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Abstract
This paper considers a parametric approach for adaptive multichannel signal detection, where
the disturbance is modeled by a multichannel auto-regressive (AR) process. Motivated by
the fact that a symmetric antenna geometry usually yields a per-symmetric structure on
the covariance matrix of disturbance, a new per-symmetric AR (PAR) modeling for the dis-
turbance is proposed and, accordingly, a per-symmetric parametric adaptive matched filter
(Per-PAMF) is developed. The developed Per-PAMF, while allowing a simple implementation
like the traditional PAMF, extends the PAMF by developing the maximum likelihood (ML)
estimation of unknown nuisance (disturbance-related) parameters under the per-symmetric
constraint. Numerical results show that the Per-PAMF provides significantly better detec-
tion performance than the conventional PAMF and other non-parametric detectors when the
number of training signals is limited.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139





3322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

Persymmetric Parametric Adaptive Matched Filter for

Multichannel Adaptive Signal Detection

Pu Wang, Zafer Sahinoglu, Man-On Pun, and Hongbin Li

Abstract—This correspondence considers a parametric approach for mul-
tichannel adaptive signal detection in Gaussian disturbance which can be

modeled as a multichannel autoregressive (AR) process and, moreover, pos-
sesses a persymmetric structure induced by a symmetric antenna geometry.

By introducing the persymmetric AR (PAR) modeling for the disturbance,
a persymmetric parametric adaptive matched filter (Per-PAMF) is pro-

posed. The developed Per-PAMF extends the classical PAMF by exploiting
the underlying persymmetric properties and, hence, improves the detection

performance in training-limited scenarios. The performance of the pro-
posed Per-PAMF is examined by the Monte Carlo simulations and simula-
tion results demonstrate the effectiveness of the Per-PAMF compared with

the conventional PAMF and nonparametric detectors.

Index Terms—Multichannel adaptive signal detection, maximum

likelihood estimation, multichannel autoregressive process, parametric
approach, persymmetry.

I. INTRODUCTION

Multichannel adaptive signal detection against strong spatially and

temporally colored disturbances has been encountered inmany applica-

tions, e.g., wireless communications, hyperspectral imaging, and med-

ical imaging [1]–[3]. Traditional techniques are limited for practical

applications due to their excessive training requirement and high com-

putational complexity. For example, the covariance-matrix-based de-

tectors, e.g., Kelly’s generalized likelihood ratio test (GLRT) [4], the

adaptive matched filter (AMF) [5] and the recent Rao test [6], need

  !" training signals to ensure a full-rank estimate of the distur-

bance covariance matrix and have to invert the !" ! !" covariance

matrix, where ! denotes the number of antennas and " denotes the

number of pulses.

Among other techniques, a class of parametric detectors provide

an efficient way to simultaneously mitigate the training requirement

and reduce the computational complexity [7]–[11] (and reference

therein). By modeling the disturbance as a multichannel autoregres-

sive (AR) process, the parametric detectors decompose the jointly

spatio-temporal whitening of the covariance-matrix-based detectors

into successive temporal whitening and spatial whitening. As a

well-known parametric detector, the parametric AMF (PAMF) is

simple to implement. Using measured datasets [7], [8], the PAMF

was found to yield better performance with significantly reduced

computational complexity than the nonparametric counterpart, i.e., the

AMF, especially when  " !" .

In this correspondence, extending the multichannel AR process

based parametric detector, we exploit additional structure of the

disturbance covariance matrix, i.e., the persymmetric property [12],
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[13]. This enables an improved parametric detector with better

training-signal efficiency. The utilization of persymmetry for applica-

tions in communications and radar can be traced back to [12] and [13]

and has been proved to be an efficient way to mitigate the demanding

requirement of homogeneous training signals. In [13], Nitzberg shows

that the efficiency of usage of training signals is improved by up to

a factor of two by utilizing persymmetry. Following [13], several

adaptive detection schemes explicitly taking into account the per-

symmetry have been proposed in [14] and, more recently, [15]–[19].

