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Abstract
Model predictive control has been originally developed for chemical process control, where
plants are expensive, have slow dynamics, and a large number of inputs and outputs. Further-
more, in chemical process control each control system is usually deployed to a single plant,
and hence can be specifically tuned. In recent years there has been a growing interest towards
MPC in other industries, such as automotive, factory automation, and aerospace, where the
plants have faster dynamics, fewer inputs and outputs, reduced costs, and each controller is
deployed to a large number of plants, i.e., it is deployed in large volumes. These applications
also presents several classes of nonlinearities. While there are several benefits for using MPC
in these industries, the difference in the plant characteristics and in production volume tar-
gets pose several challenges to the widespread use of MPC that are still partially unsolved.
In this paper we discuss the benefits of MPC in large volumes industries, by using examples
from automotive, aerospace, and mechatronics that also present several specific nonlinearities
that can be efficiently handled by MPC.We then discuss the unsolved challenges for these
application domains, and the related ongoing research.
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Furthermore, in chemical process control each control system is usually deployed to a single
plant, and hence can be specifically tuned. In recent years there has been a growing interest
towards MPC in other industries, such as automotive, factory automation, and aerospace, where
the plants have faster dynamics, fewer inputs and outputs, reduced costs, and each controller
is deployed to a large number of plants, i.e., it is deployed in large volumes. These applications
also presents several classes of nonlinearities. While there are several benefits for using MPC
in these industries, the difference in the plant characteristics and in production volume targets
pose several challenges to the widespread use of MPC that are still partially unsolved. In this
paper we discuss the benefits of MPC in large volumes industries, by using examples from
automotive, aerospace, and mechatronics that also present several specific nonlinearities that
can be efficiently handled by MPC. We then discuss the unsolved challenges for these application
domains, and the related ongoing research.
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1. INTRODUCTION

Model predictive control (Garcia et al. [1989]) has been
developed primarily for chemical applications, to control
the transients of dynamic systems with hundreds of inputs
and outputs, subject to constraints (Qin and Badgwell
[2003]). Such applications are characterized by slow dy-
namics, presence of expert human supervision, and ex-
pensive plants, causing the cost of the control system to
be practically irrelevant. Also, each controller is usually
deployed into a single plant, which means that each control
design is customized and specifically tuned.

In the last 15 years, due to the increase of the available
computational power in microprocessors, MPC has been
investigated in different industries, such as automotive,
aerospace, and factory automation/robotics, where each
control design is deployed in hundreds, or even thousands,
of final products. Here we refer to these domains as “large
volumes” application domains. The applications in large
volumes domains differ from the ones in chemical process
control for system size, significantly smaller, dynamics,
significantly faster, control system supervision, unsuper-
vised, and plant cost, significantly reduced, meaning that
the control system has to have low cost. Another major
difference is that, due to the large number of plants where
it is deployed, the controller cannot be tuned for a single
plant, and hence needs to be flexible and robust to accom-
modate the plant-to-plant differences.

While the availability of cheap powerful processors and
the development of new MPC algorithms address some of
the problems in large volumes applications, for some cases,
other problems are yet to be solved and limit still today
the widespread use of MPC in favor of traditional control
strategies, like PIDs. Some of these problems are the com-
putational complexity of the algorithm and the induced
microprocessor cost, the need of robust calibration, the
applicability to limited classes of dynamics, the lack for
guaranteed robustness and bounded computational load.
On the other hand there are multiple reasons for the large
volumes industries to look with increased interest at MPC,
such as the performance optimization, the enforcement of
constraints on outputs and inputs, the ease of design for
multivariable systems, the capability of dealing with time
delays and future information, and the capability of easily
handling certain nonlinearities.

In this paper we discuss the potential benefits and the
unsolved challenges of MPC in large volumes applications.
After reviewing the fundamentals of MPC in Section 2,
in Section 3 we analyze some of the potential benefits
by using examples developed in automotive, aerospace,
and mechatronics. In Section 4 we discuss some of the
remaining challenges, and the related ongoing research.
Conclusions are summarized in Section 5.

2. FUNDAMENTALS OF MPC

The development of model predictive control (Garcia et al.
[1989]) is an attempt to counteract some of the limitations



of classical optimal control. With respect to indirect op-
timal control, MPC improves robustness by implementing
feedback through receding horizon planning. With respect
to LQR feedback, MPC explicitly accounts for plant and
control constraints, while restricting the cost function
integration to a finite interval to make the associated
optimization problem computationally tractable.

