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Abstract

Fiber nonlinearity has become a major limiting factor to realize ultra-high-speed optical com-
munications. We propose a fractionally-spaced equalizer which exploits a trained high-order
statistics to deal with data-pattern dependent nonlinear impairments in fiber-optic communica-
tions. The computer simulation reveals that the proposed 3-tap equalizer improves Q-factor by
more than 2 dB for long-haul transmissions of 5,230 km distance and 40 Gbps data rate. We also
demonstrate that the joint use of a digital backpropagation (DBP) and the proposed equalizer
offers an additional 1-2 dB performance improvement due to the channel shortening gain. A
performance in high-speed transmissions of 100 Gbps and beyond is evaluated as well.
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Abstract: Fiber nonlinearity has become a major limiting factor to re-
alize ultra-high-speed optical communications. We propose a fractionally-
spaced equalizer which exploits a trained high-order statistics to deal with
data-pattern dependent nonlinear impairments in fiber-optic communica-
tions. The computer simulation reveals that the proposed 3-tap equalizer im-
proves Q-factor by more than 2 dB for long-haul transmissions of 5,230 km
distance and 40 Gbps data rate. We also demonstrate that the joint use of a
digital backpropagation (DBP) and the proposed equalizer offers an addi-
tional 1–2 dB performance improvement due to the channel shortening gain.
A performance in high-speed transmissions of 100 Gbps and beyond is eval-
uated as well.
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1. Introduction

Digital coherent optical transmissions have a potential to increase data rates with dual-polarized
phase-shift keying (DP-PSK) and quadrature-amplitude modulation (DP-QAM). However,
fiber nonlinearity can significantly degrade the advantage of coherent transmission systems
over conventional non-coherent transmission systems as such spectrally efficient modulation
formats require higher signal-to-noise power ratio whereas higher signal power causes more
significant nonlinear distortion [1,2]. Therefore, to mitigate fiber nonlinearity has been of great
importance in optical communication researches.

Recently, it was shown that digital back-propagation (DBP) proposed in [3, 4] offers a sub-
stantial performance gain to compensate deterministic nonlinear effects. However, the DBP
requires high-complexity processing based on split-step Fourier methods (SSFM). Although
there exist several reduced-complexity methods [5–8], the performance is susceptible to the
stochastic distortion including the amplified spontaneous emission (ASE) noise and the po-
larization mode dispersion (PMD). Moreover, the SSFM parameters used in DBP should be
manually adjusted to achieve the best performance in general.

We focus on an alternative method based on statistical sequence equalizers (SSE), stud-
ied in [9, 10], which mitigates data-pattern-dependent nonlinearity. In the scheme presented
in [10], the first-order statistics (i.e., the mean of the the nonlinear distortion) is trained first
for some possible data patterns, and the pattern matching is performed to equalize the non-
linearity. The statistical sequence equalizer achieves good performance with low complexity
for short-memory channels, and could be combined with other methods including DBP and
frequency-domain equalizer (FDE).

In [11], we have extended the original SSE in several directions: i) we proposed the use of
second-order statistics (i.e., not only mean but also covariance), ii) we adopted a fractionally-
spaced signal processing, and iii) we used an excess window size for pattern matching. We have
shown that the proposed SSE offers comparable performance to DBP in 40 Gbps DQ-DQPSK
and differential QPSK (DP-DQPSK).

In this paper, we further introduce a cascaded equalizer which employs a reduced-complexity
DBP to shorten the channel memory in conjunction with the SSE to suppress the residual
nonlinearity. In addition, more detail performance analyses are provided: i) description of
low-complexity statistics updating, ii) the impact of tap lengths, iii) the difference with and
without fractionally-spaced processing iv) the case of 16QAM modulations, v) the effect of
reduced-state SSE with M-algorithm [12], vi) the computational complexity comparisons, and
vii) higher-speed transmissions of 100 Gbps and beyond.
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Fig. 1. Fractionally-spaced statistical sequence equalizer (FS-SSE) which exploits high-
order statistics of nonlinearity distortion in coherent fiber-optic systems.

