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Abstract

Alice and Bob are mutually untrusting curators who possess separate databases containing infor-
mation about a set of respondents. This data is to be sanitized and published to enable accurate
statistical analysis, while retaining the privacy of the individual respondents in the databases.
Further, an adversary who looks at the published data must not even be able to compute sta-
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differential privacy. Privacy of the marginal and joint statistics on the distributed databases is
formulated using a new model called distributional differential privacy. Finally, a constructive
scheme based on randomized response is presented as an example mechanism that satisfies the
formulated privacy requirements.
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Abstract—Alice and Bob are mutually untrusting curators who possess
separate databases containing information about a set of respondents.
This data is to be sanitized and published to enable accurate statistical
analysis, while retaining the privacy of the individual respondents in the
databases. Further, an adversary who looks at the published data must
not even be able to compute statistical measures on it. Only an authorized
researcher should be able to compute marginal and joint statistics.
This work is an attempt toward providing a theoretical formulation of
privacy and utility for problems of this type. Privacy of the individual
respondents is formulated using ε−differential privacy. Privacy of the
marginal and joint statistics on the distributed databases is formulated
using a new model called δ−distributional ε−differential privacy. Finally,
a constructive scheme based on randomized response is presented as an
example mechanism that satisfies the formulated privacy requirements.

I. INTRODUCTION

With the rapid emergence and penetration of “Big Data” into ev-
eryday human lives, it has become extremely important for public and
private enterprises to perform statistical analysis on large databases.
These enterprises include governments, medical universities, hospi-
tals, financial institutions, and private companies. For example, a
medical researcher may be able to determine the efficacy of a drug in
the treatment of a disease or find correlations between the occurrence
of disease and the food habits, ages, or geographical locations of the
patients. This would clearly be beneficial in improving the efficacy of
healthcare provided to the patients. In the corporate world, companies
may be able to leverage statistical studies on customer data for
targeted advertising and product placement.

In all such applications, it is imperative that the privacy of
individuals be maintained. Indeed, unless the public is satisfied that
their privacy is being preserved, they would not allow their data to
be collected or used. The mechanism of randomized response [1],
[2] was developed to address this problem, and was originally used
for collecting data from surveys involving uncomfortable questions.
In this mechanism, the individual respondents are allowed to change
their responses with a certain probability. The result is that the data
that gets recorded or published does not unambiguously reveal the
response of a particular respondent, but aggregate statistical measures,
such as the mean or variance, can still be computed from the
“perturbed” data. Thus, randomized response provides privacy to the
respondents but does not hide the probability distribution or “type”
of the data from an adversary.

In recent years, the notion of differential privacy has received
much attention [3], [4]. Differential privacy (DP) is a strict privacy
formulation applied to functions computed from the respondent data,
such as classifiers. Informally, differential privacy means that the
result of a function computed on a database of respondents is almost
insensitive to the presence or absence of a particular respondent.
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A more formal way of stating this is that when the function is
evaluated on adjacent databases (differing in only one respondent),
the probability of outputting the same result is almost unchanged.
It has been shown that adding Laplacian noise to the result of a
function computed on a database provides differential privacy to the
individual respondents in the database [5] [6]. The variance of the
added noise trades off the privacy of the respondents with the utility
of the function computed on the database.

Conventional mechanisms for privacy, such as k-
anonymization [7] [8] are not differentially private, because
an adversary can link an arbitrary amount of side information
to the anonymized database, and defeat the anonymization
mechanism [9]. Mechanisms used to provide differential privacy
typically involve output perturbation, e.g., noise is added to a
function of the data. Nevertheless, it can be shown that the
randomized response mechanism – where noise is added to the
data itself – provides differential privacy to the respondents.
Unfortunately, while differential privacy provides a rigorous and
worst-case characterization for the privacy of the respondents, it
is not enough to formulate privacy of the empirical probability
distribution or “type” of the data. In particular, if an adversary has
accessed anonymized adjacent databases, a differentially private
mechanism ensures that he cannot de-anonymize any respondent,
but by construction, possessing an anonymized database reveals the
distribution of the data.

