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Abstract—In this paper, we present an analytical framework
for designing LT codes in additive white Gaussian noise (AWGN)
channels. We show that some of analytical results from binary
erasure channels (BEC) also hold in AWGN channels with slight
modifications. This enables us to apply a ripple-based design
approach, which until now has only been used in the BEC. LT
codes designed by this way show promising performance which
is near the Shannon limit even with short codewords.

I. INTRODUCTION

LT codes [1] were the first practical examples of a rateless
erasure correcting code which approaches capacity for increas-
ing message length. Raptor codes [2] were later developed as
an extension of LT codes. Such rateless codes may potentially
generate an infinite amount of encoded symbols from finite
input symbols. An important element in the design of both
LT and Raptor codes for the binary erasure channel (BEC)
is a parameter called the ripple. The performance depends
significantly on how this parameter evolves during decoding,
and thus successful designs have mostly focused on this.
Although LT codes were originally developed for the BEC,
several works have recently focused on designing such codes
for noisy channels.

Design of Raptor codes for the binary symmetric channel
(BSC) and binary-input additive white Gaussian noise (Bi-
AWGN) channel is treated in [3]. This design is based on the
Gaussian approximation method [4], which is used to derive
constraints for the degree distribution of the LT code. In [5, 6],
approaches based on EXIT charts are applied to the design of
LT and Raptor codes, respectively. Another design of Raptor
codes for arbitrary symmetric channels is presented in [7],
where an analogue to the ripple is defined as the increase in
correct bit estimates in a given decoding round. The design is
based on finding an optimal value for this measure.

In this paper, we present an analytical framework for the
design of LT codes in the AWGN channel. It has strong
analogies to the framework presented in [1] for the BEC.
Interestingly, we show that key analytical results in the BEC
also hold even in the AWGN channel. This enables us to
make a ripple-based design for the AWGN channel with slight
modifications, which exploit characteristics unique in AWGN.
The main contribution of this work is a bridge between the
work in the BEC and the AWGN channel, and it can help
further design extensions for such noisy channels.

II. BACKGROUND OF LT CODES

In this section, an overview of LT codes is presented.
Assume we wish to transmit a given amount of data, which

is divided into k input symbols. From these input symbols
a potentially infinite amount of encoded symbols, called
output symbols, are generated. Output symbols are exclusive-
or (XOR) combinations of input symbols. The number of
input symbols used in the XOR is called the degree of
the output symbol, and all input symbols contained in an
output symbol are called neighbors of the output symbol. The
output symbols follow a certain degree distribution, Ω(d). The
encoding process can be broken down into three steps: 1)
Randomly choose a degree d by sampling Ω(d). 2) Choose
uniformly at random d of the k input symbols. 3) Perform
XOR of the d chosen input symbols. The resulting symbol is
the output symbol. This process can be iterated as many times
as needed, that results in a rateless code.

A. Decoding in AWGN Channel

A widely used decoder for LT codes is a belief propagation
(BP) decoder. For the BP decoder, messages are passed
between neighboring symbols, i.e. from output symbols to
input symbols or vice versa. Such a message reflects the
current belief of the sender on the value of an input symbol.
The belief is quantified by the log-likelihood ratio (LLR),
defined as ln

(
Pr(Xi=1|Y )
Pr(Xi=0|Y )

)
, where Xi is the i-th binary input

symbol and Y is the AWGN channel output symbols vector of
potentially infinite length. The o-th output symbol is denoted
as Yo. The ℓ-th round of the BP decoder starts with all output
symbols passing a message, mℓ

o,i to all their neighboring input
symbols. Based on those messages, the input symbols pass a
message, mℓ

i,o, back to all their neighboring output symbols.
These rounds continue until a specified stop criterion has been
reached, e.g. a certain number of rounds or a target error rate.

The belief messages are updated as follows [3]:

mℓ
i,o =

∑
o′ ̸=o

mℓ−1
o′,i ,

mℓ
o,i = 2 arctanh

(
tanh

(
Zo

2

)
·
∏
i′ ̸=i

tanh

(
mℓ

i′,o

2

))
, (1)

where Zo is the LLR of Yo based only on the channel output.
The product (sum) is taken over all neighboring input (output)
symbols other than the message recipient i (o) itself.

B. Decoding in BEC

In the BEC, the BP decoder can be significantly simplified
since all received symbols in decoding are completely reliable.