Through the computer simulations, we obtain more than 2 dB improvement using the pro-
posed equalizer for coherent optical communications with 40 Gbps non-return-to-zero (NRZ)
DP-QPSK or DP-DQPSK signals after 5,230 km transmissions. The achieved performance is
better than that of the DBP in low local dispersion channels, and is comparable to the DBP in
high local dispersion channels. We also demonstrate that the joint use of DBP and SSE enjoys
an additional 1–2 dB gain. It is verified that M-algorithm is effective to drastically reduce the
computational complexity.

2. Nonlinear equalizer

Figure 1 shows the schematic of the proposed statistical sequence equalizer in coherent optical
communications. The digital data sk at the time instance k is transmitted through the nonlin-
ear fiber by using the coherent optical transceiver. The received data may be first processed by
several pre-equalization units, including timing recovery, FDE for chromatic dispersion com-
pensation, PMD compensation, DBP for nonlinear compensation, and so on. The pre-processed
signal is fed into a shift register which accepts fractionally-spaced (or, oversampled) data. Those
signals are also analyzed to obtain the statistics of the fiber nonlinearity. The oversampled data
is then equalized by a maximum-likelihood sequence estimation (MLSE) detector which em-
ploys the Viterbi algorithm based on the fiber statistics.

2.1. Statistical sequence equalizer (SSE)

As discussed in [10], intra-channel nonlinear distortion highly depends on the transmitted
data pattern. The statistical sequence equalizer (SSE) in [10] first acquires such data-pattern-
dependent distortion characteristics by averaging the received sequence with training data or
on-line learning process. The trained mean signals are then used to equalize the nonlinear dis-
tortion by searching for a pattern with the minimum Euclidean distance from the received se-
quence.

Figure 2 illustrates an example of the received I-Q (In-phase/Quadrature-phase) constel-
lations distorted by the fiber nonlinearity for a launching power of −4 dBm over 5,230 km
long-haul transmissions (corresponding to 8 dBQ with a 1-tap phase compensator). Here, we
plot 4,000 sample-spaced receiving signals of a random DQPSK sequence. To show the data-
pattern-dependent nonlinearity, we also present the averaged signal points of the k-th received
signal E[rk] conditioned on the consecutive 3-symbol data pattern sk = [sk−1,sk,sk+1], where
E[·] denotes the expectation. There are 64 points in the figure since the total number of the
different data patterns is 43 = 64 from sk = [0,0,0] to [3,3,3] for a 3-tap data sequence. It can
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Fig. 2. Examples of received I-Q constellation with nonlinear distortion (launching power:
−4 dBm, wavelength: 1551 nm, fiber distance: 5,230 km).

be seen from Fig. 2 that the mean of the received signal (e.g. for the data pattern [0,0,0]) differs
from that for another (e.g. [0,0,2]). The SSE exploits such a data-pattern-dependent distortion
to compensate the nonlinearity.

2.2. High-order statistics

In this paper, we propose the use of higher-order statistics (variance, skewness, etc.) in addition
to the first-order statistics (mean) to mitigate residual nonlinear noise as well. As shown in
Fig. 2, the residual (out-of-memory) nonlinear distortion performs as an effective noise which
also depends on the data pattern; specifically, the distribution of the residual distortion around
the region “R1” is different from that of the region “R3.” More importantly, the distribution is
not circularly symmetric (i.e., ellipsoidal rather than circular).

To take the pattern-dependent residual nonlinearity into account properly, we introduce a
model based on a circularly-asymmetric Gaussian distribution. We consider a window size
of N receiving samples centered around the target transmission data to establish an empirical
statistics. Let rk = [rk−⌊(N−1)/2⌋, . . . ,rk, . . . ,rk+⌊N/2⌋]

T ∈CN denote the received signal sequence
in the shift register of window size N, where ⌊·⌋, [·]T, and C denote a floor function, a transpose
operation, and a complex-number set, respectively. A statistics analyzer obtains the empirical
mean vector and the covariance matrix of the received signals for each transmission data pattern
s = [sk−⌊(M−1)/2⌋, . . . ,sk, . . . ,sk+⌊M/2⌋] ∈ NM , where N denotes the natural number set (positive
integers).