Model predictive control is based on the iterative receding
horizon solution of a finite horizon optimal control problem
formulated basing on a model of the system dynamics,
plant and control constraints, and performance objective.
At any control cycle the MPC controller: (i) sets a finite
horizon optimal control problem using the current state
estimate as initial state; (ii) solves the optimal control
problem obtaining the optimal input sequence over the
future horizon; (iii) applies the computed optimal input
sequence until new information on the system is available.
Then, the process is repeated from (i).

The general MPC optimal control problem is

min
U(t)

F (x(N |t)) +

N−1
∑

k=0

L(x(k|t), y(k|t), u(k|t)) (1a)

s.t. x(k + 1|t) = f(x(k|t), u(k|t)) (1b)

y(k|t) = h(x(k|t), u(k|t)) (1c)

xmin ≤ x(k|t) ≤ xmax, k = 1, . . . , Nc (1d)

ymin ≤ y(k|t) ≤ ymax, k = 0, . . . , Nc (1e)

umin ≤ u(k|t) ≤ umax, k = 0, . . . , Ncu (1f)

u(k|t) = κ(x(k|t)), k = Nu, . . . , N − 1, (1g)

x(N |t) ∈ XN (1h)

x(0|t) = x(t) (1i)

where t is the discrete-time index, and v(h|t) denotes
the value of v predicted h steps ahead from t, based on
information up to t. Equations (1b), (1c) are the discrete
time model of the system dynamics with sampling period
Ts, where x ∈ R

n, u ∈ R
m, y ∈ R

p are the system state,
input, and output, respectively. The model is initialized at
the current state estimate x(t) by (1i). The optimizer in (1)
is the control input sequence U(t) = (u(0|t), . . . , u(N −
1|t)), where N is the finite problem horizon. The cost
function (1a) is composed of a stage cost L, and a terminal
cost F . The constraints on states and outputs, and inputs
are enforced along the horizons Nc and Ncu, respectively.
The control horizon Nu is the number of optimized steps,
before terminal control law (1g) is applied. The terminal
constraint (1h) forces the state at the end of the horizon
to belong to the set XN ⊆ R

n.

Problem (1) is formulated as the mathematical program

min
U(t)

J (U(t), x(t)) (2a)

s.t. G(x(t), U(t)) ≤ 0 , (2b)

which is often non-convex, and hence difficult to solve
for the global optimum. However, for particular classes
of systems, (2) becomes computationally tractable. For
linear systems with linear constraints and quadratic cost,
(2) reduces to the quadratic program

min
U(t)

U ′(t)HU(t) + x(t)F ′U(t) (3a)

s.t. GU(t) ≤ W + Sx(t), (3b)

that under mild assumptions on (1) is convex, and hence
can be solved efficiently. Tractable formulations can be
also achieved for linear systems with linear constraints and
linear cost functions (Bemporad et al. [2002a]), and linear
hybrid systems (Bemporad and Morari [1999]).

It is relatively evident from (1) that MPC results in a
(nonlinear) static state-feedback,

u(t) = gMPC(x(t)) , (4)

since at every cycle the only changing element in (1) is the
initial state (1i). If the feedback law (4) can be computed,
the control algorithm is simplified, since (2) does not
need to be solved at every control cycle. Furthermore, by
constructing the closed-loop system

x(t + 1) = f(x(t), gMPC(t)) , (5)

the control-theoretic properties can be analyzed.

While the explicit feedback law (4) is impossible to com-
pute for the general case, in Bemporad et al. [2002b] it was
shown that that for linear systems with linear constraints
and quadratic cost, (4) is the piecewise affine function

u(t) = Fi(t)x(t) + Gi(t) (6a)

i(t) ∈ {1, . . . , s} : Hi(t)x(t) ≤ Ki(t), (6b)

which is easy to synthesize even in simple microprocessors,
although it may requires a significantly large amount of
memory and computations to execute, when s is large.

3. POTENTIAL BENEFITS

In this section we discuss the MPC benefits in large vol-
umes applications, in particular, performance optimiza-
tion, handling of multivariable systems, time delay, future
information, and enforcement of constraints. We discuss
this benefits by introducing examples where these capabil-
ities are highlighted. Since these are real-world examples,
the plants show some specific nonlinearities, such as time-
varying constraints, delays, switching behavior, and we
discuss how MPC efficiently handle these.