This implies that the decoder can perform the logical XOR op-
erations inversely from the encoding process. First, all degree-
1 output symbols are identified and moved to a storage referred
to as the ripple. Symbols in the ripple are processed one by
one, in which they are XOR’ed with all output symbols who
have them as neighbors. Once a symbol has been processed,
it is removed from the ripple and considered decoded. The
processing of symbols in the ripple will potentially reduce
some of the buffered symbols to degree one, in which case
they are moved to the ripple. This is called a symbol release.
The decoder can then process symbols in a successive fashion.

The ripple is an important parameter in the BEC. In [1],
a trade-off was described. If a new symbol is released every
time, there is a risk that it is already in the ripple, that causes
redundancy. It suggests that the ripple size should be kept low.
However, in order to decrease the risk of decoding failure,
which occurs when the ripple size is zero, the ripple size
should be kept high enough. A good solution to this trade-
off is the main design problem in the BEC. In the following
analysis, we use information-theoretic tools to present an ana-
lytical framework which generalizes the ripple-based approach
towards the AWGN channel.

III. RIPPLE-ORIENTED ANALYSIS

We consider the BP decoder described in section II-A, with
a slight modification, in order to facilitate the analysis. Instead
of letting all input symbols pass a new message in a round,
we allow only one randomly chosen input symbol to do so.
All other input symbols pass the message in the previous
round. This modified BP decoder for input-to-output message
updating is expressed as

mℓ
i,o =


∑
o′ ̸=o

mℓ−1
o′,i , if i is allowed to pass,

mℓ−1
i,o , if i is not allowed to pass.

(2)

This modification is known as a random scheduling for BP.
It is known that such a sequential scheduling offers better
convergence performance than a standard parallel scheduling.
Note that a code designed by this analysis can be decoded by
any BP decoder scheduling.

A. Analytical Framework

We first express the entropy, H(Zℓ
i ), of the i-th input symbol

after ℓ decoding rounds as follows:

H(Zℓ
i ) = −

∑
x∈{0,1}

Pr(Xi = x|Y ) log2
(
Pr(Xi = x|Y )

)
,

Pr(Xi = 1|Y ) =
exp(Zℓ

i )

1 + exp(Zℓ
i )
, (3)

Pr(Xi = 0|Y ) = 1− Pr(Xi = 1|Y ),

Zℓ
i =

∑
o

mℓ
o,i.

When an input symbol passes a new message to its neigh-
bors, we refer to the information it holds as processed informa-
tion. After the ℓ-th decoding round, the processed information,

IℓP , is defined as the total amount of information passed from
input symbols to output symbols. It is given as

IℓP =
k∑

i=1

(
1−H(Zp

i )
)
, Zp

i =

∑
o m

ℓ
i,o

d− 1
, (4)

where H(Zp
i ) is interpreted as the entropy of the i-th input

symbol at the point of its last message passing. Directly
following from (4), we have the definition of unprocessed
information, IℓL =

∑k
i=1 H(Zp

i ).
When deciding which input symbol should be allowed to

pass a new message, a uniform random selection is performed
among the input symbols, which hold information not yet
passed to its neighbors. We say that these candidates contribute
to the information ripple. The information ripple, IℓR, after
the ℓ-th decoding round, is defined as the total amount of
information, held by the input symbols which have not yet
been passed to the output symbols. We have

IℓR =

k∑
i=1

(
H(Zp

i )−H(Zℓ
i )
)
. (5)

After the input symbol has passed its message, the output
symbols obtain a chance to pass messages back to their
neighboring input symbols. Only output symbols, which are
neighbors to the last message passing input symbol, have new
information to pass. This new information is referred to as
released information, denoted IℓQ. It is expressed as

IℓQ =
k∑

i=1

(
H(Zp

i )−H(Zp+
i )
)
,

Zp+
i = Zp

i +
∑
o

(
mℓ

o,i −mℓ−1
o,i

)
, (6)

where H(Zp+
i ) is interpreted as the entropy of the i-th input

symbol when processed and newly released information is
taken into account.