In this work, we are interested in a privacy formulation that protects
the privacy of the database respondents while also protecting the
empirical probability distribution from unauthorized parties. To do
this, we have to first answer the question: “What does it mean for a
probability distribution or type to be private?” To this end, first we
describe the underlying multiparty privacy framework consisting of
several database curators and fix our notation in Section II. Notions
of respondent privacy and distribution privacy are made explicit
in Section III along with a discussion on the utility of privacy
mechanisms for this problem. Section IV is devoted to deriving
the conditions that privacy mechanisms must satisfy in order to
simultaneously achieve the twin goals of respondent privacy and
distributional privacy. In Section V, we analyze a mechanism in
which each curator independently sanitizes its database to protect
the privacy of the database respondents, while allowing marginal and
joint statistics to be computed by an authorized party who is given
certain randomization parameters. Section VI concludes the paper
with a discussion of the results and contributions.

II. MULTIPARTY PROBLEM SETTING AND NOTATION

For ease of exposition, we present our problem formulation and
results with two data curators, Alice and Bob, however our methods
can easily be generalized to more than two curators.
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Fig. 1. An example in which two curators Alice and Bob independently
sanitize their databases to protect the privacy of their respondents, and make
the combined data available on a cloud server for statistical research. The key
of join operation is the hashed name generated from a cryptographic hash
function.
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Fig. 2. Curators Alice and Bob independently sanitize their databases and
provide it to a cloud server. A researcher can derive joint statistics or joint type
based on the sanitized data, without compromising the privacy of individual
database respondents. Neither the statistics nor the individual data entries are
revealed to the cloud server.

Consider a medical data mining application in which Alice and
Bob are mutually untrusting curators who have collected data from a
large number of respondents. For example, as shown in Fig. 1, Alice’s
database contains the occupation and salary of the respondents, and
Bob’s database contains the age and location of the respondents
along with the disease that they are suffering from, if any. If this
data is combined and analyzed, medical researchers may be able to
determine for example, the correlations among age, occupation and
cancer. However, before the data is combined and made available to
a medical researcher, it must be properly sanitized to preserve the
privacy of the respondents; it is well-known that simply removing
the respondent names to anonymize the data may not do enough to
preserve the privacy of the respondents [10].

To facilitate the storage, transmission and computation required on
these potentially large databases, the curators submit their sanitized
data to an untrusted cloud server, as shown in Fig. 2. The server thus
holds a large vertically partitioned database, in which some columns
are contributed by Alice and other columns are contributed by Bob.
The objective of the authorized researcher is to the extract useful
statistics about the underlying database from computation provided
on the sanitized data by the curator and low-rate helper information
from the curators. Altogether, we have the following privacy and
utility requirements:

1) Individual Privacy: The individual data of the respondents
should not be revealed to the cloud server or the researchers.

2) Distributional Privacy: The statistics of the data provided by
Alice and Bob should not be revealed to the cloud server.

3) Statistical Utility: The authorized researcher should be able to
compute the joint and marginal distributions of the data provided
by Alice and Bob.

In the following sections, we formalize these notions in our
problem framework.

A. Problem Framework and Notation

The data table held by Alice is modeled as a sequence of random
variables X := (X1, X2, . . . , Xn), with each Xi taking values in
the finite-alphabet X . Likewise, Bob’s data table is modeled as a
sequence of random variables Y := (Y1, Y2, . . . , Yn), with each Yi
taking values in the finite-alphabet Y . The length of the sequences, n,
represents the total number of respondents in the database, and each
(Xi, Yi) pair represents the data of the respondent i collectively held
by Alice and Bob, with the alphabet X ×Y representing the domain
of each respondents’s data.