As mentioned, the MPC feedback law (4) is a static
(state) feedback. The testing and verification procedures
for static control laws are significantly simpler than for
dynamic ones. For MPC, the output of the controller
can be tested by using static test vectors (basically, the
system state), as opposed to dynamic feedback laws, e.g.,
adaptive control, which require test vectors composed of
system state histories. The simpler verifiability increases
the confidence of the engineers in the correctness of the
algorithm, thus simplifying the technology transfer from
R&D laboratories to products.

3.1 Performance objective optimization

An appealing element of MPC is that cost function (1a)
is optimized over a future horizon. Thus, in principle it is
possible to obtain optimal/close-to-optimal performance
by encoding the performance specification of the closed-
loop system in (1). However, in order to obtain a computa-
tionally feasible optimization problem, the choices for (1a)
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Fig. 1. Effects of MPC energy manager on an interval of
the US06 (Highway) cycle. Generator power (solid),
battery power (dash dot), motor power (dash).

are restricted, and it is not easy to obtain a cost function
that directly encodes the desired performance. However,
the optimizing approach of MPC can still be beneficial
through indirect principles.

Recently, there has been a significant interest in the auto-
motive industry in energy management of Hybrid Electric
Vehicles (HEVs). Among other techniques, MPC has also
been applied to this problem. In Ripaccioli et al. [2009],
Borhan et al. [2012] controllers that directly optimize the
explicit performance criterion, i.e., the fuel consumption,
were designed. The authors obtain interesting results, but
the complexity of the controllers is prohibitive for the
application, since a long horizon is needed, and nonlinear,
linear-time varying, and hybrid models are involved. These
limitations are overcome in Di Cairano et al. [2011] where
an indirect performance objective is applied. Instead of
minimizing the fuel consumption, the MPC controller was
minimizing the engine transient aggressiveness, hence min-
imizing also the efficiency losses. The controller is compu-
tationally feasible and it was implemented in a production-
like environment in a prototype Series HEV. The con-
trolled achieved improvements in overall fuel economy in
the order of 5% with respect to advanced base strategies,
and very close to the (theoretical) optimal ceiling.

An example of the controller behavior is reported in
Figure 1, where a part of the simulation of the city drive
cycle for the controller in closed-loop with an industry-
grade high-fidelity complete vehicle simulation model is
reported. The generator power, battery power, and motor
power are reported, where for the Series HEV

Pwh(t) = ηwh(t)Pmot(t), (7a)

Pmot(t) = ηmot(t)(Pgen(t) + Pbat(t)), (7b)

Pgen(t) = ηgen(t)Peng(t), (7c)

Pwh is the power at the wheels, requested by the driver,
Pmot is the motor power, which is the unique source of
traction and is powered through a bus from battery and
generator powers Pbat, Pgen, respectively, and where the
generator converts the whole engine power Peng. The vari-
ables ηwh, ηmot, ηgen are the efficiencies of driveline, motor,
and generator. In Figure 1, while the motor power changes
aggressively, the engine power variations are smoothed
by the MPC using the battery, while still enforcing con-
straints on battery charge and battery power.

3.2 Design for MIMO systems

In contrast with many classical control design techniques,
MPC allows to design control systems for multi-input
multi-objective 1 (MIMO) systems with the same com-
plexity for the engineer than for single-input single-
objective (SISO) systems. In MIMO systems, MPC tends
to provide significant improvements in performance with
respect to classical techniques, since with more degrees
of freedom, the use of an optimal criterion rather than a
hands-on gain calibration allows to achieve higher perfor-
mance over a larger range of operating conditions.

A practical example of this was demonstrated in Di
Cairano and Tseng [2010] where MPC was used to coor-
dinate active front steering (AFS) and differential braking
system (DBS) to improve vehicle stability and cornering
control. The control system has two actuators (AFS, DBS)
and two objectives (vehicle stability and cornering per-
formance). The problem is particularly complex because
both AFS and DBS are subject to constraints, and the
vehicle dynamics are nonlinear, and approximated by the
piecewise affine system

x(t + 1) = Ai(t)x(k) + Bi(t)u(t) + fi(t) (8a)

i(t) ∈ {1, . . . , s} : Hi(t)x(k) ≤ Ki(t) (8b)

where the state is composed of the tire slip angles and
vehicle steering angle x = [αf αr δ]′ the control inputs
are the steering angle rate and yaw moment provided by
the DBS, u = [ϕ Ym]′. The steering angle is the sum of
the AFS actuator and the driver steering, δ = δdrv + δAFS.
Model (8) is obtained by approximating the tire forces as
piecewise affine functions of the slip angles.