Letting s be one of the 4M possible data patterns (for 4-ary data), the empirical mean vectors



µµµ(s) ∈ R2N and the covariance matrices ΣΣΣ(s) ∈ R2N×2N are expressed as follows:

µµµ(s) =
1

N (s) ∑
j : s j =s

r′j, (1)

ΣΣΣ(s) =
1

N (s)−1 ∑
j : s j =s

(
r′j−µµµ(s)

)(
r′j−µµµ(s)

)T
, (2)

where we define r′j ≜
[
ℜ[rT

j
]
,ℑ[rT

j ]
]T ∈ R2N . Here, N (s) is the total number of occurrences

that the data pattern s appeared in the past. The notations R, ℜ[·] and ℑ[·] are a real-number
set, the element-wise real part and imaginary part operations, respectively. The main reason
to expand the complex-valued vector r j to a double-size real-valued vector r′j is to model the
circular asymmetry illustrated in Fig. 2.

With the trained statistics, the expected likelihood of the received signals rk given a data
pattern s is calculated by the circularly-asymmetric Gaussian model as follows:

Pr(rk | s) =
1√

det
[
2πΣΣΣ(s)

] exp

(
−1

2
(
r′k−µµµ(s)

)TΣΣΣ(s)−1(r′k−µµµ(s)
))

. (3)

Its log-likelihood is then expressed as

lnPr(rk | s) =−
1
2
(
r′k−µµµ(s)

)TΣΣΣ(s)−1(r′k−µµµ(s)
)
− 1

2
lndet

[
2πΣΣΣ(s)

]
. (4)

Note that it reduces to a simplified function of the Euclidean distance, ∥r′k− µµµ(s)∥, when no
information of the covariance is available. The benefit of the second-order statistics is twofold:
i) less-noisy samples are prioritized via diagonal variance information and ii) correlated nonlin-
ear noise is effectively whitened via off-diagonal correlation information. The extension to the
use of the third-order statistics (skewness) is rather straightforward by using the multivariate
skew-normal distribution [13].

2.3. Statistics updating

The empirical mean in Eq. (1) and the empirical covariance in Eq. (2) can be updated pe-
riodically or continuously with a pre-defined training sequence or a hard-decision data. To
track the time-varying statistics, one can use an exponentially-weighted mean and covariance
as µµµ(s)← νµµµ(s)+ r′j and ΣΣΣ(s)← νΣΣΣ(s)+

(
r′j− µµµ(s)

)(
r′j− µµµ(s)

)T with an appropriate nor-
malization of (1−ν) where 0 < ν < 1 is referred to as a forgetting factor. Note that the deter-
minant and the inverse of the covariance matrix, those of which are required for the likelihood
calculations as in Eq. (4), can be efficiently updated by the Sherman-Morrison formula [14] as
follows:

lndet
[
ΣΣΣ(s)

]
← lndet

[
ΣΣΣ(s)

]
+2N lnν + lnc, (5)

ΣΣΣ(s)−1← 1
ν

ΣΣΣ(s)−1− 1
c

bbT, (6)

where we define

b ≜ 1
ν

ΣΣΣ(s)−1(r′j−µµµ(s)
)
, c ≜ 1+bT(r′j−µµµ(s)

)
. (7)

It reduces the computational complexity from the cubic order O[(2N)3] to the square order
O[(2N)2] for the matrix inversion, where O[·] denotes the complexity order.



2.4. Excess window size

The window size M for the transmission data sk should be optimized to deal with the memory
length of the fiber channel. However, the total number of possible patterns increases exponen-
tially with the window size M. Hence, we may need to use a restricted window size in practice,
for example M = 3 taps. On the other hand, the computational complexity just increases lin-
early with the window size N for the receiving data rk. We propose to use an excess window
size, where we can use N > M to enhance the performance. Doing so, we can keep the compu-
tational complexity low while a longer channel memory is considered with its cross correlation
in ΣΣΣ(s).