We assume that the sequence of data pairs (Xi, Yi) are inde-
pendently and identically distributed (i.i.d.) according to some joint
distribution PX,Y over X ×Y , that is, for x := (x1, . . . , xn) ∈ Xn
and y := (y1, . . . , yn) ∈ Yn, we have that

PX,Y(x,y) =

n∏
i=1

PX,Y (xi, yi).

A privacy mechanism is a randomized mapping M : I → O from
some finite input space I to a finite output space O, and governed
by a conditional distribution PO|I . Post-randomization (PRAM) is a
specific class of privacy mechanisms where the input and output are
both sequences, i.e., I = O = Dn for some finite alphabet D, and
each element of the input sequence is randomized independently and
identically according to an element-wise conditional distribution.

In this paper, we consider that Alice and Bob each indepen-
dently apply a PRAM mechanism to their data tables. Denoting
these mechanisms as RA : Xn → Xn and RB : Yn → Yn,



their respective outputs as X̃ := (X̃1, . . . , X̃n) := RA(X) and
Ỹ := (Ỹ1, . . . , Ỹn) := RB(Y), and their governing distributions
as PX̃|X and PỸ |Y , we have that

PX̃,Ỹ|X,Y(x̃, ỹ|x,y) = PX̃|X(x̃|x)PỸ|Y(ỹ|y)

=

n∏
i=1

PX̃|X(x̃i|xi)PỸ |Y (ỹi|yi).

We also use RAB : Xn × Yn → Xn × Yn, defined by
RAB(X,Y) := (X̃, Ỹ) := (RA(X), RB(Y)) to denote the
mechanism that arises from the concatenation of each individual
mechanism. RAB is also a PRAM mechanism and is governed by
the conditional distribution PX̃|XPỸ |Y .

B. Type Notation

The type (or empirical distribution) of a sequence of random
variables X = (X1, . . . , Xn) is the mapping TX : X → [0, 1]
defined by

TX(x) :=
|{i : Xi = x}|

n
, ∀x ∈ X .

The joint type of two sequences X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) is the mapping TX,Y : X × Y → [0, 1] defined by

TX,Y(x, y) :=
|{i : (Xi, Yi) = (x, y)}|

n
, ∀(x, y) ∈ X × Y.

The conditional type of a sequence Y = (Y1, . . . , Yn) given another
X = (X1, . . . , Xn) is the mapping TY|X : Y × X → [0, 1] defined
by

TY|X(y|x) :=
TY,X(y, x)

TX(x)
=
|{i : (Yi, Xi) = (y, x)}|
|{i : Xi = x}|

Note that the values of these type mappings are determined given the
underlying sequences, and are potentially random if the sequences are
random.

C. Matrix Notation for Distributions and Types

The various (marginal, conditional and joint) distributions and
types of finite-alphabet random variables can be represented as
vectors and/or matrices. By fixing a consistent ordering on their finite
domains, these mappings can be written vectors/matrices indexed
by their domains. The distribution PX : X → [0, 1] can be
written as an |X |× 1 column-vector PX , whose “x”-th element, for
x ∈ X , is given by PX [x] := PX(x). A conditional distribution
PY |X : Y × X → [0, 1] can be written as a |Y| × |X | matrix
PY |X , defined by PY |X [y, x] := PY |X(y|x). A joint distribution
PX,Y : X ×Y → [0, 1] can be written as a |X | × |Y| matrix PX,Y ,
defined by PX,Y [x, y] := PX,Y (x, y), or as a |X ||Y| × 1 column-
vector PX,Y , formed by stacking the columns of PX,Y .

We can similarly develop the matrix notation for types, with TX,
TY|X, TX,Y , and TX,Y similarly defined for sequences X and Y
with respect to the corresponding type mappings. Note that these type
vectors/matrices are random quantities.

III. PRIVACY AND UTILITY CONDITIONS

We now formulate the privacy and utility requirements for this
problem of computing joint and marginal statistics on independently
sanitized data. According to the requirements described in Section II,
the formulation will consider in turn, privacy of the respondents,
privacy of the distribution and finally the utility for an authorized
medical researcher.

