of iterations are required. 

 
TABLE IV 

COMPUTATIONAL PERFORMANCES ON VARIOUS SCENARIOS WITH PV BUSES 
Test Scenarios Number 

of 
Iterations 

CPU Time(ms) 
Number 
of PV 
buses 

Nodes modeled as PV 
buses 

Topology 
Analysis 

Load Flow 
Calculation 

0 / 65 0.633 102.98 
2 66, 88 2219 0.656 2163.901 
4 30,56,66,88 7583 0.660 7369.812 

8 18,25,30,42,56,66,72, 
88 

35316 0.693 35637.341 

IV.  CONCLUSION 
A three-phase load flow method has been proposed by 

formulating the power flow problem by means of nodal 
equivalent current injection equations in rectangular 
coordinates. The voltage changes resulting from nodal 
admittance matrices are decoupled into one contribution 
from the real part, the conductance matrix, and another 
contribution from the imaginary part, the susceptance 
matrix. The method determines the voltage changes 
resulting from conductance and susceptance matrices 
respectively, and determines the voltages of a node as a liner 
combination of those voltage changes. The relative 
contribution of a conductance or reactance matrix is 
determined based on the diagonals of conductance and 
susceptance matrices.  

The PV nodes have been converted into PQ nodes by 
means of a sensitivity matrix determined through Kron 
reduction of the nodal admittance matrix, and the 
corresponding reactive powers are adjusted after each 
solution has converged.  

The proposed method models accurately the impacts of 
zero-impedance branches and three-phase voltage-balanced 
PV buses. Zero-impedance branches are merged with 
adjacent impedance branches, and the three phases of a 
balanced-voltage PV bus are merged into one single-phase 
PV bus to be modeled in the nodal admittance matrix.  

Compared with the Newton-Raphson method and the 
rectangular coordinate equivalent current injection method, 
the proposed method requires relatively more iterations, but 
much less time to get to the solution. 
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