2.5. Fractionally-spaced processing

Furthermore, we introduce a fractionally-spaced processing to improve the performance by
exploiting the correlation over the symbol transition. Let P be an oversampling factor. The
received signal sequence is stored as rk = [rkP−⌊(N−1)/2⌋, . . . ,rkP, . . . ,rkP+⌊N/2⌋]

T ∈ CN in the
N-sample shift register. The fractionally-spaced statistical sequence equalizer (FS-SSE) has an
advantage especially when the transceiver filters have an inter-symbol interference due to the
non-ideal Nyquist filtering. In addition, the symbol timing error is absorbed by oversampling.

2.6. Cascading with DBP

Since the proposed equalizer cannot use a large window tap size M due to the complexity issue
in practice, an FDE to compensate the chromatic dispersion is useful as a pre-processing unit to
shorten the effective channel memory. To shorten the channel memory more effectively, we can
adopt some nonlinear compensation techniques including the DBP [3,4] as a pre-processor. For
such a cascaded use, the DBP partly inverts the fiber nonlinearity, and the residual distortion
with limited memory is dealt with by the FS-SSE. As we can see later, by using a reduced-
complexity DBP with a small number of steps for SSFM computations, an equalizer cascaded
with DBP and FS-SSE can enjoy a significant performance improvement while the overall
complexity is maintained to be reasonably low for practical applications.

Although we focus on the hard-decision MLSE equalizer in this paper, the equalizer can be
readily extended to a soft-decision equalizer including a soft-output Viterbi algorithm (SOVA)
and a maximum a posteriori (MAP) equalizer. In [15], the authors extended the proposed statis-
tical equalizer to a low-complexity MAP receiver for a turbo equalization [16,17] in the system
employing a soft-input soft-output decoder for forward error correction (FEC) codes.

3. Performance evaluations

3.1. Fiber plant configuration

For simulations, we use the fiber link configuration corresponding to the experimental setup
used in [6]. The channel is a 10 GBd NRZ DP-QPSK or DP-DQPSK signal with a center wave-
length of 1551.32 nm or 1561.01 nm. Figure 3 illustrates the dispersion maps of both channels,
where we can see a low local dispersion for 1551 nm and high local dispersion for 1561 nm.
After pre-dispersion compensation, the signal is propagated through 5 loops of 18 spans of non-
zero dispersion shift fiber (NZ-DSF) and 3 spans of standard single-mode fiber (SSMF) with
compensating erbium-doped fiber amplifiers (EDFAs) (5 dB noise figure), post-dispersion com-
pensation and an optical filter (4-th order Gaussian filter with a bandwidth of 2.5× 10 GHz).
Coherent detection is performed using a hybrid mixer and balanced photo-detectors. The elec-
tric transmit filter uses a 25 ps rise-time Gaussian pulse, and the receiver uses a 1-st order
Bessel filter with a cutoff of 75 % of the symbol rate. After digitizing to 8 samples per symbol
the residual dispersion is removed using a linear frequency-domain equalizer (FDE) and the



C
h

ro
m

a
ti
c
 D

is
p

e
rs

io
n

 [
p

s
/n

m
]

Distance [km]

1551.32nm

1561.01nm

3000

2000

1000

-1000

-2000

-3000

0

0 1000 2000 3000 4000 5000 6000

Fig. 3. Fiber channel dispersion maps (wavelength: 1551 nm and 1561 nm).

