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Abstract

Industrial automation tasks typically require a 3D model of the object for robotic manipulation.
The ability to reconstruct the 3D model using a sample object is useful when CAD models are
not available. For textureless objects, visual hull of the object obtained using silhouette- based
reconstruction can avoid expensive 3D scanners for 3D modeling. We propose convex brick
(CB), a new 3D primitive for modeling and reconstructing a visual hull from silhouettes. CB’s
are powerful in modeling arbitrary non-convex 3D shapes. Using CB, we describe an algorithm
to generate a polyhedral visual hull from polygonal silhouettes; the visual hull is reconstructed as
a combination of 3D convex bricks. Our approach uses well studied geometric operations such
as 2D convex decomposition and intersection of 3D convex cones using linear programming.
The shape of CB can adapt to the given silhouettes, thereby significantly reducing the number
of primitives required for a volumetric representation. Our framework allows easy control of
reconstruction parameters such as accuracy and the number of required primitives. We present
an extensive analysis of our algorithm and show visual hull reconstruction on challenging real
datasets consisting of highly non-convex shapes. We also how real results on pose estimation of
an industrial part in a bin-picking system using the reconstructed visual hull.
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Abstract— Industrial automation tasks typically require a 3D
model of the object for robotic manipulation. The ability to
reconstruct the 3D model using a sample object is useful when
CAD models are not available. For textureless objects, visual

hull of the object obtained using silhouette-based reconstruction
can avoid expensive 3D scanners for 3D modeling. We propose
convex brick (CB), a new 3D primitive for modeling and
reconstructing a visual hull from silhouettes. CB’s are powerful
in modeling arbitrary non-convex 3D shapes. Using CB, we
describe an algorithm to generate a polyhedral visual hull
from polygonal silhouettes; the visual hull is reconstructed as
a combination of 3D convex bricks. Our approach uses well-
studied geometric operations such as 2D convex decomposition
and intersection of 3D convex cones using linear programming.
The shape of CB can adapt to the given silhouettes, thereby
significantly reducing the number of primitives required for a
volumetric representation. Our framework allows easy control
of reconstruction parameters such as accuracy and the number
of required primitives. We present an extensive analysis of our
algorithm and show visual hull reconstruction on challenging
real datasets consisting of highly non-convex shapes. We also
show real results on pose estimation of an industrial part in a
bin-picking system using the reconstructed visual hull.

I. INTRODUCTION

Shape reconstruction from silhouettes or occluding con-

tours is an important and classical problem in computer

vision with applications in diverse fields such as virtual re-

ality, computer graphics, 3D modeling, and robotics. Several

robotic tasks like grasping [13], [26], visual servoing [22],

[7], and autonomous navigation [12] require the use of 3D

CAD models. When prior CAD models are not available,

or when available models have to be modified to incorporate

new parts, algorithms for 3D reconstruction from images may

be used to accomplish the task. The visual hull of an object

obtained using silhouette based reconstruction is well-suited

as a 3D model, especially for texture-less and industrial parts.

It can avoid expensive 3D scanners for 3D modeling, since

it only requires 2D images that can be captured using the

camera mounted on the robot arm.

As defined by Laurentini [15], visual hull is the maximal

object shape that is consistent with the silhouettes of the

object. In principle, it can be obtained by the intersec-

tion of back-projected visual cones of all the silhouettes.

Baumgart [1] showed how to build polyhedral visual hull

by representing each occluding contour using polygons and

computing the 3D polyhedral intersections of resulting visual

cones. Volume based approaches reconstruct the 3D volume

of the object, usually by discretization of the 3D space into
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Fig. 1. VH reconstruction on Duck dataset using 10 silhouettes. Voxel
carving starting from 643/1283 grid results in 21784/160372 voxels,
with 6503/26080 voxels on the surface respectively. To obtain the same
precision as 1283 grid, our volumetric reconstruction requires only 109
convex bricks (shades of red-brown) with 1551 vertices. Surface mesh can
be easily obtained by removing internal planes using our representation.

voxels [5], [23], [28], [35], [27], [33]. In voxel carving (VC),

each voxel is projected onto the images and is removed if it

lies outside the silhouette. The shape of voxel remains fixed

(cube), and a desired precision is achieved by increasing the

resolution of the volumetric representation via reducing the

voxel size. Since voxel shape remains fixed, recent research

in VC has focused primarily on efficient implementation,

e.g., using GPU’s [30].