Figure 2 shows experimental data from a vehicle stabiliza-
tion test where while driving in circle at an approximately
constant yaw rate, drift is induced by stepping on the
accelerator pedal. The drift events are shown by the pos-
itive yaw rate peaks. When drifts occur, the driver-assist
system actuates AFS and brakes to countersteer (see the
negative yaw rate peaks), so that the vehicle is returned to
a stable condition. MPC takes advantage of the actuator
differences. The AFS is actuated only to countersteer, due
to its dynamics, while the DBS is actuated first to stabilize
the vehicle, then, in the opposite direction, to rapidly
resume yaw rate tracking.

3.3 Time delays and future information

MPC can take into account any available future informa-
tion along the prediction horizon. This proves to be very
important for reference tracking problems and for systems
with delays or non-minimum phase zeros.

The nonlinearity due to time delay is particularly signifi-
cant in the regulation of the engine speed while idling. Idle
speed is controlled by modulating engine airflow and spark
timing, where the airflow-to-torque generation delay is
particularly long. The dynamics are described by (Hrovat
and Sun [1997]),

Y (S) = Gair(s)e
−δasUair(s) + Gspk(s)e

−δssUspk(s) , (9)

1 We use here the word Objective rather than Output in accordance
with the optimization nature of MPC.



5 10 15 20 25
−0.2

0

0.2

0.4

0.6

5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

r
,
r̂

[r
a
d
/
s]

α
f
,
α

r
[r

a
d
]

t [s]

t [s]

(a) Upper plot: Yaw rate reference (dash) and yaw rate
(solid). Lower plot: Slip angles (solid) and saturation
angles (dash), front in blue, rear in black.

5 10 15 20 25
−1000

−500

0

500

1000

5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

Y
[N

m
]

t [s]

t [s]

δ
A

F
S
,

δ
d
r
v

[r
a
d
]

(b) Upper plot: AFS actuator steering angle (solid),
driver steering angle (dash). Lower plot: Yaw moment
from differential braking.

Fig. 2. Experimental validation of the MPC-based AFS-
DBS control in a vehicle stability experiment.

where Gair(s), Gspk(s) are second order functions from
the corresponding input (airflow and spark timing) to the
engine speed (Y ), Uair, Uspk are the airflow and spark
timing control inputs, and δa, δs are the delay in the
corresponding channels, with the first significantly larger
than the second one (e.g., 120ms vs 15ms).

Since MPC predicts the system dynamics along a future
horizon, the effects of the delay are compensated for. Thus,
the controller bandwidth can be increased above the limit
that causes instability in a classical (causal) controller. In
Figure 3 we show the performance of a baseline controller
(PID-type) controlling both channels, of a single input
MPC controlling the airflow with the baseline controller
on the other channel, and of a multivariable MPC. We
consider a disturbance rejection test, where a large torque
load from power-steering hits at approximately t = 10.5s.
It can be seen that indeed even the single input MPC
greatly improves the performance, which is due to the
capability of counteracting the time-delay.

By acting more aggressively on the airflow without losing
stability, the authority of the spark modulation can be
safely reduced and as a consequence the engine can run in
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nominal conditions closer to the optimal efficiency point
thus reducing fuel consumption Di Cairano et al. [2012b].

Other applications were the MPC behavior has been useful
are the vehicle stability control described in Section 3.2,
where the dynamics associated to the understeering vehicle
(front tire force saturated) are non-minimum phase, and
for engine speed deceleration control (Di Cairano et al.
[2012]) where the desired deceleration rate is known, so
that the tracking performance is improved by using a first
order model of the reference dynamics

3.4 Enforcement of constraints

Besides the optimization capabilities, MPC is investi-
gated for its capability of handling input and, especially,
state constraints. Due to the use of a prediction hori-
zon, MPC usually achieves better performance than other
constrained control techniques such as reference gover-
nor (Gilbert and Kolmanovsky [2002]).

