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Abstract

In satellite image processing, pan-sharpening is the image fusion process in which a low resolu-
tion (LR) multi-spectral (MS) image is sharpened using the corresponding high resolution (HR)
panchromatic (Pan) image to obtain a HR MS image. In this paper we propose a novel pan-
sharpening method which combines the ideas of classical wavelet-based pan-sharpening with
recently developed dictionary learning (DL) methods. The HR MS image is generated using
wavelet-based pan-sharpening, regulated by promoting sparsity with respect to a dictionary. The
dictionary is obtained using DL on the multi-scale wavelet tree vectors of the image to be pan-
sharpened. A significant advantage of our approach compared to most DL-based approaches is
that it does not require a large database of images on which to train the dictionary. Experiments
on degraded satellite images demonstrate that our method significantly reduces color distortions
and wavelet artifacts compared to the state of the art.
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ABSTRACT

In satellite image processing, pan-sharpening is the image fusion
process in which a low resolution (LR) multi-spectral (MS) image
is sharpened using the corresponding high resolution (HR) panchro-
matic (Pan) image to obtain a HR MS image. In this paper we
propose a novel pan-sharpening method which combines the ideas
of classical wavelet-based pan-sharpening with recently developed
dictionary learning (DL) methods. The HR MS image is generated
using wavelet-based pan-sharpening, regulated by promoting spar-
sity with respect to a dictionary. The dictionary is obtained using
DL on the multi-scale wavelet tree vectors of the image to be pan-
sharpened. A significant advantage of our approach compared to
most DL-based approaches is that it does not require a large database
of images on which to train the dictionary. Experiments on degraded
satellite images demonstrate that our method significantly reduces
color distortions and wavelet artifacts compared to the state of the
art.

1. INTRODUCTION

A large number of optical satellite imaging systems produce two
kinds of imagery: panchromatic (Pan) and multi-spectral (MS). Pan
imagery typically provides high spatial resolution but no color in-
formation, whereas MS imagery typically provides color spectrum
information but reduced spatial resolution. However, for a large va-
riety of applications, high resolution (HR) MS images are preferred.
These HR MS images—not readily available from the satellite—can
only be obtained by fusing the satellite Pan and MS images. This
fusion process is referred to as pan-sharpening.

In the past decades, a large number of pan-sharpening methods
have been developed. These methods can be divided into four cate-
gories: Intensity-Hue-Saturation (IHS) transform based ones, Princi-
pal Component Analysis (PCA) based ones, arithmetic combination
based ones and wavelet-based ones [1, 2]. Generally, pan-sharpened
images generated by methods in the first three categories have good
spatial resolution, but distorted color spectrum [3]. On the other
hand, images generated using wavelet-based methods exhibit rela-
tively better color spectrum, but produce wavelet-induced artifacts.
A variety of techniques have been developed to improve spatial and
spectral accuracy, each specific to a particular fusion technique or
image set [4].

Recent developments in compressive sensing, sparse represen-
tations and dictionary learning (DL) have provided new tools to ad-
dress this problem [5, 6]. These approaches assume that the HR MS
image is sparse in some basis or dictionary. The HR MS image is
recovered using sparsity-promoting optimization, subject to data fi-
delity constraints derived from the available LR MS and HR Pan
images. The choice of basis or dictionary is often critical in the per-
formance of such techniques; it has been shown that a large number

of sparsity-based approaches can benefit significantly from an appro-
priate sparsity-inducing dictionary learned from available data [7].

In this paper, we propose a novel pan-sharpening method which
combines the ideas of classical wavelet-based pan-sharpening and
dictionary learning. Specifically, our approach learns a dictionary in
the wavelet domain and uses that dictionary in a sparsity promoting
optimization problem to produce the HR MS image. In contrast to
typical DL approaches, we learn the dictionary from a single HR Pan
and LR MS image—the one to be pan-sharpened. Thus we do not
require prior training on expensive and scarce large image datasets,
as typically required by a number of classical DL approaches. Our
work is motivated by recent results on multi-scale DL [8], as well
as our prior work on pan-sharpening using image-domain DL [9].
Our earlier work has already demonstrated the potential of DL with
significant improvements over the state of the art; the present paper
improves these results.

Our approach improves standard wavelet-based pan-sharpening
methods. These methods perform a discrete wavelet transform on the
MS and Pan images to extract the low frequency coefficients from
the MS image and the high frequency coefficients from the Pan im-
age. These coefficients are then combined to create a fused wavelet
representation. The final pan-sharpened image is generated by per-
forming the inverse wavelet transform on the fused representation.