 2

 4

 6

 8

 10

 12

 14

 16

-10 -9 -8 -7 -6 -5 -4 -3 -2

Q
 (

d
B

)

Launch Power (dBm)

DP-DQPSK 40Gbps

1551.32nm, 5230km

1Tap
3Tap
DBP

Conv. 3Tap
DBP+3Tap

3Tap
3.5dB

DBP+3Tap
4.2dB

DBP
2.2dB

Conv. 3Tap
0.9dB

 2

 4

 6

 8

 10

 12

 14

 16

-10 -9 -8 -7 -6 -5 -4 -3 -2

Q
 (

d
B

)

Launch Power (dBm)

DP-DQPSK 40Gbps

1561.01nm, 5230km

1Tap
3Tap
DBP

Conv. 3Tap
DBP+3Tap

3Tap
2.0dB

DBP+3Tap
4.0dB

DBP
2.0dB

Conv. 3Tap
0.4dB

Fig. 4. Simulation results of Q-factor performance as a function of launching power for
40 Gbps DP-DQPSK (5,230 km). (a) Low local dispersion channel (1551.32 nm). (b) High
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P-times oversampled signal is fed into the statistical sequence equalizer. The fiber distance per
loop is 1,046 km. The Q-factor is calculated by bit error counting. We assume no PMD in simu-
lations, and use a circular polarization basis so that two parallel equalizers for each polarization
work individually. If it suffers from a strong PMD, we may need a standard polarization recov-
ery such as constant modulus algorithms in a pre-processor block, or we can use the proposed
scheme for joint polarization equalization with a complexity cost.
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3.2. Q versus launching power

Figures 4(a) and 4(b) show the simulation results of Q-factor for DP-DQPSK in low local
dispersion channels (1551.32 nm wavelength) and high local dispersion channels (1561.01 nm
wavelength) respectively, after 5 loops (5,230 km). Here, “1Tap” denotes a 1-tap equalizer
which performs as a phase compensation filter with no memory. The notation of “3Tap” stands
for the proposed fractionally-spaced statistical sequence equalizer with M = 3 taps, N = 9 ex-
cess window, and P = 2 oversampling. “DBP” denotes the DBP using manually optimized
SSFM parameters. “Conv. 3Tap” denotes the conventional 3-tap statistical equalizer [10] with-
out using the second-order statistics, excess window, and oversampling.

Comparing to 1-tap phase compensation method, one can see that an improvement of more
than 2 dB in Q is achieved by the proposed fractionally-spaced equalizer with 3 taps. It should
be noted that such a large gain is not obtained by a conventional statistical equalizer [10] with
such a small number of taps, since the scheme does not exploit the second-order statistics.
Moreover, the proposed equalizer can outperform the DBP (which uses 1 step per span, requir-
ing 210 times Fourier transform operations over 5,230 km) by 1 dBQ in low local dispersion
channels in Fig. 4(a). As shown in Fig. 4(b), the performance gain can be decreased in high
local dispersion cases because the effective channel memory can be larger than 3-tap lengths.
Nevertheless, even for such high local dispersion channels, the fractionally-spaced 3-tap equal-
izer achieves 2 dBQ improvement from 1-tap equalizers, and it is comparable to the DBP in a
peak Q factor. More importantly, the proposed equalizer offers an additional 1–2 dBQ improve-
ment when the DBP is used as a pre-processor. Since the DBP can shorten the effective channel
memory, the proposed equalizer obtains a comparable performance gain of 4 dBQ against 1-tap
equalizers for both high and low local dispersion channels.

An analogous behavior is seen in Figs. 5(a) and 5(b) where DP-QPSK signals are used. Com-
paring to the DP-DQPSK signals, the net gain of the proposed equalizer for DP-QPSK signals
is limited to 1 dB in a peak Q factor. This is because the proposed equalizer can exploit the sta-
tistical correlation over symbols which are differentially demodulated. In fact, the performance
of the 3-tap equalizer in Fig. 4(a) is almost comparable to the performance in Fig. 5(a) even
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though in Fig. 4(a) we used differential demodulations which cause approximately 3 dB loss in
general. Hence, it implies that the proposed algorithm can partly mitigate the disadvantage of
differential modulations.