A. Privacy of the Respondents

The data pertaining to a respondent should be kept private from all
other parties, including any authorized researchers who aim to recover
the distributions. We formalize this notion using ε-differential privacy
for the respondents.

Definition III.1. [11] For ε ≥ 0, a randomized mechanism M :
Dn → O gives ε-differential privacy if for all data sets d,d′ ∈ Dn,
within Hamming distance dH(d,d′) ≤ 1, and all S ⊆ O,

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S]

Under the assumption that the respondents are sampled i.i.d.,
a privacy mechanism that satisfies DP results in a strong privacy
guarantee: an attacker with knowledge of all respondents except one,
cannot discover the data of the sole missing respondent [12]. This
notion of privacy is rigorous and widely accepted and satisfies the
privacy axioms of [13], [14].

B. Privacy of the Distribution

The data curators, Alice and Bob, do not want to reveal the
marginal and joint statistics of the data to attackers or to the cloud
server. Hence they must ensure that the marginal and joint empirical
distribution, i.e., the marginal and joint types cannot be learned from
X̃ and Ỹ. As explained in the introduction, ε-DP cannot be used to
characterize privacy in this case. To formulate a privacy notion for
the empirical probability distribution, we extend ε-differential privacy
as follows.1

Definition III.2. (δ-Distributional ε-differential privacy) Let d(·, ·)
be a distance metric on the space of distributions. For ε, δ ≥ 0,
a randomized mechanism M : Dn → O gives δ-distributional
ε-differential privacy if for all data sets d,d′ ∈ Dn, with
d(Td,Td′) ≤ δ, and all S ⊆ O,

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S]

Note that the larger the δ is, and the smaller the ε is, the better the
distribution is protected. We also want to point out that Definition
III.2 satisfies privacy axioms [13], [14].

C. Utility for Authorized Researchers

The objective of the authorized researcher is to the extract useful
statistics about the underlying database (X,Y). We model this
problem as the reconstruction of the joint and marginal type functions
TX,Y(x, y), TX(x), and TY(y), or (equivalently) the matrices TX,Y ,
TX, and TY . The cloud server facilitates this reconstruction by
providing computation based on the sanitized data (X̃, Ỹ). The
data curators, Alice and Bob, also assist by providing some low-
rate, independently generated helper information. Given the cloud
server’s computation and the helper information from the curators,
the researcher produces the estimates ṪX,Y , ṪX, and ṪY .

For a given distance metric d(·, ·) over the space of distributions,
we define the expected utility of the estimates as

µTX,Y := E[−d(ṪX,Y,TX,Y)]

µTX := E[−d(ṪX,TX)]

µTY := E[−d(ṪY,TY)]

1A similar definition appeared in [15]. However, the conditions in our
definition specializes to distributional distance metrics, and does not require
additional technical conditions.



IV. ANALYSIS OF PRIVACY REQUIREMENTS

In this section, we analyze our PRAM mechanisms with respect
to the privacy requirements.

A natural question to ask is whether privacy protection of the
marginal types of the database implies privacy protection for the joint
type. We now show that if the distance function d satisfies a general
property shared by common distribution distance measures, then this
is indeed the case.

Lemma IV.1. Let d(·, ·) be a distance function such that

d(TX,Y,TX′,Y′) ≥ max(d(TX,TX′), d(TY,TY′)). (1)

Let MAB be the privacy mechanism defined by MAB(X,Y) :=
(MA(X),MB(Y)). If MA satisfies δ-distributional ε1-differential
privacy and MB satisfies δ-distributional ε2-differential privacy, then
MAB satisfies δ-distributional (ε1 + ε2)-differential privacy.