Here, IℓQ is defined by H(Zp
i ) as reference, which is the

information known by the output symbols. Hence, IℓQ can be
regarded as the amount of new information passed to the input
symbols, as seen from an output symbol perspective. In fact,
this is not the true amount of new information since it might
be combined with information in the ripple. For this case,
the actual reference is H(Zℓ−1

i ) and we can define the actual
amount of information added to the ripple, IℓA, as follows:

IℓA =
k∑

i=1

(
H(Zℓ−1

i )−H

(
Zℓ−1
i +

∑
o

(
mℓ

o,i −mℓ−1
o,i

)))

=
k∑

i=1

(
H
(
Zℓ−1
i

)
−H

(
Zℓ
i

))
. (7)

The quantities defined in (3) through (7) are illustrated in
Fig. 1, where the entropy of a single input symbol has been
plotted as a function of its LLR. Due to the convexity of the
entropy function (except at very low LLR), we have IℓA < IℓQ,
which means loss of information. This is analogous to the risk
of redundancy for nonzero ripple in the BEC.
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Fig. 1. Entropy as a function of LLR for an input symbol i. The contribution
to the defined quantities is annotated, assuming that the symbol has not passed
a new message, but received new information from its neighbors.

B. First Moment of Information Ripple

In general, there is a strong relation between the quantities
in (3) through (7) and the terms defined in section II-B for
the BEC decoder. They are essentially continuous entropy
counterparts of the discrete symbol based versions from the
BEC. One interesting quantity in a ripple-based design is
the expected amount of released information from an output
symbol of degree d as a function of the amount of unprocessed
information. It expresses the universal connection between the
degree distribution, which is the design parameter, and the rate
of recovery of new information during the decoding process.
It was derived in [1] for the BEC, more specifically

q(1, k) = 1,

q(d, L) =
d(d− 1)L

∏d−3
j=0 (k − (L+ 1)− j)∏d−1
j=0 (k − j)

,

for d = 2, ..., k, and L = k − d+ 1, ..., 1,

q(d, L) = 0, for all other d and L, (8)

where L is the amount of unprocessed input symbols. Deriving
the AWGN channel equivalent to (8) is outside the scope of
this paper. However, we can easily obtain an understanding of
its behavior by simulating an LT code in an AWGN channel
and logging IℓQ versus IℓL for different degrees. In order to
compare with (8), we quantize this data to integer values of
IℓL and normalize such that it sums up to one. We thus have the
fraction of the released information, which is released when
IL bits remain unprocessed. This is denoted as Iq(d, IL) for
output symbols of degree d and is defined as

Iq(d, IL) =

∑
ℓ:|Iℓ

L−IL|<0.5

IℓQ∑
ℓ

IℓQ
, (9)

where only information from output symbols of degree d is
included. Fig. 2 shows a plot of the results at a signal-to-noise
power ratio (SNR) of 5 dB. It reveals a clear correspondence
between the theory derived for the BEC and what is observed
in the AWGN channel.

However, as described in connection with (7), not all
released information is added to the ripple. In order to de-
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Fig. 3. Histogram of the difference between simulated IℓA/IℓQ from AWGN
channel and theoretic A(L)/Q(L) from the BEC.

termine how much, we must know Iℓ
A

Iℓ
Q

, the ratio of released
information which is added to the ripple. The BEC counterpart
is A(L)

Q(L) =
L−R(L)

L , where A(L), Q(L) and R(L) are symbols
added to the ripple, released symbols and symbols in the ripple
after the (k − L)-th decoding round, respectively.

For the AWGN channel, Iℓ
A

Iℓ
Q

has been determined for
0 < R ≤ 20 and 0 < L ≤ 64 through a simulation similar
to the one used for determining Iq (d, IL). Fig. 3 shows a
histogram of Iℓ

A

Iℓ
Q

− A(L)
Q(L) , which illustrates that the AWGN

channel behaves as the BEC with a small perturbation.
Based on q(d, L) and the fact that A(L)

Q(L) = L−R(L)
L holds

in the BEC, it is possible to control the expected amount of
symbols added to the ripple in each decoding round, through
the choice of degree distribution. We can now conclude that
this theory also holds in the AWGN channel. Hence, the same
ripple-based design approach can be used for the AWGN
channel, in order to control the first moment of the ripple. This
suggests that degree distributions designed for the BEC should
also perform well in the AWGN channel, which was also
concluded in [8]. However, it was also mentioned that there is
still a room for improvement, and thus behavioral differences
between the BEC and the AWGN channel. These differences
should be evident in the higher moments of the ripple. We
take this into account in our design, which is described next.