Specifically, [14] proposed a GLRT to detect a multi-band signal

from the disturbance with the persymmetric property. Extension to

the compound-Gaussian environment was made in [15] and has been

further verified in [16] with experimentally measured datasets. The

results show that exploiting the persymmetric property significantly

improves the robustness of the adaptive detection algorithms in terms

of the constant false alarm rate (CFAR). Meanwhile, [17] proposed a

persymmetric GLRT for a partially-homogeneous environment.

Our incorporation of the persymmetric constraint in the PAMF

leads to a new persymmetric PAMF (Per-PAMF), which, while main-

taining the simple implementation as the PAMF, further improves the

robustness in training-limited scenarios. The Per-PAMF is developed

in a two-step procedure. In detail, a nonadaptive parametric matched

filter (PMF) is first introduced by assuming the knowledge of the

nuisance parameters and, then, the Per-PAMF is developed from the

PMF by replacing the nuisance parameters by their maximum like-

lihood (ML) estimates from training signals under the persymmetric

constraint. The performance of the Per-PAMF detector is examined by

the Monte-Carlo simulations and the simulation results show that the

Per-PAMF has slightly better performance than the PAMF when the

number of training signals is sufficient, while it significantly outper-

forms the PAMF in cases with extremely limited training signals.

The remainder of the correspondence is organized as follows.

Section II contains the signal model and introduces the persymmetric

AR modeling for the disturbance. The Per-PAMF detector is derived in

Section III. Numerical results with two distinct datasets are provided

in Section IV. The conclusion is finally drawn in Section V.

II. SIGNAL MODEL

The problem of interest is to decide which of the following two hy-

potheses is true [4], [5], [7], [9], [10]:
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where  
 

is the !" ! # test signal, " is the known space-time steering

vector which is a Kronecker product between the temporal $"

 

% and

spatial $"
!

% steering vectors, i.e., " ! "

 

# "

!

% $ is an unknown com-

plex-valued amplitude, and !
 

is the disturbance signal (e.g., clutter

and noise) which is modeled as a complex Gaussian vector with zero-

mean and unknown covariance matrix#, i.e., !
 

$ %& $$%#%. Aside

from the test signal, there are  target-free independent and iden-

tically distributed (i.i.d.) training signals  
"

! !

"

$ %& $$%#%%

& ! #% & & & %  , which are also independent of the test signal.

Moreover, by following the parametric approach introduced in

[7], the disturbance signals !
"

are modeled as a multichannel AR

process. Specifically, let !
"
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"
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$ . The multichannel AR

process of the disturbance signal is described as [7], [9], [10]
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where    
 

 !!  !"  "" ! is the #-channel temporally white but spa-

tially colored Gaussian driving noise with  denoting the unknown

# # # spatial covariance matrix, and $! $!%

!

" !

denote the unknown

# # # AR coefficient matrices.

In this correspondence, we consider a case frequently encountered

in practice, where the systems use a symmetric antenna configuration

(symmetrical with respect to its phase center) and transmit a set of

pulses of equal duration [13]–[17], [19]. For example, the widely used

uniform linear array with a constant pulse repetition frequency (PRF)

is such a system. The structured antenna array configurations and con-

stant PRF cause the spatio-temporal covariance matrix" to be persym-

metric-block-Toeplitz, as shown in [20]. Specifically, the return from a

discrete disturbance source has a similar form as a target echo. Unlike

a target, the disturbance is distributed in both range and azimuth. As

an approximation to a continuous field, the disturbance return from a

specific range is modeled as the superposition of a large number %
#

of independent disturbance sources in azimuth. Assuming that returns

from different disturbance sources are uncorrelated, the disturbance co-

variance matrix can be calculated as [20, Sec. 2.6.1]

" #

$

% !