In this paper, we demonstrate that a richer volumetric

representation can be obtained by modifying the voxel

shape. We propose convex brick as a new 3D primitive

for volumetric visual hulls (VH). A convex brick (CB)

can be described as a voxel whose shape is not fixed, but

depends on the given set of input silhouettes. Intuitively, if

one is also allowed to modify the shape of the primitive,

it can better represent a visual hull with smaller number

of primitives. Consider Figure 1, where a large number of

voxels are required for volumetric representation of a simple

shape. Even if voxels inside the VH are discarded, 26080
surface voxels are required to obtain a precision of 1 pixel

(maximum deviation of re-projected VH from silhouettes). In

contrast, only 109 convex bricks are required for volumetric

reconstruction, reducing the number of primitives by orders

of magnitude. Notice that the CB representation does not

have the ‘blockiness’ or quantization artifacts. In addition,

we simultaneously obtain a surface representation by simply

removing internal faces between convex bricks. Thus, our

approach bridges the gap between volumetric and surface

based representations, by providing both.

Using CB, we present an algorithm to reconstruct polyhe-



Alien Dinosaur Predator

Fig. 2. High quality visual hull reconstruction on real data using convex bricks. The shapes are complex and highly non-convex. From left to right:
Number of CB’s: 23107, 21120, and 35932. Number of vertices: 106872, 101325, and 156243. Data courtesy Yasutaka Furukawa.

dral visual hulls from polygonal silhouettes. Our approach

is similar in spirit to VC. We project each convex brick

onto silhouettes and compute 2D intersections. However, the

intersections in 2D are lifted back to 3D to continually refine

the shape of convex bricks, rather than keeping the shape

fixed to a cube. This allows us to have a representation

independent of any 3D discretization. The 2D intersections

are decomposed into convex partitions, leading to 3D inter-

sections between convex polyhedras. These can be precisely

computed using linear programming, thereby avoiding de-

generacies in general volume-volume intersections. Voxels

can be seen as a special case of CB. As shown in Figure 2,

our approach generates detailed VH for highly complex and

non-convex shapes.

Contributions: Our paper has the following contributions:

• We introduce the concept of convex bricks as a 3D

primitive for representing and reconstructing VH.

• We describe an algorithm to reconstruct polyhedral VH

for non-convex shapes using convex bricks by only

employing convex 3D intersections.

• We demonstrate the flexibility of convex bricks in con-

trolling the precision as well as the number of primitives

for VH reconstruction.

Benefits and Limitations: A representation using CB has

following benefits: (a) Unlike voxels, the representation is

independent of any 3D discretization. Both the size and

shape of CB’s depend on the inherent non-convexity of the

shape, rather than on the surface area as in VC [35]. (b)

CB representation produces high quality reconstruction using

lower number of primitives than VC. (c) It can provide

both volumetric and surface information, while previous

approaches result in either of two. (d) Using CB, a 3D

convex decomposition of the shape is obtained automatically,

useful for applications that require such decompositions. To

the best of our knowledge, ours is the first paper to propose

silhouette-dependent voxels as a 3D primitive and to describe

their applicability for volumetric visual hulls. While our

algorithm is slower than VC, it is not a drawback in a real

application, since the CAD model generation has to be done

once and can be done offline.

A. Related Work

The problem of reconstructing surfaces from occluding

contours was first considered by Koenderink [14], who at-

tempted to infer 3D curvature properties from occluding con-

tours. Most of the approaches for visual hull reconstruction

can be divided into two broad categories: (a) volume-based

approaches and (b) surface-based approaches. While volume-

based approaches reconstruct the 3D volume, surface-based

approaches [8], [9], [24], [18], [31], [34] attempt to recon-

struct the elements of object surface such as surface patches

or individual strips.