Proof: For any databases (x,y), (x′,y′) ∈ Xn × Yn and
d(Tx,y,Tx′,y′) ≤ δ, Equation 1 implies d(Tx,Tx) ≤ δ and
d(Ty,Ty′) ≤ δ Then, for any S ⊆ Xn × Yn, the result follows
from∑
(x̃,ỹ)∈S

PX̃,Ỹ|X,Y(x̃, ỹ|x,y) =
∑

(x̃,ỹ)∈S

PX̃|X(x̃|x)PỸ|Y(ỹ|y)

≤
∑

(x̃,ỹ)∈S

eε1PX̃|X(x̃|x′)eε2PỸ|Y(ỹ|y′)

= eε1+ε2
∑

(x̃,ỹ)∈S

PX̃,Ỹ|X,Y(x̃, ỹ|x′,y′).

The condition (1) is fairly general; it can be shown that the `1
distance and KL divergence between distributions (or types) satisfies
this property.

We argue that if vertically partitioned tables are sanitized indepen-
dently and we want to recover joint distribution from the sanitized
table, the choice of privacy mechanisms are restricted to the class
of PRAM algorithms. We now analyze the constraints that should
be placed on PRAM algorithms so that they satisfy the privacy
constraints of Section III. First, consider the privacy requirement of
the respondents in Alice and Bob’s databases.

Lemma IV.2. Let R : Xn → Xn be a PRAM mechanism governed
by conditional distribution PX̃|X . R satisfies ε-DP if

ε = max
x1,x2,x̃∈X

ln(PX̃|X(x̃|x1))− ln(PX̃|X(x̃|x2)). (2)

Proof: Let S ⊆ Xn and let x,x′ ∈ Xn and dH(x,x′) = 1.
Then, we have

PX̃|X(x̃ ∈ S|x) =
∑
x̃∈S

n∏
i=1

PX̃|X(x̃i|xi)

≤
∑
x̃∈S

eε
n∏
i=1

PX̃|X(x̃i|x′i) = eεPX̃|X(x̃ ∈ S|x′)

The inequality holds because dH(x,x′) = 1 and Equation 2. The
result follows from the definition of ε-DP.

Lemma IV.3. Define MAB(x,y) = (MA(x),MB(y)). If MA

satisfies ε1-DP and MB satisfies ε2-DP, then MAB satisfies (ε1+ε2)-
DP.

Proof: The result follows from composition lemma [16].

The lemma can be extended to k curators where if ith curator’s san-
itized data satisfies εi-DP, then the joint system provides (

∑k
i=1 εi)-

DP. Next, we consider the privacy requirement for the joint and
marginal types.

Lemma IV.4. Let d(·, ·) be the distance metric on the space of
distributions. Let R : Xn → Xn be a PRAM mechanism governed
by conditional distribution PX̃|X .

• Necessary Condition: If R satisfies δ-distributional ε-DP, then
R must satisfy ε

bn/2c -DP for the respondents.
• Sufficient Condition: If R satisfies ε

n
-DP for the respondents,

then R satisfies δ-distributional ε-DP.

Proof: We first prove the necessary condition. Assume that n is
even. By way of contradiction, let x̃1, xi, xj ∈ X and

P
X̃|X (x̃1|xi)

P
X̃|X (x̃1|xj)

>

e
ε
n/2 . Let x ∈ Xn and the first n/2 respondents have value xi

and the last n/2 respondents have value xj . Let x′ ∈ Xn and the
first n/2 respondents have value xj and the last n/2 respondents
have value xi. Pick x̃2 such that PX̃|X(x̃2|xj) ≥ PX̃|X(x̃2|xi). The

existence of x̃2 can be proved by plugging
P
X̃|X (x̃1|xi)

P
X̃|X (x̃1|xj)

> e
ε
n/2 into∑

x̃∈X PX̃|X(x̃|xi) =
∑
x̃∈X PX̃|X(x̃|xj). Let x̃ ∈ Xn and the first

n/2 respondents have value x̃1 and the last n/2 respondents have
value x̃2. Then, the result follows from contradiction since

PX̃|X(x̃|x)

PX̃|X(x̃|x′) >
n/2∏
i=1

e
ε
n/2 = eε.