&

%

#

&'%

#

(

&'%

& #

)'%

#

(

)'%

(3)

where &
%

is proportional to the radar cross section (RCS) for the 'th

disturbance source, and #
&'%

and #
)'%

denote the temporal (Doppler)

and spatial steering vectors, respectively. Due to the configurations in

both spatial and temporal domains, the temporal and spatial steering

vectors of the disturbance source satisfy the following properties, i.e.,

#

&'%

is a Vandermonde vector and #
)'%

# $#

 

)'%

is persymmetric, where

$ denotes the exchange matrix with unit anti-diagonal elements and

zeros elsewhere,

$ #

" " ' ' ' " $

" " ' ' ' $ "
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... . .

. ...
...

" $ ' ' ' " "

$ " ' ' ' " "

( (4)

Therefore, #
&'%

#

(

&'%

is a Toeplitz matrix, while #
)'%

#

(

)'%

is a persymmetric

matrix. In addition to the Kronecker operation in (3), it is straightfor-

ward to show that the overall covariance matrix " to be a persym-

metric-block-Toeplitz matrix.

To exploit this structure information of the covariance matrix ", a

new multichannel AR model by incorporating the persymmetric prop-

erty is introduced below.

• AS1—Persymmetric Spatial Covariance Matrix: Following

the traditional AR process of (2), the spatial covariance matrix is

further assumed to be persymmetric as

 # $ 

 

$ (5)

where % ' & denotes the complex conjugate and $ denotes the ex-

change matrix of (4).

• AS2—Persymmetric AR Coefficient Matrices: In addition to

the persymmetric , we assume that the AR coefficient matrices

satisfy the following property:

! $! # $!

 

 $!$( (6)

As shown in the Appendix, we prove that the proposed persymmetric

AR model provides a parametric approach to approximate the persym-

metric-block-Toeplitz structure of the covariance matrix ". In sum-

mary, the goal is to develop a decision rule for the problem in (1) to-

gether with the assumptions AS1 and AS2.

III. PERSYMMETRIC PARAMETRIC ADAPTIVEMATCHED FILTER

The Per-PAMF is developed in a two-step approach: 1) find the

GLRT when the nuisance parameters ! and  are assumed both

known and 2) replace ! and  by their ML estimates from training

signals subject to the persymmetric constraints.

A. PMF—The GLRT With Known ! and 

When! and are both known, the GLRT has the form as
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where $$
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%
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are the likelihood functions under+
"

and+
!

. It can

easily be shown that the GLRT reduces to the nonadaptive PMF [7]
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where +
# and +

%

"

are, respectively, the temporally whitened steering

vector and test signal obtained with the true temporal correlation ma-

trices ! $!" $ # $" , , , " , ,
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In the case of unknown ! and  , the above PMF cannot be imple-

mented and, therefore, we need to replace ! and  with their ML

estimates under the persymmetric constraints of (5) and (6).

B. Persymmetric ML Estimate of  

The persymmetric ML estimates of ! and  are obtained from

training signals only. According to the signal model, the joint likeli-

hood function of training signals can be written as
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and  
 

  ! is a regression vector of !
 

  !:
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. By exploiting the persymmetric property of", i.e., (5), we have
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Taking the derivative of +, # with respect to" and equating the results

to zero lead to the persymmetric ML estimate of"
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C. Persymmetric ML Estimate of %

Recall that% of (14) is formed by stacking% #! column-wise. From

(6), % has the following property:
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which implies that
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and the persymmetric ML estimate of" of (19) reduces to
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D. Per-PAMF

By replacing % and " with the persymmetric ML estimates of %

and " in (8), we obtained the Per-PAMF as
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where +
#+, #-$.

is a threshold subject to a preset probability of false

alarm, and the temporally whitened steering vector -.(
#

and test signal
-
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are adaptively obtained, respectively, with the persymmetric ML
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From (28), it is seen that the Per-PAMF inherits the reduced compu-

tational complexity of the conventional PAMF by performing succes-

sively a temporal whitening followed by a spatial whitening, in contrast

to the computationally intensive joint spatio-temporal whitening of the

covariance matrix based approach (e.g., the AMF [5]). On the other

hand, it further improves robustness of the parameter estimation by ex-

ploiting the underlying structure of the disturbance covariance matrix

via the persymmetric ML estimates of the AR coefficient matrices %

and the spatial covariance matrix ".