Boyer and Franco [2] improved voxel carving by per-

forming a conforming Delaunay triangulation of visual hull

surface points obtained along viewing edges. However, their

approach also either keeps or discards each tetrahedron based

on the projection of its centroid and does not modify its

shape. Unlike 3D modeling approaches such as [6] that use

parameterized primitives and recover the parameters using

images, convex bricks are not parameterized.

Lazebnik et al. [16] showed that the visual hull surface

is a projective topological polyhedron made of curve edges

and faces connecting them. The visual hull is computed via

locating frontier and triple points by finding a sparse set

of corresponding points observed by pairs and triplets of

cameras. Several approaches assume local smoothness and

compute rim/frontier points using epipolar constraints based

on second-order approximation of the surface [14], [36].

However, the orientations reverse at frontier points leading

to an approximate topology. Recent state-of-the-art approach

by Franco and Boyer [8] has shown high quality visual

hull reconstruction by first retrieving the viewing edges.

Local connectivity and orientation information is then used to

incrementally build a mesh using epipolar correspondences.

A final walk-through is also required to identify the planar

contours for each face of the polyhedron. Such approaches

can face difficulties in presence of segmentation and calibra-

tion errors; an epipolar line corresponding to a viewing edge

may not intersect the silhouette. Thus, explicit handling of

such cases is required, either by modifying local geometry or

silhouettes. In contrast, such errors are implicitly handled in

volume-based approaches such as ours. Furthermore, since

typical outputs of such approaches are surface meshes, they

lag behind volumetric outputs like ours in representational

power. For example, it is well known that convex objects

like CB’s are well suited to answer many geometric queries

like ray intersection, point-in-polygon etc.



Apart from these two class of methods, other approaches

to visual hull reconstruction have been proposed. Brand et

al. [3] proposed an algebraic solution that exploits the differ-

ential structure of the manifold and estimates the set of tan-

gent planes and points of contact to the surface corresponding

to 2D contour tangents. Matusik et al. [25] proposed image-

based visual hull for fast image-based rendering. However,

their approach does not reconstruct a 3D visual hull. A

Bayesian approach enforcing a class-specific shape prior was

proposed in [10]. Along with silhouette information, photo-

consistency has also been used to improve the 3D shape [9],

[32], [11], [37], although we focus solely on using silhouette

information.

Several applications on non-convex polyhedra have effi-

cient solutions if the polyhedron is first decomposed into

convex pieces. These include geometric problems such as

computing the Minkowski sum of polyhedras, point-in-

polyhedra test [17], as well as applications such as collision

detection and motion planning [20]. VH obtained using our

approach can be directly used without any post-processing

for these applications. In addition, approximate convex de-

composition [19] of the shape is often desired, since exact

decomposition into a minimum number of pieces is NP-

hard. We also show how to achieve approximate convex

decomposition by controlling the precision of VH as well

as number of primitives in our algorithm.

II. VISUAL HULL RECONSTRUCTION

Consider an object observed by N pinhole cameras with

known calibration. Let Ii denote the set of images and Ci

the silhouette in each image. We assume that the silhouette

in each image is a set of polygonal contours. The viewing

cone Vi associated with the silhouette Ci is the closure of the

set of rays passing through points inside Ci and through the

center of projection of Ii. The visual hull (VH) is defined

as the intersection of all viewing cones:

VH = ∩Vi. (1)

Our approach to visual hull (VH) reconstruction consists

of (a) initializing a coarse model and (b) refining it by

partitioning into convex bricks using given silhouettes. Any

initialization such as a bounding box can be used. Note

that a convex decomposition of 3D shape is not unique. In

Section V, we discuss initialization techniques based on VC,

resulting in a different convex decomposition.

Initialization: Instead of using a bounding box, we initialize

using CVH, the apparent (view-dependent) convex hull of the

shape [38]. This is obtained by computing the 2D convex

hull of each silhouette and finding the intersection of all

convex visual cones. CVH can be computed by solving a

single linear program, and is a tighter convex approximation

compared to the bounding box.