Indeed, MPC can handle complex constraints involving
combinations of states and inputs. In (Di Cairano et al.
[2007]) it was shown how MPC can be designed to enforce
soft landing in an electromagnetic actuator for engine valve
control. By defining the constraints

−ε − β(d − x) ≤ ẋ ≤ ε + β(d − x) , (10)

that restrict the admissible velocity (ẋ) to reduce as
the moving armature position (x) gets close to the coil
(distance d from the origin), soft landing is enforced.
Parameters β and ǫ specify the constraints so that these
are not restrictive when the coil is far from the armature,
while they restrict the velocity range, when the coil is close.

The approach has been recently extended in (Park et al.
[2011]) to control the proximity maneuvering and docking
of a spacecraft to a rotating target. In this case, besides
the soft landing constraints, the MPC controller must
maintain the spacecraft within the Line-of-Sight cone of
the target sensors.

Since the target is rotating, such cone is rotating as well,
and the LoS constraints are mathematically defined by
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sin(ϕ(t) + γ)

(rp − rtol) sin γ
δx(t) −

cos(ϕ(t) + γ)

(rp − rtol) sin γ
δy(k) ≥ 1

−
sin(ϕ(t) − γ)

(rp − rtol) sin γ
δx(t) +

cos(ϕ(t) − γ)

(rp − rtol) sin γ
δy(t) ≥ 1

cos ϕ(t)

rp sin γ
δx(t) +

sin ϕ(t)

rp sin γ
δy(t) ≥ 1 ,

(11)
where δx, δy are the spacecraft relative coordinates with
respect to the target in Hill’s frame, ϕ is the angle of the
docking port in the frame, γ is the half of the LoS cone
angle, rp and rtol are physical parameters of the target.
Constraints (11) are nonlinear and a linear time-varying
approximation is applied.

Figure (4) shows the trajectories from different initial
conditions for a spacecraft approaching a rotating platform
within the (rotating) LoS cone. The results of (Park
et al. [2011]) show that the capability of MPC to enforce
constraints coupled with the use of future information
allows to achieve improved performance. In particular it
was shown in simulations that the fuel consumption of the
docking maneuver can be reduced by up to 20%.

4. OPEN CHALLENGES

Despite the many benefits of MPC strategy, some chal-
lenges remain to limit its use in large volumes applica-
tions. These are tightly related to the intrinsic differences
between large volumes applications and chemical process
control, for which MPC was developed. While in Section 3
several specific classes of nonlinearities were successfully
addressed (delays, switches, varying constraints), for gen-
eral nonlinear plants these challenges are even harder.

4.1 Applicability: linear, hybrid, and nonlinear systems

While the theory of MPC is well established (Mayne et al.
[2000]) even for general nonlinear systems, its applicability
is still mostly restricted to linear systems subject to lin-
ear constraints and linear/quadratic cost. However, some

applications have been developed for hybrid systems with
(piecewise) linear continuous dynamics and for switched
systems (Geyer et al. [2008], Borrelli et al. [2006], Di
Cairano et al. [2007], Bemporad et al. [2010], Di Cairano
and Tseng [2010], Di Cairano et al. [2012a]).

In Di Cairano et al. [2007] hybrid MPC was applied to
control an electromagnetic actuator. By decoupling me-
chanical and electromagnetic dynamics by feedback lin-
earization, and by approximating the (non-convex) mag-
netic force constraint

0 ≤ Fmag(k) ≤
kai2

(x(k) − d + kb)2
, (12)

by a set of piecewise linear constraints

0 ≤ Fmag(k) ≤ rix(k) + qi if x(k) ∈ [x̄i, x̄i+1], (13)

the control law can be explicitly computed and meet strin-
gent chronometric requirement (sampling period 0.5ms).

The vehicle stability control system discussed in Sec-
tion 3.2 was initially designed by hybrid MPC (Di Cairano
et al. [2012a]), while the final implementation was a
switched MPC, where a piecewise affine system with frozen
mode

x(h + 1|k) = Ai(k)x(h|k) + Gi(k) (14a)

i(k) ∈ {1, . . . , s} : Hi(k)x(k) ≤ Ki(k), (14b)

is used as prediction model. The switched MPC controller
could be implemented and executed in vehicle tests with
sampling period 50ms. In general, hybrid MPC based on
mixed-integer programming is complex and slow. The last
problem is somewhat reduced by the work in (Di Cairano
et al. [2008]), but still hybrid MPC seems to be mostly
inapplicable to (general) fast systems.

