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Abstract
This paper presents a new image denoising method based on sparse reconstruction by dic-
tionary learning and collaborative filtering. First, we form an affinity net, in which a node
represents an image patch, for the given image by clustering similar patches. For each clus-
ter, we learn an undercomplete dictionary and represent clusters nodes by imposing sparsity
inducing norm as a combination of few atoms. Depending on its affinity to other nodes,
a single node could be present in multiple clusters making the clusters overlapping. This
enables a single global estimation for each filtered pixel to be obtained by collaboratively
aggregating its reconstructed patches in the corresponding clusters. Extensive experimental
results demonstrate superior performance for additive noise removal without requiring the
correct noise variance.
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ABSTRACT

This paper presents a new image denoising method based on sparse

reconstruction by dictionary learning and collaborative filtering.

First, we form an affinity net, in which a node represents an image

patch, for the given image by clustering similar patches. For each

cluster, we learn an undercomplete dictionary and represent clusters

nodes by imposing sparsity inducing norm as a combination of few

atoms. Depending on its affinity to other nodes, a single node could

be present in multiple clusters making the clusters overlapping. This

enables a single global estimation for each filtered pixel to be ob-

tained by collaboratively aggregating its reconstructed patches in the

corresponding clusters. Extensive experimental results demonstrate

superior performance for additive noise removal without requiring

the correct noise variance.

Index Terms— Image denoising, sparse coding, dictionary

learning, collaborative filtering

1. INTRODUCTION

Image denoising is considered a low level yet critical problem that

has been tackled by a variety of techniques that rely on implicit and

explicit modeling of the contaminated additive noise, which is of-

ten assumed to have a Gaussian distribution function. The additive

image denoising is basically modeled as

yk = xk + zk (1)

where yk, zk and xk correspond to the contaminated, original and

noise intensities of the pixel k.

Several denoising approaches have been developed over the

years. These can broadly be classified into local and nonlocal meth-

ods. While local methods have a limited estimation support for a

consecutive weighted averaging, nonlocal methods utilize redun-

dancy and work on larger support regions to provide better statistics.

An extensive overview of the denoising methods can be found in [1],

and we briefly discuss the most popular ones here to indicate the

main differences and drawbacks.

The earliest local smoothing filters including Lee filter [2],

Wiener filter, anisotropic bilateral filter [3] and their many variants

compute a weighted average for each pixel based on the assumption

that pixels inside the local window are sampled from the same dis-

tribution. To overcome their shortcomings particularly under high

noise variance, sparsity inducing full-rank transformations such as

DCT and wavelets are introduced. Among these techniques BLS-

GSM [4] can be considered to one efficient denoising technique that

preserves textures and edges.

Alternatively, nonlocal means based methods (e.g. [5]) obtain a

single pixel estimate by computing a weighted average of all similar

⋆This work was performed at Mitsubishi Electric Research Labs.

pixels in the image. These weights are assumed to be directly pro-

portional to the similarity of the reference pixel (more specifically

its surrounding patch) to the other pixels, either satisfy a predefined

threshold or constitute a fixed size set. The basic insight of nonlo-

cal methods is that patches in a natural image are redundant unlike

random noise patterns.

Following on the nonlocal means idea, BM3D [6] exploits spar-

sity and nonlocal means based redundancy of patches to produce

the state-of-the-art results. BM3D essentially imposes sparse repre-

sentation on patch groups as hard thresholded scheme of DCT and

wavelet decompositions to determine its Wiener filter responses it

applies in its second stage. Inherently, it requires the noise variance

to scale the Wiener filter coefficients. Recently, Aharon et al pro-

posed the concept of KSVD [7], which constructs data driven dic-

tionaries instead of the DCT and wavelet bases from image patches,

to exploit the sparsity. In KSVD, an image patch is represented as

a linear combination of a limited number of atoms in an overcom-

plete (4 or more times) dictionary and the final image is obtained

as a weighted average of the reconstructed patches and the origi-

nal noisy image assuming the noise variance is again known. Sev-

eral other techniques, e.g. K-LLD (locally learned dictionaries) [8],

LSSC (learned simultaneous sparse coding) [9] and CSR (clustering

based sparse representation) [10], PPB (probabilistic patch based fil-

ter) [11], which poses denoising as a weighted maximum likelihood

estimation, also share similar intuitions yet produce arguably incre-

mental improvements in comparison to BM3D being dependent on

the same constraints about the noise shape and variance.