A. Refinement by Partitioning into Convex Bricks

The silhouettes are processed one by one and each sil-

houette is used to refine the current 3D model by poten-

tially decomposing it into multiple convex bricks. Without

CVH First Silhouette Refined Shape

Internal
Planes

Internal 
Edges

Fig. 3. Refinement of CVH using the first silhouette. Intersection of the
projected CVH (blue) with the silhouette results in the same silhouette. It
is partitioned into m = 7 convex polygons using internal edges (green).
CVH is refined into 7 convex bricks. The internal edges result in internal
faces.

loss of generality, let us assume that we have Ki convex

bricks B1 . . . BKi
describing the object after processing ith

silhouette. Thus, K0 = 1 and B0 = CVH. Each silhouette

is processed only once.

Intuitively, we wish to intersect the visual cone of each

silhouette with the current model to remove 3D regions that

project outside the silhouette. However, since silhouettes are

typically non-convex, such general 3D intersections become

tricky. We now show how to achieve such 3D intersections

using only convex 3D intersections.

Silhouette Processing: Given a new silhouette Ci, each con-

vex brick Bj is processed independently. We wish to find the

3D intersection of Bj with the visual cone corresponding to

the current silhouette. We first project Bj onto the silhouette

resulting in a 2D convex polygon P(Bj), where P denotes

the projection operator. Next, we compute the intersection

Sij of P(Bj) with the given silhouette Ci:

Sij = P(Bj) ∩ Ci. (2)

However, the intersection Sij can be non-convex. We then

find a convex decomposition of Sij , resulting in mij convex

2D polygons. Thus,

Sij =

mij⋃

k=1

Tijk, (3)

where Tijk’s denote the convex partitions of Sij . Each

partition Tijk define a convex visual cone, which can be

intersected with Bj by solving a small linear program. Thus,

we have simplified the intersection of each convex brick Bj

with the visual cone of the given non-convex silhouette by

only using convex 3D intersections. Figure 3 demonstrates

this procedure for the first silhouette used in the Vase dataset,

where the CVH is refined and partitioned into 7 convex

bricks. Figure 4 shows processing at a later stage, where

a convex brick is only refined, but not partitioned.

Achieving 3D intersections via 2D intersections in the

image plane is also used by previous approaches [24], [25],

[29], [31]. Note that if the convex brick is projected inside

the silhouette, it is not refined since the current silhouette

does not provide any new information for that brick.

B. Obtaining Surface Mesh

The convex decomposition of Sij will introduce new

edges, referred to as internal edges, since they are not part of
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Fig. 4. Refinement of convex brick Bj . The projection of Bj is intersected
with the silhouette (red) resulting in a convex polygon (black). Convex brick
is refined without getting partitioned. Shape obtained after processing all
convex bricks with this silhouette is also shown.

the original silhouette. The internal edges result in internal

faces in the reconstructed VH (Figure 3). Interestingly, there

are no internal vertices, i.e., none of the vertices of the

reconstructed VH will fall inside all silhouettes. The reason

is as follows. After the first silhouette is processed, all

convex bricks have vertices that project on that silhouette.

Further, the 2D convex decomposition does not introduce

new vertices. Thus, for every additional view, the vertices

of the refined convex bricks will project on the current or

the previous silhouettes. This implies that one can obtain a

surface mesh by simply removing the internal faces, which

are marked during the processing. Thus, CB representa-

tion can provide both volumetric and surface information.

Figures 1 and 5 show examples. In Section V, we show

that initialization using VC results in internal vertices in

reconstructed VH.

C. Differences & Similarities with Voxel Carving

Similar to VC, the convex brick is refined only when

it falls on the silhouette. In VC, a voxel is divided into

8 smaller voxels by keeping the shape fixed to a cube,

while CB is divided into smaller CB’s using 2D convex

decomposition. Given a silhouette, a voxel may need to

be divided several times to reach a given accuracy. In

contrast, a convex brick needs to be divided only once

for a given silhouette. This is because any non-convex 2D

polygon can be decomposed into multiple convex partitions.