The case of odd n can be proved by carefully picking the last
respondent’s data as x1, x2 and x̃ in x, x′ and x̃ respectively such
that PX̃|X(x̃|x1) ≥ PX̃|X(x̃|x2).

We now prove the sufficient condition. Let S ⊆ Xn.∑
x̃∈S PX̃|X(x̃|x)∑
x̃∈S PX̃|X(x̃|x′) =

∑
x̃∈S

∏n
i=1 PX̃|X(x̃i|xi)∑

x̃∈S
∏n
i=1 PX̃|X(x̃i|x′i)

≤ en
ε
n = eε

The proof can be easily extended to the case of k curators,
where the necessary condition is that R satisfies ε

kbn/2c -DP for the
respondents and the sufficient condition is that R satisfies ε

kn
-DP for

the respondents.
Supplementing PRAM with an additional random permutation step

can enhance the level of privacy. However, this permutation must
be performed by and synchronized between the curators2, and kept
private from the cloud (or any other attacker) in order to obtain the
privacy enhancement. Hence, the curators must have a secure channel
or other mechanism to obtain a private random permutation. The
following lemma characterizes the privacy gains.

Lemma IV.5. Let d(·, ·) be the norm one distance on the space of
distributions. Let Π : Xn → Xn be a uniformly random permutation
function. Let R : Xn → Xn be a PRAM mechanism governed
by conditional distribution PX̃|X . Let M = R ◦ Π be a privacy
mechanism that first randomly permutes the data and then applies
the PRAM mechanism R.

• Sufficient Condition: If R satisfies ε

b δn
2
c

-DP, then M satisfies
δ-distributional ε-DP.

Proof: Let x,x′, x̃ ∈ Xn be such that d(Tx,Tx′) ≤ δ, and
let {π1, ..., πn!} be the set of possible permutation realizations for

2This synchronization is necessary to preserve joint statistics.



n respondents. The probability that mechanism M maps x into x̃ is
given by

Pr[M(x) = x̃] =
1

n!

n!∑
i=1

PX̃|X(x̃|πi(x)). (3)

Since d(Tx,Tx′) ≤ δ, there exists a permutation π such that π(x)
differs from x′ by at most δn

2
respondents. Thus, we have that

Pr[M(x) = x̃]

Pr[M(x′) = x̃]
=

1
n!

∑n!
i=1 PX̃|X(x̃|πi(x))

1
n!

∑n!
i=1 PX̃|X(x̃|πi(x′))

=

∑n!
i=1 PX̃|X(x̃|πi(x))∑n!

i=1 PX̃|X(x̃|πi(π(x′)))

≤ max
i

PX̃|X(x̃|πi(x))

PX̃|X(x̃|πi(π(x′)))
,

≤ eε

where the last inequality holds since πi(x) and πi(π(x′)) differ by
at most δn

2
respondents, and given that R satisfies ε

b δn
2
c

-DP.

V. AN EXAMPLE MECHANISM

We now present an example realization of the system framework
given in Section II, where the privacy mechanisms are chosen to
satisfy the privacy and utility requirements of Section III. The key
requirements of this system can be summarized as follows:

(I) RAB is a δ-distributional ε-differentially private mechanism.
(II) Helper information is generated by a ε-DP algorithm.

(III) RA and RB are PRAM mechanisms.

Since the perturbed data (X̃, Ỹ) are generated by a δ-distributional
ε-differentially private mechanism, helper information is necessary to
accurately estimate the marginal and joint type. To generate outputs
that preserve different levels of privacy, the curators adopt a multilevel
privacy approach [17]. As shown in Fig. 3, the databases are sanitized
by a two-pass process. The first pass (i.e., RAB,1) takes the true data
(i.e., X,Y) as input and guarantees the respondent privacy while
the second pass (i.e., RAB,2) takes the sanitized output (i.e., X̂, Ŷ)
of the first pass as input and provides distributional privacy. The
helper information is extracted during the second pass so as not to
diminish respondent privacy. The mechanisms are constructed with
the following constraints:

(i) RA,2 and RB,2 are ε
2n

-DP.
(ii) RA,1 and RB,1 are ε

2
-DP.