E. Comparison With the Conventional PAMF

Compared with the conventional PAMF [7], the proposed Per-PAMF

shares the same test variable as shown in (28), except the underlying es-

timates of the unknown parameters% and". The conventional PAMF

uses the unconstrained ML estimate from training signals:
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Compared with the above ML estimates, it is noted that the persym-

metric ML estimates of% and" in (26) and (27) explicitly utilize the

persymmetric properties through the operations of (21), (22), and (23).
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Fig. 1. Probability of detection versus SINR for  !when!  "" #  ##"
$  $, and $  %%%#.

IV. PERFORMANCE EVALUATION

In this section, simulation results are provided to demonstrate the

efficiency of the proposed Per-PAMF in the training-limited case, e.g.,

  !" . The performance is evaluated with two datasets: 1) a syn-

thesized AR dataset, in which the disturbance signal  
 

is generated

as a multichannel second-order AR process  # ! "# with a AR co-

efficient ! and a spatial covariance matrix " satisfying (6) and (5);

and 2) a physical clutter dataset, in which the disturbance is gener-

ated according to the clutter model used in [20]. The signal-to-interfer-

ence-plus-noise ratio (SINR) is defined as

$%&' ! !$!

 

#

!

$

 !

# (33)

where$ is the spatial-temporal covariance matrix. Regarding the syn-

thesized dataset, $ corresponds to the selected ! and ". The sim-

ulated performance is obtained by using at least 10 000 Monte Carlo

trials for the probability of false alarm #
"

! (%(). Performance com-

parisons are made among the nonparametric AMF [5], the nonpara-

metric persymmetric AMF (Per-AMF) [18], the conventional PAMF

[7], and the clairvoyant matched filter (MF) [5], [20]. Particularly, the

simulated scenario uses ! ! * antenna elements and " ! )) pulses,

while the number of training signals are, respectively, ! "&  ! +,

and  ! ,.

A. Synthesized AR Dataset

In this case, the steering vector # is generated with a normalized

spatial frequency '
#

! (%" and a normalized Doppler frequency is

'

$

! (%", respectively. Fig. 1 shows the probability of detection versus

the SINR with comparably sufficient training signals. In this case, the

performance gain of the Per-PAMF over the conventional PAMF is

marginal since both detectors have enough training signals to obtain

good estimates of the unknown parameters. Meanwhile, both para-

metric detectors, i.e., the PAMF and Per-PAMF with  ! , training

signals, show better detection performance than the nonparametric co-

variance matrix based AMF and Per-AMF with  ! "!" ! ))(

training signals.

In Fig. 2, the number of training signals is reduced to  ! +. As

shown in Fig. 2, the performance gap between the Per-PAMF and the

PAMF is about 1.5 dB when #
$

! (%,, while the Per-PAMF with

Fig. 2. Probability of detection versus SINR for  &when!  "" #  ##"
$  $, and $  %%%#.

Fig. 3. Probability of detection versus SINR for  $when!  "" #  ##"
$  $, and $  %%%#.