Our method re-visits how the wavelet coefficients are fused to
form the pan-sharpened image. Instead of simply combining the co-
efficients in a naive way, we regulate the fusion by assuming that
each wavelet-tree vector of the fused map can be sparsely repre-
sented by dictionary learned from the wavelet-tree vectors of the
Pan image. The main principle in this assumption is that a dictio-
nary learned from the wavelet transform of HR Pan image captures
the structure of the image much better than the wavelet transform
itself. The final coefficients are both consistent with the data and
sparse in the learned dictionary, yielding a HR MS image with fewer
color distortions and fewer artifacts.

The following sections provide more details on our method as
well as experimental results validating our approach.

2. DICTIONARY LEARNING BASED PAN-SHARPENING

2.1. Sparse representations and dictionary learning

Natural images are compressible in the DCT or a wavelet domain,
i.e., they can be sparsely represented with little distortion using the
DCT or a wavelet basis. This structural property is the foundation
for a large number of image acquisition, processing and compression
methods. A significant advantage in using these transformations to
representing a signal is their computationally efficient implementa-
tion. However, they do not always provide the best representation of
the signal structure.



Recent work on dictionary learning (DL) has shown that a dic-
tionary learned from example training data may result in even sparser
representations for signals in a particular class or domain, compared
to a dictionary based on a pre-determined basis [7]. This domain-
specific dictionary is able to capture in the learning process the sim-
ilarities in the structure of the training data and exploit this structure
in sparsely representing the signal.

Typical sparse approximation problems consider a signal y ∈
Rn×1 and attempt to represent it using y = Dα, where D ∈ Rn×k

is the dictionary that contains the atoms as its columns and α ∈
Rk×1 is a sparse representation vector. The sparsity of α captures
the structure of the signal with respect to the dictionary: the linear
combination of a few atoms from D is able to represent the signal y
with small error. One approach in determining the sparse approxi-
mation of a signal is to solve the optimization

α̂ = argmin
α
‖y −Dα‖2 s.t. ‖α‖0 ≤ T0, (1)

where the `0 norm counts the number of non-zero coefficients of the
representation and T0 is the desired sparsity level. This optimiza-
tion can be solved under certain conditions on the dictionary using
a variety of methods such as Iterative Hard Thresholding (IHT) or
CoSaMP [10, 11].

Dictionary learning uses a training set of signals to learn a dic-
tionary D that sparsifies the data. The underlying assumption is that
other signals (testing data) in the same domain exhibit similar struc-
ture and will also produce good sparse representations in the learned
dictionary. All training signals are assumed to be sparsely repre-
sentable under D, each with a different linear combination of few
atoms. Using the same notation, DL attempts to optimize

argmin
D,α
‖Y −Dα‖2F s.t. ∀ l, ‖αl‖0 ≤ T0, (2)

where Y is a matrix with the training data, α is a sparse matrix with
αl representing the lth data point, and || · ||F denotes the Frobenius
norm. This is not a convex problem; most DL algorithms alternate
between sparsely representing the training data using a given dictio-
nary, and then updating that dictionary given the sparse representa-
tion of the data, until convergence. The best known such algorithm
is the K-SVD [7].

2.2. Multi-scale wavelet dictionary

We aim to perform pan-sharpening using only one LR MS image and
the corresponding HR Pan image by learning an appropriate dictio-
nary. Our earlier work operates in the image-domain, learning a dic-
tionary using small image patches [9]. Instead, in this work we learn
a wavelet-domain dictionary using multi-scale wavelet tree vectors.

To build the dictionary atoms we consider a quad-tree structure
with different sized blocks at each wavelet decomposition level. All
levels are used to make up one joint global dictionary in a manner
similar to [8]. We assume the Pan image has N times the spatial
resolution and size of the LR MS image, and the LR MS image is
composed of M spectral bands. Furthermore, we treat each color-
band of the MS image independently.