IV. RIPPLE-BASED DESIGN IN AWGN

A typical approach to design LT codes is to choose design
criterion for the first moment of the ripple and meet it through
proper choice of the degree distribution. The first moment
criterion is chosen based on heuristic assumptions about the
second moment behavior. This approach was taken in both



[1] and [2] for the BEC. Using the analytical framework
presented in the previous section, we will apply the ripple-
based approach to designing LT codes in the AWGN channel.

In [2], the assumptions about the second moment behavior
of the ripple in the BEC was based on a random walk model. It
was assumed that the ripple size either increases or decreases
by one, with equal probabilities, in each decoding round, i.e.,
Rℓ+1 = Rℓ ± 1. Since one symbol is processed in each
round in the BEC, L rounds will remain, and we can calculate
the expected distance from the origin, E

[
|Rℓ+L − Rℓ|

]
(E[·]

denotes an expectation), after the random walk as follows:

E
[(
Rℓ+L −Rℓ

)2]
=

ℓ+L−1∑
j=ℓ

E
[(
Rj+1 −Rj

)2]
= L,

E
[
|Rℓ+L −Rℓ|

]
=

√
L. (10)

Based on this it was argued that the expected ripple should
be kept at c

√
L, for a properly chosen constant c, when L

symbols remain unprocessed, i.e. in the (k − L)-th decoding
round. We will adopt this approach, for our choice of expected
information ripple for the AWGN channel with a slight mod-
ification which deals with the characteristics of this channel.

First, we note that a decoding round does not necessarily
result in the processing of 1 bit, i.e. H(Zp

i ) − H(Zℓ
i ) ≤ 1.

Hence, we assume that the ripple will increase or decrease
by α with equal probabilities. Moreover, it is possible that
H(Zℓ

i ) > H(Zp
i ), i.e. the messages passed from output

symbols to input symbol i, since last time it was allowed to
pass, has increased the entropy of that input symbol. In this
case, we actually have negative decoding progress. Numerical
experiments show that this happens more frequently later in
the decoding progress, which results in an increasing number
of decoding rounds per one bit of processed information. We
assume a linear increase, such that the number of steps per
processed bit is θ = β(1− Iℓ

L

k ) + 1. Hence, we obtain

E
[(
Rℓ+L −Rℓ

)2]
=

ℓ+θIℓ
L−1∑

j=ℓ

E
[(
Rj+1 −Rj

)2]
= α2θIℓL,

E
[
|Rℓ+L −Rℓ|

]
= α

√
β(1−

IℓL
k
) + 1

√
IℓL. (11)

It determines a desired information ripple evolution with
properly chosen constants, α and β. Note that this model is
based on heuristics, as in [1] and [2]. It has been confirmed
that a higher-order polynomial model of θ had almost no gains.

The AWGN channel differs from the BEC in another
significant way in BP decoding. Messages passed from output
symbols may be misleading, in the sense that they contribute
with an LLR of an opposite sign of the true value of the bit.
If one or more bits are in error, more output symbols will
need to be collected. In this case, the errors may propagate
and make future output symbols misleading as well.

Consider the example where 2 out of k input symbols are
in error and a new output symbol of degree 3 is received.
The three neighbors of the new symbol are the two erroneous
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Fig. 4. Probabilities of having 1 and 2 erroneous neighbors, and the difference
between them, as a function of degree.

input symbols and one correct input symbol. When this new
output symbol passes a message to an input symbol, it is
based on a product of the messages from the two other
neighbors. Hence, for the erroneous input symbols, yet another
misleading message will be passed, while for the correct input
symbol, the errors cancel out. If only one erroneous input
symbol had been a neighbor, the output symbol would have
made a helpful contribution. Similar examples can be made
with higher numbers of errors. In general, we can say that
if it is more likely that an even number of erroneous input
symbols are neighbors to a new output symbol, compared to
an odd number, then the errors will be self-perpetuating.

This observation can be used to create a design criterion,
where we focus on the cases of 1 and 2 erroneous neighbors,
since these are most likely. We define γ(d) = p1(d)− p2(d),
where pe(d) is the probability that a new output symbol of
degree d has e and only e erroneous neighbor(s) for e = 1, 2.