While research is ongoing on general approaches to ap-
ply MPC to nonlinear dynamics (Ohtsuka [2004], Houska
et al. [2011]), alternative approaches are based on find-
ing parametrization of the system dynamics that are lin-
ear/closer to linear. An example is the transformation
applied for engine speed deceleration in Di Cairano et al.
[2012]. The indicated engine torque (Mind) is described by
the product of the base airflow torque (Mbase) and the
torque ratio (κ), Mind = κ(t − δspk) · Mbase(t − δair), both
of which are affected by time-delays (δair, δspk) and box-
constraints. In Di Cairano et al. [2012] the simple multi-
plicative nonlinearity x(t + 1) = x(t)u(t), where u ∈ [u u],
is converted for x > 0 into

x(t + 1) = v(t) (15a)

vx(t) ≤ x(t)≤ vx(t) (15b)

hence converting a nonlinear, box-constrained system, into
a linear, linearly constrained system. Thus, a deceleration
MPC controller that could executed at more than 60Hz
was designed. A test of stationary deceleration in drive is
shown in Figure 5, where MPC enforces the constraints
and achieves high performance tracking.

Major researches is ongoing to apply MPC to uncertain
and stochastic systems. Advances in these domains have
been achieved in Langson et al. [2004], Mayne et al.
[2011], Bemporad and Di Cairano [2011], Bernardini and
Bemporad [2009], Bichi et al. [2010], Chatterjee et al.
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[2011]. Although not yet mature enough for industrial
applications, research efforts are promising.

4.2 Closed-loop properties

From a control theory perspective it is still rather difficult
to analyze and enforce stability and robustness of the MPC
controllers. Several conditions have been obtained for
designing MPC controllers using terminal set and terminal
cost (Mayne et al. [2000]), but these usually require
long horizons, and hence tend to excessively increase the
computational requirements. Thus, they are often not
viable for the class of applications discussed here.

When the explicit feedback law (4) is known, the closed
loop system (5) can be analyzed a posteriori, and the
controller design updated, if needed. For linear systems
with linear-quadratic MPC, the closed-loop system (5) is
the piecewise affine system

x(t + 1) = (A + BFi(t))x(k) + Gi(t) (16a)

i(t) : Hi(t)x(t) ≤ Ki(t), (16b)

whose stability can be studied (a posteriori) globally,
by piecewise quadratic Lyapunov functions, or locally,
by eigenvalues analysis. Indeed, when (16) is known,
robustness margins can also be studied.

It is certainly more complex to guarantee stability by
design, without resorting to long horizons. An approach
presented in Scokaert et al. [1999] is based on including a
control Lyapunov function

V(f(x(0|t), u(0)) ≤ ρV(x(0|t)), (17)

where 0 < ρ < 1, as an additional constraint in the
optimal control problem (1). Indeed, when the problem re-
mains feasible the system is enforcing a control Lyapunov

function and hence is asymptotically stable. However, to
design (17) such that (1) with (17) remains feasible, is non-
trivial. Recently, in Lazar [2009] a design method based
on infinity-norm flexible Lyapunov functions has been pro-
posed. In this implementation, (17) is formulated by linear
constraints, and can be relaxed to maintain feasibility.
Also, if a 1-step horizon is used, for general input-affine
nonlinear systems the approach only requires the solution
of a linear program. This technique has achieved inter-
esting performance in automotive applications, including
driveline oscillation control (Caruntu et al. [2011]) and
magnetic valve control (Hermans et al. [2009]).

The application of control Lyapunov functions to hybrid
systems has been recently proposed in Di Cairano et al.
[2008] resulting in the so called hybrid Lyapunov func-
tions, which allow for the synthesis of stabilizing dynamic
controllers based on MPC for hybrid systems.

MPC designs with guaranteed robustness based on min-
max approaches (Kothare et al. [1996], Magni et al.
[2003], Bemporad et al. [2003]) and tubes (Langson et al.
[2004], Limon et al. [2010], Mayne et al. [2011]) have been
proposed. Although often too complex for the applications
considered here, significant progresses have been achieved.