We first interpolate the LR MS image to the size of the Pan
image and then register the MS image with the Pan image using
sub-pixel registration methods [12]. A K-level wavelet decomposi-
tion is performed on both the Pan and the interpolated MS images
to form the wavelet-tree representation of the image. From this
decomposition we obtain the detail coefficients at every scale to
build the dictionary atoms. Each atom is composed of the coeffi-

cients in a small patch of the detail coefficients at the coarsest scale,
together with the detail coefficients in the corresponding larger
patches from the finer scales: xPan = [(xLPan)

T (xHPan)
T ]T

and xMS = [(xLMS)
T (xHMS)

T ]T , where the subscripts ‘Pan’
and ‘MS’ denote Pan and MS images respectively, the superscript
‘L’ denotes the coarsest scale, and ‘H’ denotes all the remaining
finer scales. We select the patches such that they tile the whole
wavelet decomposition and use XPan = [(XL

Pan)
T (XH

Pan)
T ]T

and XMS = [(XL
MS)

T (XH
MS)

T ]T to denote the matrices con-
taining all of them. Before pan-sharpening process, a scale factor
for XMS is used to match the `2 norms of XL

Pan and XL
MS .

Classical wavelet-based pan-sharpening methods fuse the coef-
ficients using [(XL

MS)
T (XH

Pan)
T ]T to estimate the transform of

the HR MS image X̂MS . Instead, our approach uses a dictionary to
regulate the fusion, assuming that the HR MS image, estimated in
X̂MS , is sparse in the same dictionary.

To obtain a data-dependent dictionary D, one may learn from
the atoms of Pan image using the K-SVD method [7]

D = argminD,α||XPan −Dα||2F s.t. ∀l, ||αl||0 ≤ T0, (3)

where α = [α1,α2, ...,αL] is the set of sparse coefficient vec-
tors corresponding to the L training vectors. Although learning a
dictionary using this method performs well, it is a computationally
expensive learning process.

To improve the efficiency of DL-based pan-sharpening, an al-
ternative way to obtain dictionary is to use localized tree vectors as
dictionary atoms rather than learning from the whole tree vectors.
This is motivated by the fact that for natural images, a patch of par-
ticular structure tends to recur often in its closest vicinity, and its fre-
quency of recurrence decays rapidly as the distance from the patch
increases. Therefore, a localized dictionary may outperform a dic-
tionary learned from the whole image [13] and reduce training time.
To exploit this property, for each tree vector of MS image, we define
a localized dictionary to represent it. Let the spatial location of each
tree vector be the root coordinate index in the coarsest level. The
localized dictionary is composed of a set of tree vectors centered at
spatial location (i0, j0) within radius r0, as

Di0,j0 = {{xPan}i,j |
√

(i− i0)2 + (j − j0)2 ≤ r0}, (4)

by which the wavelet-tree vector at the center location (i0, j0) of
the MS image is sparsely represented. The localized dictionary is
a related to full dictionary learning since it can be considered as a
special case of the learned dictionary when setting the sparsity level
T0 = 1 and using a localized training set in (3).

2.3. Pan-sharpening using wavelet dictionary

Given learned dictionary D, the reconstruction attempts to optimize
the objective

X̂MS = argminX,α||X− [(XL
MS)

T (XH
Pan)

T ]T ||2F
+λ||X−Dα||2F s.t. ∀l, ||αl||0 ≤ T1. (5)

The objective (5) enforces that (a) the coarse scale coefficients of the
HR MS image are close to those of the LR MS image, (b) the finer
scale coefficients are close to those of the HR Pan image and (c) the
quad-tree vectors are sparse with respect to the learned dictionary.
The weight λ controls the contribution of the sparse representation
component. When λ = 0, the solution of (5) is identical to clas-
sical wavelet-based pan-sharpening. To compute (5) we use an it-



 

 

(a) Low resolution MS image
 

 

(b) High resolution Pan image

Fig. 1. Downgraded QuickBird MS and Pan image

erative algorithm such as in [9], which iteratively updates α and X
until convergence. Finally, we obtain the HR MS using the inverse
wavelet transform on X̂MS .

3. EXPERIMENTAL RESULTS

To demonstrate the advantages of our approach, we pan-sharpen
degraded satellite images and compare the fused MS image with
the original MS image before degradation (which we consider the
ground truth). For our experiments we use Quickbird [14] and
IKONOS [15] satellite images.

3.1. QuickBird Data

The QuickBird satellite system provides Pan images at 0.7m/pixel
spatial resolution and MS images at 2.8m/pixel spatial resolution
with four bands of near infra-red (NIR), red, green and blue. To
generate test data we manually degrade the Pan and MS images
using a low-pass filter (Gaussian kernel with unit variance) and
down-sample by four to obtain one 2.8m/pixel Pan image and one
11.2m/pixel MS image. To evaluate the algorithm we pan-sharpen
the degraded images with 3-level wavelet decomposition and com-
pare the results with the original 2.8m/pixel MS images. Fig. 1
shows an example of the degraded QuickBird MS and Pan images
of Sundarbans. The ground truth and pan-sharpened images for a
number of methods are shown in Fig. 2. For comparison we demon-
strate the classical wavelet-based fusion approach, our earlier efforts
using image-domain DL [9], and wavelet-domain DL as described
above with weight λ = 0.1, localized dictionary using r0 = 5 and
sparsity level T1 = 8.