(iii) RA,1, RA,2, RB,1 and RB,2 are PRAM mechanisms.

By Lemma IV.3, the constraint (ii) implies that RAB,1 is ε-DP
and hence satisfies requirement (II) above3. Note that RA(X) can
be viewed as RA,2(RA,1(X)) and is governed by the conditional
distribution (in matrix notation)

PX̃|X = PX̃|X̂PX̂|X .

Hence, constraint (iii) implies that requirement (III) is satisfied. By
Lemma IV.1, IV.4, the constraint (i) implies that the requirement

3One can view the helper information as obtained from postprocessing
(X̂, Ŷ). The second implication holds due to properties of the privacy axioms
of [13], [14].

(I) is satisfied4. Now that we have shown that privacy requirements
are satisfied, we proceed to show how researchers can compute the
estimated types.

Recall that without presenting helper information, researchers
cannot accurately estimate types due to requirement (I). In this
example, the helper information consists of the conditional types
TX̃|X̂ and TỸ|Ŷ computed during the second pass. By [18], an
unbiased estimate of TX computed from X̃ is given by P−1

X̃|X
TX̃

and the exact types can be recovered by T−1

X̃|X
TX̃. Thus, we have

the following identities and estimators:

TX̂ = T−1

X̃|X̂TX̃, (4)

ṪX = P−1

X̃|X̂TX̂ = P−1

X̃|X̂T−1

X̃|X̂TX̃,

TŶ = T−1

Ỹ|ŶTỸ, (5)

ṪY = P−1

Ỹ |ŶTŶ = P−1

Ỹ |ŶT
−1

Ỹ|ŶTỸ.

Note that the invertiblity of PX̃|X̂ can be guaranteed by curators
when selecting privacy mechanisms and the invertibility of TX̃|X̂
can be guaranteed by sequence manipulation5. The estimation error
in ṪX and ṪY can be computed using the techniques in [19], [18].

Extending the results to compute the joint type presents some
challenges. The matrix form of the conditional distribution of the
collective mechanism RAB is given by PX̃,Ỹ |X,Y = PX̃|X ⊗PỸ |Y
where ⊗ is the Kronecker product [19]. An unbiased estimate of the
joint type is given by

ṪX,Y = P−1

X̃Ỹ |X,YTX̃,Ỹ

= ((PX̃|X̂PX̂|X)⊗ (PỸ |ŶPŶ |Y ))−1TX̃,Ỹ

= (PX̃|X̂PX̂|X)−1 ⊗ (PỸ |ŶPŶ |Y )−1TX̃,Ỹ

= (P−1

X̂|X ⊗P−1

Ŷ |Y )(P−1

X̃|X̂ ⊗P−1

Ỹ |Ŷ )TX̃,Ỹ

= (P−1

X̂|X ⊗P−1

Ŷ |Y )ṪX̂,Ŷ.

The estimation error in ṪX̂,Ŷ can be computed using the techniques
in [19], [18]. Note that the helper information TX̃|X̂ and TỸ|Ŷ can
be used to compute TX̂ and TŶ exactly according to Equation 4
and 5. Simply replacing PX̃|X̂ and PỸ |Ŷ with TX̃|X̂ and TỸ|Ŷ in
the above equations has negligible effect when n is large. Intuitively,
this is because TX̃|X̂ and TỸ|Ŷ can be viewed as sampled versions
of PX̃|X̂ and PỸ |Ŷ , so that the types converge in the mean-squared
sense to the distributions as n grows large.