 ! + training signals is slightly better than its nonparametric coun-

terpart Per-AMFwith ! ))( training signals. The most challenging

case is the third scenario where only ! " training signals are avail-

able. As shown in Fig. 3, the conventional PAMF gives much worse

performance than the Per-PAMF. In other words, with only  ! "

training signals, the conventional PAMF cannot obtain reliable esti-

mates of unknown parameters, e.g., ! and ", which leads to perfor-

mance degradation, while the Per-PAMF has better efficiency of using

training signals for unknown parameter estimation and thus maintains

its performance even with only  ! " training signals. The perfor-

mance gain for the Per-PAMF over the conventional PAMF is about 5

dB when #
$

! (%,. On the other hand, the AMF cannot work func-

tionally with  ! !" ! ** training signals and the Per-AMF with

 ! ** training signals gives similar detection performance with the

Per-PAMF with  ! " training signals.

From all three scenarios, it is clearly seen that, when there is a suffi-

cient number of training signals, the performance gain is marginal and

thus one may not need to utilize the prior persymmetric information.
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Fig. 4. Probability of detection versus SINR for  !when!  "" #  ##,
and $  $%$#.

In contrast, the advantage of the proposed Per-PAMF becomes evident

when the training signals are not enough for the PAMF to reliably es-

timate the unknown parameters and to maintain a reasonable detection

performance. Therefore, in the training-limited scenarios, it is crucial to

make use of the prior structure knowledge to improve the robustness of

the parametric detectors. Here, we have a brief note on the CFAR prop-

erty of the proposed Per-PAMF. Similar to the conventional PAMF, the

CFAR property is usually achieved in the asymptotic case with a suf-

ficiently large  (the number of pulses) or at the sufficient training

scenario where !  " , but may vanish when " !  or when the

disturbance does not follow the AR process; see [7, Sec. VII.B].

B. Physical Clutter Dataset

Unlike the previous section which used synthesized AR dataset, this

section provides simulation results in a different environment, where

the disturbance is generated from a physical clutter model described in

[20], rather than a multichannel AR process. The platform is at altitude

of 9 km with the velocity of 50 m/s, and the range of interest is 130

km. The clutter-to-noise ratio (CNR) is 35 dB. The clutter is divided

among 360 clutter patches equally distributed in the azimuth about the

platform and the RCS for each patch is weighted by a transmit pat-

tern with a backlobe level of " ! dB; see [20, (80) and Figs. 9 and

10]. Moreover, we assume a linear symmetric array and a set of pulses

with a constant PRF of 300 Hz, which results in a persymmetric spatial

steering vector and a Vandermonde temporal steering vector:
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The steering vectors for the clutter sources are similarly generated.

We consider the case with ! " % training signals. Since there is

no knowledge about the AR order, we try a variety of AR orders, i.e.,

& " ##$ &$  $, and select the one giving the best performance. In con-

trary, we use ! " '' training signals for the nonparametric detec-

tors, e.g., the conventional AMF and Per-AMF. Alternatively, the AR

order can be adaptively determined from the training signals with con-

ventional order determination techniques, e.g., the Akaike information

criterion (AIC) and the minimum description length (MDL). Specif-

ically, a low-complexity, joint model-order selection and parametric

detection procedure was proposed in [21]. The simulated results are

shown in Fig. 4. It is seen that the proposed Per-PAMF is better than

the conventional PAMF with a performance gain of 2 dB at &
&

" !%(.

Moreover, it is seen that the proposed Per-PAMF detector needs much

less training signals (! " % versus ! " '') than the nonparametric

Per-AMF detector to achieve similar detection performance, and is sig-

nificantly better than the conventional AMF detector with ! " ''

training signals. We also note that, compared with the same case of

! " % but with the synthesized AR dataset in Fig. 1, the performance

gap between the PAMF/Per-PAMF and the optimal matched filter is in-

creased, which shows that the parametric PAMF/Per-PAMF detectors

suffer from the model mismatch. Finally, we also compare the pro-

posed Per-PAMF with the diagonal-loaded AMF [22], [23] with the

same amount of training signals, i.e., ! " %. It is seen from Fig. 4

that, with a choice of 10-dB loading factor (ten times the white noise

level), the diagonal-loaded AMF (denoted as the AMF-DL) gives a de-

tection performance, much better than that of the conventional AMF

detector but still worse than that of the proposed Per-PAMF detector.