Here, we propose a different strategy for additive noise removal

using dictionary learning and collaborative filtering. We start by

building an affinity net for the noisy image. In this affinity net, an

image patch corresponds to a node that is linked (clustered) together

with other similar patches. After determining the clusters in the net,

we form a matrix by the nodes in each cluster and learn a thin dictio-

nary that faithfully captures the underlying variations in the matrix.

Each cluster is represented and filtered by its unique dictionary. The

size of each dictionary is sufficiently very small since the affinity

imposes a cluster to be constituted by closely similar patches. Since

a single node most likely to participate in different clusters, there are

overlaps among the clusters and hence multiple estimates for a sin-

gle node (thus for its underlying pixels). The denoised estimate is

obtained by combining the estimates obtained for a single pixel.

Our main contribution is the concept of adapting dictionaries to

nonlocal variations through clusters present in the given image with-

out any assumption on the noise function shape and variance. We

demonstrate experimentally that our technique performs as well as

the-state-of-the-art, even if they are supported by the correct noise

variance, while generating visually pleasing results without over-

smoothening. For simplicity, we call this affinity nets based collab-

orative filtering approach as Sparse Reconstruction on Affinity Nets

(SRAN).



2. SPARSE RECONSTRUCTION ON AFFINITY NETS

2.1. Affinity Net

The affinity net is an undirected graph based representation of all im-

age patches where each node corresponds to an image patch and the

weight of each vertex to the similarity of two patches it belongs to.

In other words, the affinity net is a weighted graph with the weights

corresponding to the distance between the patches. The affinity be-

tween two vector form image patches pi and pj is computed as

ω(pi, pj) = < pi, pj >=

K
∑

k=1

pi,kpj,k (2)

for the K pixels contained in a patch assuming each patch has the

same number of pixels. Although it is possible to use other metrics

(e.g. ℓ1 weights, frequency features, etc.) to measure the similar-

ity between patches, we preferred the dot product to not bias for any

particular intensity and pixel position. The corresponding graph con-

taining the clustered nodes is called as affinity net because clustering

depends on similarity rather than distance.

We use the affinity net to learn a locally adapting dictionary for

each node. However, using the entire affinity net to learn that many

dictionaries would be computationally prohibitive since the affinity

net contains as many clusters as the number of image pixels and

it is fully connected. In order to decrease the computational load

drastically and to concentrate on more relevant samples, we cluster

nodes by keeping a maximum of m vertices that have sufficiently

high weights w(pi, pj) > τ within a search window of radius r. A

cluster ci is denoted as

ci =
{

pj : ω(pi, pj) > τ, i = 1, .., n
}

(3)

for n pixels in image Y . Clustering process puts the nodes hav-

ing close coordinates together in the feature space. We empirically

observed that the noise removal performance is not sensitive to the

value of τ as long as most clusters contain 10 to 100 patches. If the

affinity between two nodes is high, a node is attached to the clus-

ter of the other node as illustrated in Fig. 1. Depending on the self-

similarity of the image, clusters can be in different sizes. A reference

node might not contain any similar nodes and hence the cluster size

will be one. Also, a single node could be present in one or more

clusters and participate in filtering of each cluster they are present.

In this case, we will obtain multiple estimates of a node.