3.3. Q versus fiber distance

Figures 6(a) and 6(b) show Q values as a function of the fiber distance, respectively for DP-
DQPSK and DP-QPSK, at a launching power of −7 dBm, with increments of the fiber distance
further from 5,230 km to 10,460 km by 1,046 km loop each. The Q performance degrades with
the fiber distance. Compared to the 1-tap equalizer, the proposed statistical sequence equalizer
with 3 taps still obtains 1 dBQ improvement even at 10,460 km for low local dispersion case,
whereas the improvement is considerably reduced for high local dispersion case. It suggests
that such a small tap equalizer should work with channel shortening methods for long-haul
transmissions. The DBP itself works well for long-haul transmissions. And it is observed that
the cascaded equalizer using both the DBP and FS-SSE achieves the best performance; more
than 4 dB gain from the 1-tap equalizer at 10,460 km. The cascaded equalizer exhibits more
robust performance against the local dispersion difference in long-haul transmissions; more
specifically, two ‘DBP+3Tap’ curves in those figures agreed well whereas the other equalization
schemes have dispersion-dependent performance.

3.4. Effect of tap length, modulation scheme, and reduced-complexity equalizer

Figure 7(a) shows the impact of the tap length where we use T -spaced equalizers not T/2-
spaced equalizers (T denotes the symbol time duration). It is seen that 2-tap equalizers can
achieve more than 1 dBQ improvement compared to 1-tap equalizers. Whereas, 3-tap and 4-tap
lengths offer moderate improvements; at most an additional 0.5 dBQ improvement respectively.
It is because an effective channel memory is approximately 3-tap length.

In Fig. 7(b), we plot the Q performance of DP-16QAM transmissions at the same 10 GBd
rate. The fractionally-spaced 3-tap equalizer based on 2nd-order statistics enjoys 1 dBQ im-
provement with and without DBP. The performance gain is less than the case of QPSK. This
is because 16QAM is more sensitive to nonlinear phase noise. In this figure, we also present



 2

 4

 6

 8

 10

 12

 14

 16

-10 -9 -8 -7 -6 -5 -4 -3 -2

Q
 (

d
B

)

Launch Power (dBm)

DP-DQPSK 40Gbps

1561.01nm, 5230km

DBP
1Tap

DBP+2Tap
2Tap

DBP+3Tap
3Tap

DBP+4Tap
4Tap

DBP+4Tap

DBP+3Tap

DBP+2Tap

DBP+1Tap

4Tap

3Tap

2Tap

1Tap

-4

-2

 0

 2

 4

 6

 8

 10

-10 -9 -8 -7 -6 -5 -4 -3 -2

Q
 (

d
B

)

Launch Power (dBm)

DP-16QAM 80Gbps

1561.01nm, 5230km

1Tap
3Tap
DBP

DBP+3Tap
M-Algo 1-State
M-Algo 2-State

DBP+3Tap

256-State
2-State

1-State

3Tap

256-State
2-State

1-State
1Tap

DBP

Fig. 7. Simulation results of Q-factor performance as a function of launching power for
10 GBd DP-DQPSK/DP-16QAM (high local dispersion channel: 1561.01 nm, 5,230 km).
(a) Tap length effect for DP-DQPSK. (b) M-algorithm effect for DP-16QAM.

the impact of reduced-complexity equalizers which employ the M-algorithm [12] to reduce the
number of surviving states in a trellis diagram. For high-level modulation schemes, since the
number of trellis-states increases significantly, such a complexity reduction scheme plays an
important role for practical implementations. In fact, we can observe from Fig. 7(b) that 2-state
equalizers can approach the full 256-state equalizers, and hence, approximately 78 % compu-
tational complexity can be reduced with almost no performance loss. It suggests that there are
only a few dominant states to determine the performance and that an effective nonlinear channel
memory is short.