V. CONCLUSION

This correspondence extends the conventional PAMF by exploiting

the structure properties of the disturbance covariancematrix, for widely

used systems with a symmetric antennas geometry and pulses with a

constant PRF. The developed Per-PAMF shares the same detection sta-

tistics as the conventional PAMF but utilizes the structure information

through the estimation of the unknown AR coefficient matrices! and

spatial covariance matrix ". Numerical results have verified that the

proposed Per-PAMF gives better detection performance than the con-

ventional PAMF as well as the covariance matrix based detectors when

training signals are limited.

APPENDIX

In the following, we show that the persymmetric AR based distur-

bance in Section II has a persymmetric-block-Toeplitz space-time co-

variance matrix. First, the space-time covariance matrix of an arbitrary

multichannel AR process #)'* is defined by

$ " (

#)!*

#)#*

...

#) " #*

+#

'

)!* #

'

)#* % % % #

'

) " #* ,

"

$)!* $)"#* % % % $)#" *

$)#* $)!* % % % $)&" *

...
...

. . .
...

$) " #* $) " &* % % % $)!*

(34)

where $))* " (+#)'*#

'

)' ")*, which implies that $)")* "

$

'

))*. It is easily observed that$ is a block-Toeplitz matrix.

To further show$ is persymmetric-block-Toeplitz, we need to prove

that the sub-block matrix$))* is a persymmetric matrix. To this end,

we consider an iterative procedure to find an explicit expression of

$))* as a function of the AR coefficient matrices !)** and spatial

covariance matrix" and, then, prove the persymmetric property of the

sub-block matrices $))*. First, we treat the AR process as a causal

filter and #)'* is therefore the output of the causal filter

#)'* "

 

(%$

%))*+++)'")*% (35)
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Given    !, we have, for  ! "
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where (a) holds since the driving noise %%% #! is temporally white across

#. From (35), it is seen that the output " #! with respect to impulse

input is

" #! #

 

# !

   !&&& #  !

#   "!&&& #! &  '!&&& # '! &  (!&&& # (! & ! ! ! (37)

and we can enumerate

" "! #   "!&&& "!

" '! #   '!&&& "!

" (! #   (!&&& "! (38)

and so on. Meanwhile, since " #! is a multichannel AR process, we

have

" #! #  

$

% "

$

 

 '!" # '! & %%% #! (39)

and, therefore, the output " #! with respect to impulse input can be

alternatively obtained as
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and so on. By comparing (38) with (40), we have
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and so on. As a result, the impulse response matrix    ! can be de-

termined in an iterative way as
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(42)

Since$ '!( ' # '( * * * ( )( satisfy the persymmetric property as shown

in (6), we can conclude from (42) that    ! is also subject to the

persymmetric constraint as

   ! # & 

!

  !&+ (43)

In addition to the spatial persymmetry of# in (5), we can rewrite the

block matrices !  ! in (36) as
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where !" used the fact that ## " $ and !# holds due to the persym-

metric properties of the !!! and  . Combining (34) and (44), the

overall space-time covariance matrix" of a persymmetric AR process

is proved to be a persymmetric-block-Toeplitz matrix.
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Single-Carrier Systems With MMSE Linear Equalizers:

Performance Degradation due to Channel and

CFO Estimation Errors

Athanasios P. Liavas and Despoina Tsipouridou

Abstract—We assess the impact of the channel and the carrier frequency
offset (CFO) estimation errors on the performance of single-carrier

systems with MMSE linear equalizers. Performance degradation is caused
by the fact that a mismatched MMSE linear equalizer is applied to channel

output samples with imperfectly canceled CFO. Assuming a single-block
training, we develop an asymptotic expression for the excess mean square

error (EMSE) induced by the channel and CFO estimation errors and
derive a simple EMSE approximation which reveals the following: 1) per-
formance degradation is mainly caused by the imperfectly canceled CFO

and 2) the EMSE is approximately proportional to the CFO estimation
error variance, with the factor of proportionality being independent of

the training sequence. We also highlight the fact that the placement of the
single-block training at the middle of the packet is a good practice.