4.3 Computational load

A major drawback of MPC with respect to more classical
control schemes (i.e., PID) is the significant amount of
computations required to solve (1). When used in large
volumes applications, likely inexpensive and with limited
microprocessor capabilities, such an amount of computa-
tions may exceed the availability. This also considering
that the majority of large volume applications have signif-
icantly faster dynamics than the chemical ones.

The use of multiparametric programming to compute the
explicit feedback law (6) allows to apply MPC to systems
with relative high control bandwidth (up to 100Hz) and
with low power processors (10–100MHz and 10–100Kb
ROM memory). Major advantages of explicit MPC are
that very little active memory (RAM) is required, and
that the worst case maximum number of computations can
be bounded, as well as the closed-loop system (5) can be
computed and analyzed. In fact, most of the applications
described here were synthesized by explicit MPC.

However, explicit MPC has the intrinsic limitation that
the number of regions (and hence memory occupancy
and worst case FLOPS) increases exponentially with the
number of constraints. Thus in certain conditions the
usage of customized solvers that may take advantage of
the MPC structure is still to be preferred. Recently, several
techniques have been proposed to exploit the receding
horizon nature of MPC, such as Ferreau et al. [2008], where
active set with warm-start is used, and Wang and Boyd
[2010], where interior point methods are used.

When we consider applications in factory automation,
precision engineering, and even certain applications in
automotive components, bandwidths above 1kHz in inex-
pensive hardware are desired. Thus, hardware solutions
based on FPGA and ASIC, such as in Bleris et al. [2006],
Johansen et al. [2007], Bemporad et al. [2011], Wills et al.
[2012], are investigated.



4.4 Design and tuning procedures

A reason for the success of PID controllers are the simple
and intuitive calibration procedures that required little
control theory expertise. Simple calibration techniques
still lack for MPC, which is critical for instance in the
automotive industry, where the final controller is usually
not calibrated by an expert control engineer.

MPC design allows for several decisions parameters: (i) the
complexity of the prediction model, (ii) the cost function,
(iii) the constraints, (iv) the length of the horizon. Some of
these choices are (partially) dictated by the specifications
((ii), (iii)), and some by the physics of the plant ((i),
(iv)). However, there are considerable degrees of freedom
in the final choices. In Di Cairano et al. [2008], Di Cairano
et al. [2012b] the authors discuss a procedure to perform
those decisions, that is appropriate for several automotive
problems, and has been applied in the later works (Di
Cairano and Tseng [2010], Di Cairano et al. [2011]).
However, further investigations are needed to optimize and
streamline such procedures.

The cost function tuning process needs to be defined as
well, since the relation between the cost function param-
eters (especially the weighting matrices) and the closed-
loop performance, is difficult to characterize. To this end
some approaches have been proposed in Al-Ghazzawi et al.
[2001], Garriga and Soroush [2008], Di Cairano and Be-
mporad [2010]. The approach proposed in Di Cairano
and Bemporad [2010] is based on the inverse design from
an existing (local) controller, that provides the desired
performance around the equilibrium. By solving the BMI

min
K,Q,R,P

J(K, Q,R, P ) (18a)

s.t. Q ≥ 0, P ≥ 0, R ≥ σI (18b)

(R + S ′QS)K + S ′QT = 0 (18c)

κ0 = K, (18d)

where K = [κ′
0 . . . κ′

N−1]
′, and J : R

Nm×n × R
n×n ×

R
m×m × R

n×n → R is an (arbitrary) objective function
and H = (R + S ′QS), F = T ′QS, the MPC matrices are
designed such that the MPC behaves like the desired con-
troller when the constraints are not active. However, the
MPC controller provides optimal performance and semi-
global asymptotic stability also when the constraints are
active. In Di Cairano and Bemporad [2010] several proce-
dures are proposed to solve (18). Inverse-design approaches
are being investigated also by other researchers (Hartley
and Maciejowski [2009]).

5. CONCLUSIONS

Model predictive control provides several features that
are extremely desirable for industries with large volumes
applications, such as automotive, factory automation, and
aerospace. However, MPC still faces several challenges,
since these applications are significantly different from
the ones MPC was developed for, namely those arising
in chemical process control. We have illustrated benefits
and open challenges of MPC for large volumes applications
through applications in automotive, mechatronics, and
aerospace, and we have provided reference to related
relevant research aimed at overcoming such challenges.
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