However, unlike with the marginal types, the joint type TX̂,Ŷ

cannot be recovered exactly, even given the helper information
TX̃|X̂ and TỸ|Ŷ . The reason for this is that, even though
PX̃,Ỹ|X̂,Ŷ(x̃, ỹ|x̂, ŷ) =

∏n
i=1 PX̃|X̂(x̃i|x̂i)PỸ |Ŷ (ỹi|ŷi) holds, the

identity TX̃|X̂ ⊗ TỸ|Ŷ = TX̃,Ỹ|X̂,Ŷ would not necessarily be
satisfied, which would be necessary for exact recovery of TX̂,Ŷ .

4Proof is obvious and omitted. It is not necessary that RA,2 and RB,2 are
ε
2n

-DP as long as RA and RB are ε
2n

-DP. However, conditioning on RA,1,
RB,1, RA,2 and RB,2 preserving as much as information as it can (i.e., they
are in the form of the optimal PRAM suggested by [18]) and RA,1 and RB,1
are exactly ε

2
-DP (i.e. for any c and ε

2
> c > 0 , RA,1 and RB,1 are not

( ε
2
− c)-DP ), one can show that RA,2 and RB,2 has to be ≈ ε

2n
-DP. We

suspect that if RA,1, RB,1 are optimized in any meaningful sense, RA,2 and
RB,2 must be ≈ ε

2n
-DP.

5The invertibility can be guaranteed via adding at most |X | dummy re-
spondents x̂1, . . . , x̂|X|. After perturbing X̂, Alice can choose x̂1, . . . , x̂|X|
and x̃1, . . . , x̃|X| such that T

X̃|X̂ is invertible. Alice can pass this helper
information to researchers without violating respondent privacy.
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Fig. 3. An example mechanism in which Alice and Bob (database curators)
implement randomized responses in 2 passes, the first providing ε-DP to the
database respondents, and the second providing δ-distributional ε-differential
privacy to the empirical distribution of the data.

VI. DISCUSSION

In this paper, we have presented a framework for distributed statis-
tical analysis, in which authorized researchers can obtain, via a cloud
server providing computational and storage resources, the empirical
statistics of distributed databases, while preserving the privacy of the
individual respondents. In addition to a conventional DP requirement
for individual privacy (see Definition III.1), we also consider a
distribution privacy requirement (see Definition III.2) protecting the
aggregate information of the database (i.e., its statistics) from the
cloud server. A key result given in (Lemma IV.4), demonstrating the
stringency of distributional privacy, states that a mechanism providing
distribution privacy requires that – and is implied given that – the
mechanism satisfies individual privacy with a much stronger privacy
parameter. A consequence of this implication is that the overall
privacy of a mechanism must be very strong to provide distributional
privacy. To avoid simultaneously reducing the corresponding utility,
our proposed system adopts a multilevel approach, where a weaker
first round of PRAM that provides individual privacy is followed by a
stronger second round that provides distributional privacy against the
cloud server. Helper information generated from the second round is
provided to the researchers to allow them to overcome the second
round of PRAM and recover database statistics.

Several interesting open problems and avenues of further explo-
ration still remain toward completing and extending this privacy
framework. For ease of exposition, we presented our framework with
two curators and one researcher. However, our framework and results
could be extended to any number of curators and researchers, and
with flexible authorization (e.g., a researcher that is authorized by
Alice but not by Bob). In some preliminary simulations with synthetic
data, we have observed that the helper information enables accurate
reconstruction of the marginal types, however the accuracy of the
joint type reconstructed by the authorized researcher is poor even
with the helper information. Our conjecture is that this is due to the
fact that the matrices PX̃|X̂ and PỸ |Ŷ in the Kronecker Product of
equation (6) are ill-conditioned. Thus, it is still an open problem is to
determine whether the low-rate helper information can allow accurate
reconstruction of the joint type, and if not, what alternative helper
information (if any) would enable accurate joint type reconstruction,
while retaining the privacy of the respondents.
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