The corresponding graph containing the clustered nodes is called

as affinity net because clustering depends on similarity rather than

distance. If the affinity between two nodes is high, a node is attached

to the cluster of the other node as illustrated in Fig. 1. As shown,

depending on the self-similarity of the image, clusters of can be in

different sizes. The dark circles represent the reference nodes and

the red circles are in their corresponding clusters. A reference node

might not contain any similar nodes and hence the cluster size will be

one. Also, a single node could be present in one or more clusters and

participate in collaborative filtering in each cluster they are present.

In this case, we will obtain multiple estimates of a node.

2.2. Dictionary Learning

For each of the affinity net cluster ci, we form a cluster matrix

CM×K
i and decompose it into a linear function of a dictionary

DM×d
i and its sparse coefficients Xd×K

i , where M is the number of

nodes in the cluster, d is the number of atoms in the dictionary, and

Fig. 1. Affinity net for a flower image. Note that some nodes may

be singular with no vertex. Affinity net contains as many clusters as

the number of nodes.

K is the number of pixels in the patch. We arrange the column vec-

tors pi of the cluster nodes into a cluster matrix as Ci = [.., pi, ..]
T

as shown in Fig. 2. In Ci, each row corresponds to cluster node

including the reference node. The number of columns in this matrix

is the dimensionality (size) of the patch, while the number of rows

is the number of patches in the cluster.

Fig. 2. Cluster matrix construction

As opposed to the traditional column-wise ordering, we use the

row-wise ordering before learning the dictionary. Our intuition here

is that the variation along the columns, that is, the intensity variation

of the same pixel locations across the similar patches, should be very

small since the patches are all similar. A pixel intensity that does not

comply with its references in the other patches in the cluster should

not be considered as a representative in the dictionary.

Let us consider a signal represented as y ∈ ℜM . We consider

that this signal is sparse in a dictionary D ∈ ℜM×d, thus the sig-

nal can be represented as a linear combination of a few (e.g. 1∼3)

atoms in the dictionary. In general, such dictionaries are overcom-

plete (d >> M ), that is, the number of its columns (atoms) is greater

than the number of its rows (data dimensionality). The sparsest rep-

resentation X∗ that is obtained with the dictionary D is given by the

relaxed sparsity inducing norm

X
∗ = argmin

X
|||X||0 subject to||C −DX||22 ≤ ǫ (4)

where the norm on the coefficients can be set to ℓ1 to enable convex

programming. For natural images, full-rank power compact dictio-

naries such as wavelet basis and DCT partially satisfy above objec-

tive when they are applied a hard shrinkage.



We jointly learn the dictionary and the sparse coefficients by

alternating between a sparse coding stage and a dictionary update

stage to solve the optimization problem

D
∗

i , X
∗

i = arg min
Di,Xi

||xj ||0 , ∀j ||Ci −DiXi||
2

2 ≤ ǫ (5)

where xj is the coefficient column vector corresponding to pixel j

in the patch grid and ǫ is the maximum allowed sparsity. We set the

initial dictionary matrix with d random and ℓ2 normalized columns

of Ci. Alternatively, the k-means clustering (with d centers) can be

applied to cluster nodes to obtain the initial dictionary.

In the sparse coding stage, we use the orthogonal matching pur-

suit to compute the representation vectors xj . We update the dictio-

nary one column at a time by first defining the group of rows (pixels)

that use this atom then computing the overall representation error

matrix for this group without using the current atom, and then ap-

plying singular value decomposition to assign the first column of the

left decomposition matrix as the new updated atom. For the clus-

ters that the number of nodes is very small (e.g. M < 4), we apply

the Wiener in the second time application of our algorithm. We es-

timate the noise variance from the difference between the first time

application result and the original noisy image.