Index Terms—Joint channel and CFO estimation, linear MMSE
equalization.

I. INTRODUCTION

A problem that frequently arises in packet-based wireless communi-

cation systems is the joint estimation of the frequency selective channel

and the CFO [1], [2]. Optimal training sequence (TS) design for this

problem has been considered in [2], where the optimized cost function

was the asymptotic Cramér-Rao bound (CRB). However, in [2], the

channel and CFO estimation errors were assigned equal weight which

might be suboptimal since “   presumably channel estimation errors

will have a different impact, e.g., on bit-error rate, than frequency es-

timation errors” [2].
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It seems that the unequal weighting problem cannot be resolved un-

less we consider specific communication systems. An important struc-

ture to study is a single-carrier system with an MMSE linear equal-

izer. Performance degradation is caused by the fact that a mismatched

MMSE linear equalizer is applied to channel output samples with im-

perfectly canceled CFO. This system has been considered in [3], where

the authors derived an expression for the EMSE and designed optimal

TSs.

We consider the same system as in [3] but our aim is different. More

specifically, we assume a single-block training and, as done in [3],

we develop an asymptotic expression for the induced EMSE which,

however, is difficult to interpret. Our main contribution lies in the fact

that, assuming small ideal MMSE, we derive a simple and informative

EMSE approximation, which reveals the following:

1) the dominant error source is the imperfectly canceled CFO;

2) the EMSE is approximately proportional to the CFO estimation

error variance, with the factor of proportionality being indepen-

dent of the TS.1

We also highlight the fact that the placement of the single-block TS at

the middle of the transmitted packet is a good practice.

Notation: Superscripts  , ! , and  denote transpose, conjugate

transpose, and elementwise conjugation, respectively. !"# $ denotes

the trace operator, %&! " denotes the real part of a complex number,

and  

"

denotes the # identity matrix. !
 !"

# $, !
 #$

# $, $  $

%

,

$  $

#

, and "
%

# $ denote, respectively, the maximum singular value,

the minimum singular value, the spectral norm, the Frobenius norm,

and the condition number, with respect to the spectral norm, of the

matrix argument. % '#( denotes the expected value of # . !
!& '

and

!

"

!& '

denote, respectively, the orthogonal projector onto the column

space of matrix" and its orthogonal complement.

II. CHANNEL AND CFO ESTIMATION

A. The Channel Model

We consider a packet-based single-carrier system with input packet

length$ . We assume that the baseband-equivalent frequency-selective

channel has impulse response # '%

(

   %

$

(

 , angular CFO &, and

phase '. The output at time instant (, for ( ) *)    ) $ + *, is

+

%

) &

&&'%)('

$

)*(

%

)

,

%#)

+ -

%

(1)

where !,

%

"

*

%*+

and !-

%

"

*)$#+

%*+

denote the channel input and addi-

tive channel noise, respectively. The input symbols are i.i.d. unit vari-

ance circular. The noise samples are i.i.d. circular Gaussian with vari-

ance !%
+

. In the sequel, we absorb term .&( into channel #.

The channel output vector $
%,%#"

'+

%

   +

%#"

(

 can be ex-

pressed as

$

%,%#"

) ,,

,

%,%#"

#&$%&

%,%#$#"

+ '

%,%#"

(2)

where

,,

,

%,%#"

#&$ -./0#&

&'%

)    ) &

&'&%#"'

$ (3)

and% is the # +*$## +*+*$Toeplitz filteringmatrix constructed

by #.

1Thus, optimal TS design for CFO estimation is also highly relevant for joint

channel and CFO estimation.
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