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Abstract

We present a structured dictionary learning method to remove blocking artifacts without blur-
ring edges or making any assumption over image gradients. Instead of a single over complete
dictionary, we build multiple subspaces and impose sparsity on nonzero reconstruction coeffi-
cients when we project a given texture sample on each subspace separately. In case the texture
matches to the data set with which the subspace is trained, the corresponding response will be
stronger and that subspace will be chosen to represent the texture. In this manner we compute the
representations of all patches in the image and aggregate these to obtain the final image. Since
the block artifacts are small in magnitude in comparison to actual image edges, aggregation ef-
ficiently removes the artifacts but keep the image gradients. We discuss the choices of subspace
parameterizations and adaptation to given data. Our results on a large data set of benchmark
images demonstrate that the presented method provides superior results in terms of pixel-wise
(PSNR) and perceptual (SSIM) measures.
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ABSTRACT

We present a structured dictionary learning method to remove block-
ing artifacts without blurring edges or making any assumption over
image gradients. Instead of a single overcomplete dictionary, we
build multiple subspaces and impose sparsity on nonzero reconstruc-
tion coefficients when we project a given texture sample on each
subspace separately. In case the texture matches to the dataset with
which the subspace is trained, the corresponding response will be
stronger and that subspace will be chosen to represent the texture.
In this manner we compute the representations of all patches in the
image and aggregate these to obtain the final image. Since the block
artifacts are small in magnitude in comparison to actual image edges,
aggregation efficiently removes the artifacts but keep the image gra-
dients. We discuss the choices of subspace parameterizations and
adaptation to given data. Our results on a large dataset of bench-
mark images demonstrate that the presented method provides supe-
rior results in terms of pixel-wise (PSNR) and perceptual (SSIM)
measures.

Index Terms— Deblocking, Dictionary Learning, JPEG

1. INTRODUCTION

The blocking effect is considered as the most disturbing artifact of
JPEG decoded images and can dramatically degrade the visual qual-
ity especially when the images are encoded at high compression
rates, where JPEG compression introduces high frequency quantiza-
tion error to each individual block separately, resulting discontinuity
across block boundaries.

Several techniques have been proposed to postprocess JPEG im-
ages aiming at improving the visual quality. Some methods analyze
spatial domain manifestations [1], while others mainly work infre-
quency domain [2]. There are more sophisticated iterative methods
based on projections onto convex sets [3, 4]. In addition, processing
images adaptively to reduce artifacts while preserving edges simul-
taneously are proposed many times [5, 6, 7, 8]. Another noteworthy
approach is reapplication of DCT on shifted images [9] and averag-
ing results at each pixel. This approach is simple but produces nice
results. Among the main drawbacks of these methods their computa-
tional complexity, explicit dependency on the correct image gradient
information, sensitivity to preset parameters come.

Dictionary learning is to learn an over-complete basis and rep-
resent image patches sparsely under this basis. More precisely, it
solves for dictionary D and reconstruction coefficients A by mini-
mizing
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and columns of X represent patches of an image. It has been shown
that dictionary learning delivers efficient solutions in compression,
denoising and other inverse problems in image processing [10, 11].
Furthermore, many methods are developed to explore group struc-
tures for dictionary learning. For instance, Yu et al. [12] propose a
method based on Structured Sparse Model Selection (SSMS) which
enforces reconstruction coefficients A to be block diagonal in the
above formulation. SSMS behaves more stable than traditional dic-
tionary learning methods and achieves remarkable performance in
above problems. It is demonstrated in [13] that SSMS can restore
compressed noisy images.

Inspired by both the idea of reapplication of DCT and recently
popular dictionary learning methods, we note that they share a com-
mon point of processing of all overlapping patches in the given im-
age. However, dictionary learning has the advantage of providing
an adaptive and often overcomplete projection rather than spanning
with a fixed orthonormal bases. When sparsity is imposed, spanning
onto a data and task driven basis is shown to produce better recon-
struction results. Thus, instead of using DCT, we consider incorpo-
rating multiple subspaces when we reassemble and aggregate patch
responses. Each subspace is obtained offline by under-complete dic-
tionary learning on particular edge orientations. In online process-
ing, for each image patch we select the best dictionary, use it to
update the corresponding subspaces. We call our method as Mul-
tiple Dictionary Learning (MDL). We examine the validity of such
subspace projection for blocking artifact removal when the image is
heavily compressed. Unlike [12] we analyze the affect of the reduced
number of subspaces on the artifact removal. We show that it suffices
to use only a few undercomplete subspaces sometimes even without
additional update stage. Our results on a large dataset of benchmark
images demonstrate that the the presented method provides superior
results in terms of pixel-wise (PSNR) and perceptual (SSIM) mea-
sures while improving the JPEG Quality Score (JQS) from 2 (heavily
distorted) to above 9 (almost no perceivable artifacts).