Hence, CB refinement using a non-convex silhouette can

be done via convex intersection with back-projected convex

partitions. Thus, for piecewise-linear polygonal silhouettes,

the projection of the reconstructed VH matches the polygonal

silhouettes1.

As discussed in [8], since VH shape is stable under small

perturbations, using bounded polygonal approximations of

occluding contours will have little impact on the global

shape. Our approach can work with any polygonal approx-

imation of contours. This is useful in practice, since in

presence of noise and discretization, viewing cones never

exactly exhibit tangency property [8].

We define the visual hull precision α as the average

of the maximum deviation of the re-projected visual hull

from each silhouette. We use the real dataset provided by

1To clarify, the projected VH is not guaranteed to match the underlying
continuous (smooth) silhouette.

Fig. 5. (Left) Original mesh of Vase and Cactus. (Middle) Reconstructed
VH using 30 images with 1667 and 766 convex bricks for Vase and
Cactus respectively. (Right) Surface mesh with 15283 and 8999 vertices
respectively.
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Fig. 6. Convex brick projected onto a silhouette results in the intersection
Sij , which has two convex partitions. Ideally, the brick will be refined into
two smaller bricks. For precision control, the maximum distance d of the
silhouette from the convex hull of Sij is computed. If d < α, convex brick
is not divided, only refined using the new edges in CH(Sij).

Yasutaka Furukawa2, which provides silhouettes for several

challenging non-convex shapes. For synthetic datasets, we

render the silhouettes from the available mesh model3. We

fit lines (tolerance of 1 pixel) to pixel-discretized contour

points resulting in piecewise-linear polygonal silhouettes.

Thus, the maximum deviation of the projected polyhedral VH

with continuous smooth silhouettes will be 1 pixel. Figure 2

shows high quality reconstruction on challenging real dataset

consisting of several non-convex shapes. Figures 5 and 1

show reconstruction on the synthetic datasets along with

obtained surface mesh.

D. Controlling the Precision of Visual Hull

Voxel carving provides a natural way to control the

VH precision via voxel resolution at the finest level. We

demonstrate a novel way to control VH precision by locally

controlling the convex decomposition of projected convex

bricks. Figure 6 depicts the idea where Sij will ideally be

decomposed into two convex partitions. To enable precision

control, we compute the convex hull of Sij , denoted as

CH(Sij). Given a precision α, if the silhouette lies within

a distance d < α of CH(Sij), Sij is not divided into

convex partitions. Subsequently, the convex brick Bj is not

divided, but only refined using the new edges in CH(Sij).
Thus, locally convex approximation of the shape is obtained.

Note that when the silhouette itself is locally convex, Sij

is convex. Thus, Sij = CH(Sij) and d equals zero. This

implies that there is no approximation for convex bricks

falling onto locally convex regions of the silhouette.

Figure 7 shows VH reconstruction using varying α for

Dinosaur dataset (image resolution 2000×1500). Even when

2http://www.cs.washington.edu/homes/furukawa/research/visual hull/
3http://www.cs.caltech.edu/∼njlitke/meshes/toc.html
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Fig. 7. (Left) Reconstructed VH using different precision. Even when α is large, the obtained VH retains high frequency details to a large extent. (Right)
Number of primitives versus precision for VH reconstruction using convex bricks and voxels.

α is large, our reconstruction provides high frequency shape

details. Since not all convex bricks are divided, precision

control results in lesser number of convex bricks (compare to

21120 bricks for full precision). In comparison, VC starting

with 1283 grid results in a precision of 18 pixels using 81576
voxels (26858 on surface). By controlling the precision, our

approach automatically results in an approximate convex

decomposition of the VH. Thus, the VH can be directly used

without any post-processing for applications such as collision

detection and motion planning that require an approximate

convex decomposition.

III. IMPLEMENTATION DETAILS

Our algorithm requires following well-studied geomet-

ric operations: (a) 2D polygon intersection, (b) 2D con-

vex decomposition, and (c) 3D convex intersections. We

use the General Polygon Clipper (GPC) library4 for 2D

polygon intersections. For 2D convex decomposition, we

use the CGAL5 implementation which has a complexity of

O(n log n) for a polygon with n vertices.