2.3. Sparse Reconstruction

We are not aiming for a perfect reconstruction but rather elimina-

tion of the inconsistent pixel intensities by a linear combination of a

few atoms in the dictionary. Because of this special row-wise struc-

ture of the cluster matrix, a small dictionary can successfully capture

the coherent pixel intensity changes. Our cluster dictionary is there-

fore significantly under-complete; the number of columns d (and the

maximum rank of the dictionary) is less than the patch size d << K.

After the dictionary learning and sparse coefficient computation,

we have the new cluster matrix C∗

i . The rows of C∗

i are the recon-

structed patches. We assign these reconstructed patches to the re-

spective locations from where they are extracted. Because patches

are overlapping and a patch may belong to multiple clusters, there

are multiple estimates for a given pixel.

The final estimate at a pixel is obtained by computing the aver-

age of all computed estimates. Aggregation can also be performed

by considering the affinity net edge weights at a pixel and then

normalizing the corresponding estimates. This collaborative aggre-

gation enables preserving commonly shared patterns and rejecting

speckle noise at the same time. In other words, for more than one

estimate of a pixel, we simply average all the obtained estimates.

Note that, none of the above formulations use the noise variance,

or assume the noise distribution shape is Gaussian. The SRAN algo-

rithm is summarized here:

Input: noisy image Y , initial estimate Y0 = Y

Output: denoised image I

cluster patches pi ∈ Y0 → ci
for each ci do

arrange pi ∈ Y (not Y0) into cluster matrix Ci using ω(pi, pj)
from Y0

if M < 4 and first run then

C∗

i ←Wiener(Ci)
else

C∗

i = D∗

i , X
∗

i ← Eq. 5

end if

end for

I ← back project and aggregate C∗

i .

Barbara Camera. House Lena

Noisy 16.47 16.63 16.31 16.34

KSVD 26.35 24.84 29.41 28.61

BM3D 27.99 25.46 30.74 29.92

SRAN Filter 27.48 25.48 30.52 29.44

Table 1. PSNR comparison between various filters

3. EXPERIMENTS

We tested SRAN filter with images corrupted by simulated additive

noise. In order to make a fair comparison with the existing meth-

ods (BM3D and KSVD based denoising) the noise is assumed to

be Gaussian with zero mean. We set the same noise variance in

their formulations when we generated the best results of BM3D and

KSVD. Benchmark images are assessed quantitatively and percep-

tually.

The first step of our algorithm involves block matching. Three

parameters of this step may influence the performance of our filter.

These are the patch size, search range, similarity threshold. These

parameters have to be optimized with a trade-off between the execu-

tion time and quality of the final results. Since we performed all our

experiments with fixed parameters of the patch size K = 64 = 8×8
and the search range r = 39. We limited the minimum similarity

between nodes to τ = 0.002 and the maximum number of similar

nodes in a cluster to m = 400. Our experiments show that per-

formance does not require manual tuning for each image. We used

a simple hard thresholding scheme suggested in [6] to obtain the

initial estimate.

Figure 3 show the denoised images. The noise variance in all

these images are set to σ = 40 (for max intensity 255) because we

wanted to test the performance of these filters under heavy noise con-

ditions. From the results, it is evident that certain artifacts produced

by the other algorithms are not present in our results. Though our

filter produces smooth results wherever the noise is dominant, the

finer details of the original image are preserved.

Sample quantitative evaluation scores of our method is presented

in Table 1 for σ = 40 for Peak Signal to noise ratio (PSNR). As

shown our method produces results that are quantitatively compa-

rable (and sometimes better) to the state-of-the-art even though no

assumption on the noise shape and variance is made.

4. CONCLUSION

We proposed an image filter based on dictionary learning on affinity

nets. Our filter takes advantage of the sparse representations in each

cluster and removes additive noise by sparse approximations. As op-

posed to [7] that uses a single dictionary to represent all the image

patches, our method has a very small undercomplete dictionary for

each cluster. This provides a significant performance improvement

as suggested by the experimental results. More importantly, as op-

posed to BM3D and KSVD, our method does not need to know the

noise variance.
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