3.5. 112 Gbps transmissions and beyond

We evaluate the performance for higher-speed data rates of 112 Gbps in Figs. 8(a) through 8(c),
where we use 28 GBd DP-DQPSK. Since the channel memory increases as approximately 3
times large as that of the 40 Gbps case in Fig. 4, the 3-tap FS-SSE itself has no performance
gain against the 1-tap equalizer. Nevertheless, the 3-tap FS-SSE cascaded with DBP can im-
prove the Q-factor by around 1ḋB compared to the DBP alone. In this figure, we also plot the
Q performance curve of the 3-tap T -spaced SSE cascaded with DBP. It is seen that FS-SSE has
only a slight advantage against T -spaced SSE because there is no timing jitters in the simula-
tion.

In Fig. 8(d), the performance for 224 Gbps DP-16QAM transmissions is presented. Although
the 3-tap equalizer alone has only a marginal improvement, the cascaded FS-SSE with DBP
offers an additional 0.8dBQ improvement over the DBP alone for both high and low local
dispersion channels. It is expected that a larger number of taps offers additional performance
improvement at an expense of higher complexity.

In this paper, we only focused on intra-channel nonlinearity. In general, it is difficult, even
with DBP, to compensate inter-channel nonlinearity because the nonlinear distortion depends
on signal patterns of all channels. When pattern-independent nonlinearity dominates, it is ex-
pected that the advantage of the proposed SSE can be severely degraded. Nevertheless, it may
remain some gains because the SSE still exploits pattern-independent statistics. To compen-
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sate time-varying cross-polarization modulations (XPolM), we may need a frequent statistics
updating and the other XPolM canceler.

3.6. Computational complexity

We here analyze the computational complexity of the proposed SSE in comparison to DBP.
DBP requires 4-times Fourier transforms per step for dual polarization. Every step, phase and
polarization rotations are performed in frequency domain and time domain. Let N, P, and M
be the size of fast Fourier transform, the oversampling factor, and the number of steps, respec-
tively. The computational complexity per symbol is in the order of PM (log2(N)+16). In our
simulations, we used N = 256, P = 2, and M = 105. Hence, the computational complexity of
(1 step per span) DBP becomes 5040 multiplication operations. When using reduced-step DBP
of M = 5, the computational complexity of DBP becomes 240.



Since the statistics does not require frequent updating and its complexity is low (a square-
order of tap lengths), we focus on the computational complexity in MLSE detection for SSE.
The proposed SSE has the computational complexity of the order 2NM 2q(2N + 1), where
M ≤ 2q(M−1) is the number of survivors in M-algorithm, N is the window size, M is the tap
length, and q is the number of bits per symbol. For M = 3 taps, q = 2 (QPSK), and N = 3
(without excess window), the computational complexity of the (full-state) SSE becomes 2688
multiplication operations. Therefore, the proposed SSE has lower complexity than 1-step per
span DBP. When using M-algorithm of M = 2, the reduced-state SSF has a complexity of
336. For 16QAM cases, the computational complexity of the full-state SSE becomes seriously
large, more specifically, 172032 multiplications. However, as shown in the results, a reduced-
state SSE with M = 2 approaches the full-state SSE. With M-algorithm, the computational
complexity of such a reduced-state SSE becomes 1344 even for 16QAM 3-tap cases.

4. Summary

We proposed the fractionally-spaced statistical sequence equalizer (FS-SSE) which exploits the
second-order multivariate statistics of the fiber nonlinearity to mitigate nonlinear impairments
that depend on a transmission data pattern. Through the computer simulations, a significant
performance improvement of more than 2 dBQ was obtained for 40 Gbps coherent fiber-optic
communication systems over 5,230 km. It was verified that oversampling with higher-order
statistics can provide a significant gain compared to the existing statistical equalizer. More im-
portantly, a short-memory equalizer with just 3 taps could achieve better performance than the
DBP in low local dispersion conditions. We also demonstrated that the joint use of DBP and FS-
SSE achieves an additional 1–2 dB gain due to the channel shortening effect. Even higher-order
statistics including skewness and kurtosis can be readily introduced in the proposed method
for further accurate nonlinearity modeling. The extension to the system with the inter-channel
nonlinearity in wavelength-division multiplexing remains as a future work.
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