Classical wavelet-based pan-sharpening result exhibits many ar-
tifacts. Our earlier approach using image-domain DL has very good
spatial resolution but noticeable color distortions, especially in the
dark green area. Using wavelet domain DL we preserve the color
spectrum with minor artifacts. For a quantitative comparison, Ta-
ble 1 assesses the quality of the reconstructed images using a variety
of metrics: the spectral angle mapper (SAM), the correlation coef-
ficient (CC), the signal-to-noise ratio (SNR) and the peak signal-to-
noise ratio (PSNR) [16]. As evident in the table, the wavelet-domain
DL based Pan-sharpening outperforms the other two methods. Our
method implemented in Matlab requires roughly 20 minutes of pro-
cessing on a 3.16GHz Dual-core PC to pan-sharpen a 320×320-pixel
image when learning the complete dictionary. The time is reduced
to less than 1 minute using the localized dictionary.

3.2. IKONOS Data

The IKONOS satellite captures 1m/pixel Pan image and 4m/pixel
MS image covering NIR, red, green, and blue bands as well [15]. As
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(c) Image dictionary fusion (d) Wavelet dictionary fusion

Fig. 2. (a) Ground truth and Pan-sharpened QuickBird images using (b)
Wavelet fusion, (c) Image dictionary fusion, (d) Wavelet dictionary fusion.

Table 1. Comparison of fusion results with degraded QuickBird data
Wavelet Image DL Wavelet DL

SAM 0.1445 0.1066 0.0941
nir 0.9156 0.9625 0.9744
r 0.8857 0.9338 0.9508

CC g 0.8559 0.9190 0.9345
b 0.8368 0.9097 0.9227
nir 14.79 17.97 19.92
r 13.68 15.98 17.49

SNR g 13.60 15.84 17.21
b 12.41 14.96 15.86
all 13.51 16.00 17.33
nir 21.60 24.78 26.74
r 18.93 21.23 22.74

PSNR g 19.39 21.63 23.00
b 18.59 21.15 22.05
all 19.49 21.97 23.30

with the QuickBird data, we perform Pan-sharpening on degraded
images and compare with the original MS image. To evaluate the
algorithm we pan-sharpen the degraded images with 3-level wavelet
decomposition and compare the results with the original 4m/pixel
MS images. We show in Fig. 3 an example of the degraded IKONOS
MS and Pan images of Sichuan, China, and in Fig. 4 the corre-
sponding ground truth and pan-sharpened results using the same ap-
proaches and parameters as with the QuickBird images. Again, us-
ing wavelet domain DL we preserve better color spectrum than the
image-domain DL and fewer artifacts than classical wavelet-based
pan-sharpening results. For quantitative comparison, Table 2 lists
the SAM, the CC, the SNR and the PSNR [16]. It is evident that
the wavelet-domain DL based Pan-sharpening outperforms the other
two methods.

4. CONCLUSION

We propose a novel Pan-sharpening process which obtains the im-
age structure using multi-scale wavelet DL, and exploits that struc-
ture to produce the pan-sharpened high-resolution images. In con-



 

 

(a) Low resolution MS image
 

 

(b) High resolution Pan image

Fig. 3. Downgraded IKONOS MS and Pan image

 

 

(a) Ground truth
 

 

(b) Wavelet fusion

 

 

(c) Image dictionary fusion (d) Wavelet dictionary fusion

Fig. 4. (a) Ground truth and Pan-sharpened IKONOS images using (b)
Wavelet fusion, (c) Image dictionary fusion, (d) Wavelet dictionary fusion.

trast to a large number of DL-based applications, our approach learns
the dictionary from the image to be pan-sharpened and does not re-
quire a large image database for training. We also proposed a local-
ized DL modification which significantly reduces training complex-
ity and improves the results.

Our experiments demonstrate the improvements due to our ap-
proach compared to classical wavelet-based methods as well as our
earlier improvements using image-domain DL. The improvements
are evident in a number of figures of merit including the spectral
angle mapper (SAM), the correlation coefficient(CC), the signal-to-
noise ratio (SNR), and the peak signal-to-noise ratio (PSNR).
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