They are expressed as p1(d) =
(d1)(

k−d
1 )

(k2)
and p2(d) =

(d2)(
k−d
0 )

(k2)
and plotted as a function of d in Fig. 4. The plots illustrate that
high degree symbols should be avoided, whereas degrees in the
lower half of the spectrum are more useful. In our design, we
seek to maximize E[γ] =

∑
d γ(d)Ω(d), under the constraints

given by our choice of ripple.
We now summarize the analysis and the ripple-based design

method for noisy channels. In section III-B, we showed that
(8), which was originally derived for the BEC, also holds in
the AWGN channel. Moreover, we showed that Iℓ

A

Iℓ
Q

=
Iℓ
L−Iℓ

R

Iℓ
L

is also analogous to the BEC. If we quantize the decoding
process to integer values of IL, we can express the expected
evolution of the information ripple for each processed bit:

IR(k) = α
√
IL,

IR(IL − 1) = IR(IL)− 1 +
IL − IR(IL)

IL

∑
d

IQ(d, IL),

for k > IL ≥ 0,∑
d

IQ(d, IL) =
∑
d

nI(X;Y )Ω(d)Iq(d, IL), (12)

where I(X;Y ) is the mutual information of the AWGN chan-
nel and n is the number of symbols collected for decoding.

Combining our ripple constraint from (11) with (12), we



obtain the system of equations as follows:
q(1, k) 0 0

...
. . . 0

q(1, 1) · · · q(k, 1)
ωγ(1) · · · ωγ(k)


n

′Ω(1)
...

n′Ω(k)

 =


IR(k)

∆IR(k − 1)
...

∆IR(1)
n′ωE[γ]

, (13)

where n′ = nI(X;Y ) and ∆IR(IL − 1) =
(IR(IL−1)−IR(IL)+1)IL

IL−IR(IL) . Here we have also added
E[γ] =

∑
d γ(d)Ω(d), which we wish to maximize.

This equation has a multiplier ω ≫ 1 since this is a firm
constraint. Note that n′ acts as a normalization factor, which
ensures a valid degree distribution.

We can then formalize the design problem as follows:

max E[γ] s.t. |An′Ω(d)− b|2 < t, (14)

where A is the matrix in (13), b is the vector on the RHS of
(13) and t is an appropriately chosen tolerance level of the
deviation from the target information ripple.

V. NUMERICAL RESULTS

Simulations have been performed in order to compare the
proposed design, Ω(d), with existing degree distributions. A
tolerance level of t = 0.1 has been chosen for the optimization
problem in (14). A numerical optimization of the parameters
α and β has been performed, which revealed that parameter
pairs where 1.0 ≤ α ≤ 1.4 and 0 ≤ β ≤ 3 perform
well, depending on the SNR. In general α should increase
for increasing SNR, while β should decrease. References in
the first simulation are the Robust Soliton Distribution (RSD),
with parameters c = 0.1 and δ = 1, and a degree distribution
designed by the proposed approach presented in this work, but
with the ripple target in (10), which was suggested in [2]. We
refer to this distribution as Γ(d). A numerical optimization
resulted in c = 1.3, which has been used. All distributions
have been evaluated at k = 64 for an SNR of 0, 2, ..., 10 dB
using BPSK modulations. They are compared with respect to
average overhead necessary in order to successfully decode
all input symbols. An input symbol is considered successfully
decoded if its error probability is below 10−12. Fig. 5 shows
the results, where it is evident that the approach presented in
this work significantly outperforms the distributions designed
for the BEC. Especially at low SNR, where the difference
between the AWGN channel and the BEC is more significant,
the proposed design excels. In this figure, we also present the
lower bound of the overhead calculated by the Shannon limit
in AWGN (for BPSK-constrained codebooks with an infinite
length). As we can see, the proposed degree distribution
approaches the Shannon limit in the low SNR regimes within
1 dB even for such a very short message length of k = 64.

Another simulation has been performed, where the purpose
is to evaluate the degree distributions with respect to block
error rate at specific overheads. A block error occurs when
at least one symbol has an error probability above 10−12

after 2000 decoding rounds on (1 + ϵ)k output symbols. The
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simulation is performed at an SNR of 0 dB using the same
parameters as in the first simulation. The results are shown in
Fig. 6 and it is seen that the proposed design outperforms the
other degree distributions at any overhead.

VI. CONCLUSIONS

We have presented an analytical framework for LT codes in
AWGN channels. Surprisingly, key analytical results known
in the BEC can be applied to AWGN channels within this
framework. This enables us to introduce a ripple-based design
scheme in AWGN channels with a few modifications. LT
codes based on this design show promising results compared
to standard designs. In particular, the designed codes can
approach the capacity in the low SNR regimes even for a very
short message length. Our analytical framework is a strong
tool for the ripple-based design in any noisy channels.
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