A convex polytope can be represented as the intersec-

tion of supporting half-spaces (H-representation) or as a

minimal set of extreme vertices (V-representation). Each

representation can be obtained from the other via vertex/facet

enumeration. We represent each convex brick using both

H-representation (for 3D intersections) and V-representation

(for projection). Since half-spaces can be written as linear

inequalities, intersection of two convex 3D polytopes is

equivalent to computing the reduced set of inequalities from

the union of their inequalities. For vertex enumeration from

half-spaces and reducing the set of inequalities, we use the

lrs software6. To refine a convex brick, we compute the

back-projected planes given by the individual 2D convex

partitions, add the corresponding linear inequalities to the

current convex brick inequalities, and compute the reduced

set. The rest of our implementation is in un-optimized Matlab

and runs on a 64-bit PC with 4GB RAM. For all our results,

we verified that the reconstruction is a watertight mesh by

loading the mesh into CGAL and testing for polyhedron

validity and closedness. Run-time (full precision) is less than

4http://www.cs.man.ac.uk/∼toby/alan/software/
5http://www.cgal.org/
6http://cgm.cs.mcgill.ca/∼avis/C/lrs.html

3 minutes for simple shapes (cactus, vase, duck) using 30
views and 30 − 40 minutes for complex shapes shown in

Figure 2 using 24 views. For Dinosaur dataset, run-time

reduces to 6.5 minutes for α = 83 and 8.6 minutes for

α = 15 (Figure 7). In general, each convex brick has less

than 10 supporting planes in the final shape.

IV. ANALYSIS

Now we analyze various aspects of our algorithm and

demonstrate the flexibility of our approach in controlling the

precision of VH as well as the number of primitives used

for reconstruction.

Number of CB’s: We first consider the number of convex

bricks Ki after processing i silhouettes. Figure 8 plots Ki

for 6 different datasets. Initially the number of CB’s may

increase rapidly, since the first few views provide a lot of

new information for visual hull refinement. For example,

after the first view is processed, the number of convex bricks

directly correspond to the number of convex partitions of

the first silhouette. During the first few views, convex bricks

will project over larger silhouette regions and each will be

refined into larger number of bricks. However, after few

initial views, the increase in number of CB’s is almost linear

as empirically observed from the plots. As more views are

processed, CB’s become smaller and project to locally small

regions of silhouette. In addition, a majority of them will

also fall inside the silhouette and will not be divided.

View Ordering: The order in which views are processed

also affects the final number of convex bricks. Two heuris-

tics seems relevant, where the new view is (a) maximally

different or (b) minimally different from previous views.

Figure 8 (right) plots Ki for these two ordering along with

several random orderings for Dinosaur dataset. The first

view is same for all orderings. When successive views are

maximally different, refined convex bricks become more

localized after each view, reducing the final number of CB’s.

When successive views are minimally different, refinement

is slow resulting in convex bricks covering larger silhouette

regions. We performed extensive tests and in our experience

using the heuristic of maximally different views works well,

both for synthetic and real datasets. For simplicity, the

maximal different view is chosen by maximizing the distance

of the new viewpoint with all previous viewpoints, although

other approaches can be used.
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Fig. 8. Plot of number of convex bricks after each silhouette is processed for synthetic (left) and real datasets (middle). Increase in bricks is almost
linear as more views are processed. (Right) Using a maximally different view-ordering results in smaller number of convex bricks. ‘Pre-defined’ refers to
ordering provided in the dataset.

Precision vs Number of Primitives: Figure 7 (right)

shows a comparison of the number of primitives required

for reconstructing VH for a given precision using voxels

and convex bricks. We run VC using various grid sizes

(163, 323, . . .). For each reconstruction, we compute the cor-

responding precision α and the required number of voxels.

Then we run our approach with the same α and note the

number of CB’s required as well as the resulting precision7.

Figure 7 shows that for similar precision, the number of CB’s

required is much smaller. Conversely, for the same number

of primitives, convex bricks result in better precision. Note

that precision improves much more rapidly with increase in

convex bricks compared to increase in voxels.

Controlling the Number of CB’s: Can we achieve a

reconstruction by specifying the number of CB’s? Such a

control is easily achievable in our approach. As soon as the

number of convex bricks reaches a specified number T , we

stop dividing the convex bricks, but keep on refining them as

described in Section II-D. This essentially amounts to setting

α to a large value once T CB’s are obtained. Figure 9 shows

Dinosaur VH using a fixed number of CB’s. Even when

the number of CB’s is small, the reconstruction captures

the topological information to a large extent. Interestingly,

reconstruction using a single convex brick results in the

apparent (view-dependent) 3D convex hull of the shape.

This is a better approximation than using a single voxel

(bounding box). Thus, similar to precision control, speci-

fying the maximum number of convex bricks also results in

an approximate convex decomposition of the reconstructed

shape. For Dinosaur dataset, run-time reduces to 1.7 minutes

for T = 200 and 5.1 minutes for T = 1000.

V. HYBRID APPROACH USING VOXEL CARVING

The main algorithm described in Section II-A starts with

CVH, a single convex brick. However, our approach can also

use a voxel-based initialization obtained using VC. Since

each voxel is convex, it can be regarded as a convex brick and

each voxel can be refined as described in Section II-A inde-

pendently. Figure 11 compares the reconstructions obtained

using a 323 voxel initialization with CVH initialization. The

7The final precision obtained using CB’s will be smaller than α used.

200 CB’s 1000 CB’s Voxel Carving

Fig. 9. Visual hull reconstruction of Dinosaur using fixed number of CB’s
(each is colored differently). Both reconstructions are approximate convex
decomposition of the shape. VC output is also shown using 2102 voxels
with 1659 voxels on the surface.

volumetric VH is shown using transparency, which reveals

the difference in the internal structure of convex bricks.

Interestingly, a voxel initialization produces a different

convex decomposition of the resulting VH compared to

CVH initialization; the reconstructed VH now also contains

internal vertices. Figure 10 depicts the reason. Compared

to Section II-A, where all vertices of convex partitions are

on the silhouette, the projected voxel vertices modify the

2D convex decomposition by adding new points inside the

silhouette. Thus, convex bricks get more localized after pro-

cessing the first silhouette. Notice the shape of convex bricks

in Figure 11; voxel initialization avoids long thin slivers

that might arise due to the convex decomposition of the

silhouette when internal vertices are not added. In addition,

intersection of several projected voxels with the silhouette

may be convex, not requiring any partitions (Figure 10). This

helps in reducing the number of convex bricks as shown in

Figure 11. However, using a fine voxel grid initialization

results in a large number of convex bricks to start with and

may not provide a benefit.

Voxel initialization also helps in reducing the number

of vertices in the final surface mesh. The intersection of

projected convex bricks with the silhouette results in new

vertices on the silhouette, increasing the number of vertices

on the surface. This increase is smaller with voxel initial-

ization, since a fraction of new vertices are added inside the

silhouette during convex decomposition. To obtain the sur-

face mesh, we remove all vertices (and their corresponding

edges) whose projection lie inside all silhouettes, along with

internal planes. For Dinosaur dataset, the number of vertices
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Fig. 10. (Left) Convex decomposition of the first silhouette for CVH
initialization. All vertices lie on the silhouette. (Right) Voxel-based initial-
ization essentially modify the convex partitions (black) by inserting new
vertices inside the silhouette corresponding to the voxel projection. This
better localizes the convex bricks.
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Fig. 11. (Left) Difference in volumetric VH with and without voxel
initialization. (Right) Comparison of the number of convex bricks after
processing each silhouette for different voxel-based initializations.

reduces from 101325 to 77603 using 323 voxel initialization.

In general, we obtain a larger number of vertices compared

to a pure surface-based approach [8]. The extra vertices lie on

internal planes and are caused by the intersection of projected

internal planes with the silhouette during the processing.

In future, we plan to remove these extra vertices in post-

processing.

VI. APPLICATION TO BIN PICKING

The 3D model reconstructed using our approach can be

used for several applications in robotics, including grasping,

servoing, and navigation. Underlying all these applications

is the ability of the robot to estimate the pose of the object

of interest given some measurements.

Here we demonstrate the use of our algorithm for bin-

picking applications. The objective of bin picking is to

perform detection and pose estimation of objects that are

randomly placed in a cluttered bin and to grasp an object

using its estimated pose with a robot arm. The object

detection and pose estimation typically require a 3D model

of the target object, which we wish to reconstruct using the

object itself.

Visual Hull Reconstruction: Figure 12 illustrates a

pipeline of our system for the bin-picking application. We

attached a camera to a robot arm and calibrated it with

respect to the robot in order to capture a set of images

of the object from multiple locations with known camera

poses. We obtained mask images from the captured images

(Figure 12 (left)) by using background subtraction. We then

reconstructed a visual hull from the silhouettes extracted

from the mask images using our CB algorithm. We used

34 views to reconstruct the visual hull shown in Figure 12

(center), consisting of 10466 CB’s and 128506 vertices.

Bin Picking: We validated the accuracy of the recon-

structed visual hull model in a bin-picking system presented

in [21]. The system uses a multi-flash camera to robustly

extract depth edges for the bin of objects. The system then

performs detection and pose estimation of objects by using

fast directional chamfer matching (FDCM) algorithm [21]

that matches the extracted depth edges with template edge

images computed from a 3D model of the object. The

estimated pose is further refined by rendering the 3D model

of the object and using a variant of iterative-closest point

(ICP) algorithm for the edge points. In [21], a hand-made 3D

CAD model was used for generating the template images of

FDCM and for the pose refinement. We replaced it with our

reconstructed visual hull model in the system and observed

a similar pose estimation accuracy. Figure 12 (right) shows

a pose estimation result using the FDCM algorithm. We also

achieved a pickup success rate of 95% over 100 trials, which

is comparable to the case when we use the hand-made 3D

CAD model.

VII. DISCUSSIONS

We conceptualized and explored the notion of convex

bricks as silhouette-dependent voxels for volumetric visual

hull representation and reconstruction. Convex bricks provide

a richer volumetric representation along with providing sur-

face information. In addition to high quality reconstruction,

they also provide a 3D convex decomposition useful for post-

processing. Convex bricks offer tunable visual hull recon-

structions by controlling the precision and the number of

required primitives. We demonstrated that the reconstructed

3D model can be used in practical robotics applications such

as pose estimation.

Our current unoptimized Matlab implementation is slower

than voxel carving; however our approach is highly paral-

lelizable, since each convex brick is refined independently.

Fast inside/outside decision for projected convex brick may

be possible using distance transforms and occlusion maps,

which would improve run-time. The 2D polygon intersection

algorithm can be replaced by a faster line clipping algorithm.

In addition, incremental linear programming can further

reduce the computation cost, since each new silhouette only

adds few inequalities for each convex brick. Linear time

algorithms such as [4] can also be used for convex 3D

intersections.

We believe that convex brick as a 3D primitive opens

up promising avenues for further research. Several inference

algorithms in vision use super-pixels instead of pixels for

computational benefits and better spatial support. Similarly,

inference algorithms on graphs constructed using convex

bricks as nodes have the potential to provide computational



Fig. 12. (Left) Examples of input images and their corresponding mask images from which the silhouettes are extracted. (Center) Reconstructed visual
hull. (Right) Pose estimation results in a bin-picking system presented in [21]. We used the reconstructed visual hull to generate template edge images for
the fast directional chamfer matching (FDCM) algorithm. We used a multi-flash camera to extract depth edges from the scene and estimated object poses
using FDCM. Best three estimated poses (red, green, and blue) are superimposed on the depth edges extracted from the scene.

benefits over voxels for applications such as 3D segmenta-

tion/recognition. Binary space partitioning (BSP) trees are

used for representing 2D/3D convex partitions. A BSP-tree

based data structure for convex bricks will be useful in

reconstruction and processing of the visual hull. It would

provide connectivity information between different parts of

the 3D model. Finding the best 2D convex decomposition

that minimize the number of convex bricks and/or surface

vertices also remains an interesting future work.
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