2. MULTIPLE DICTIONARY LEARNING

In an offline step, we first learn K orthogonal subspaces {Dy } 1,
from synthetic images each depicting a wedgelet at a particular ori-
entation equally sampled from [0, 27). Previously, up to 18 such
subspaces are utilized [12] with an additional full-rank DCT basis
as the initial structured dictionary. However, it is not clear that us-
ing a large number of subspaces would actually brings substantial
improvement despite its high computational load.

On the online step, MDL constructs multiple subspaces by iter-
ating between a clustering stage and a dictionary learning stage:

1. Clustering: A m x m patch x is assigned to cluster k(x) by:

k(x) = argmax [|(D}})"x||3 (1
k

where Dy, is the orthonormal basis of the k** cluster and Dz
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Fig. 1. First 8 components of the dictionary for 7 /6. Initial patterns
(basis vectors of the subspace) are changed adaptive to the given
image.

are the first d components of the basis. £ = 1,..., K. Dy
spans the k" subspace for the corresponding cluster.

2. Dictionary Learning. Dy, is updated by applying the Sin-
gular Value Decomposition (SVD) on the matrix X whose
columns are the patches assigned to the k%" cluster, i.e.,

Xy, =[x : k(x) = K.

Denote the result of SVD by X;, = USV7, then we form
D;. = U and the coefficient matrix A = SV,

We show in Figure 1a the first § components of the dictionary for
/6 and in Figure 1b those after 5 iterations. As visible, the pattern
change (note that sign changes are captured by the reconstruction
coefficients) is more eminent for the less important basis vectors.

After the iterations converge, we threshold patch coefficients.
Our intuition is that blocking artifacts do not establish themselves
as strongly as the real edges in natural images, in consequence, a
thresholding of smaller coefficients will remove the blocking arti-
facts. In other words, magnitudes of the artifacts when projected
on the basis we learned offline and adapted online are not as large
as those of the real edges (e.g., Figure 1). Applying a conservative
threshold performs like a low-pass filter on blocking artifacts.

A patch z is then approximated by & as follows:

i = D}o-((D})"x) ()

where r is larger than the number of coefficients d used for clus-
tering, and the thresholding - is applied on each element in the
vector. More precisely, 6-(a) = a, if |a| > 7; d-(a) = 0 other-
wise. This whole process is applied for all overlapping patches and
the thresholded approximations are averaged at each pixel to recon-
struct the image. As an example, Figure 2a shows 4 original blocks
from the compressed image: 2 with blocking artifacts and other 2
containing real edges). In Figure 2b, the reassembling results after
the thresholding are given.

3. PARAMETER SELECTION

We set the size of the blocks m = 8 and the number of the basis
vectors in the subspaces as d = 8. We observed that after r > 15
for 8 x 8 blocks the reconstruction hardly improves. We thus let
r = 20 to reduce computational load. Another important parameter
is the threshold level 7 which should be adaptive to the compression
rate. We suggest specific values for 7 as in Table 1. Quality is the
parameter of MATLAB function imwrite which is an integer scaling
from O to 100. Higher numbers mean higher quality i.e. less image
degradation due to compression. This quantity can be determined
by the compressed image. Any number around the recommended
value works sufficiently well. One can even adjust these values for

(a) Compressed House

(b) Smooth (left two) and edge (right two)
blocks. Top row is before MDL, bottom row
is after MDL.

Fig. 2. Response for smooth and edge patches (marked in black
squares in the image). MDL based thresholding removes the block-
ing artifacts yet preserves real edges (best viewed in high-contrast
zoomed in display).

the image, e.g. if the image contains many textures then choose
a smaller value for 7; if the image is rather uniform then a larger
number for more aggressive thresholding.

Table 1. Suggestions for choosing 7.
Quality | 34 30 25 20 16 12 9 6
T 9 12 15 18 21 30 36 45

We investigated two problems about the selection of parameters.
One is how many iterations we need for convergence (i.e. until no
more improvements happen) and the other is how many clusters are
sufficient (i.e the number of subspaces). Our extensive experimen-
tal evaluation shows that MDL with 5 iterations and a large num-
ber of clusters (X = 18 orientations + DCT) does not help much
on removing the blocking artifacts. Combined with the choice that
r = 20, we conclude that using only a few (K = 2 orientations
+ DCT) under-complete subspaces (unlike multiple complete spaces
in [12]) is the optimal trade off between accuracy and computation
complexity. Sample results of Lena are given in Figure 3 for differ-
ent scenarios.

4. EXPERIMENTS

We used three measures of image quality, Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity (SSIM) index [14] and JPEG qual-
ity score (JQS) [15]. Among these measures, PSNR and SSIM eval-
uate the pixel-wise quality referring to original image and JQS as-
sesses perceptual quality without any reference image.

Structural SIMilarity (SSIM) considers luminance, contrast
and structure and aims to evaluate the perceptual quality of an ap-
proximate image comparing to the original one.

JPEG Quality Score (JQS): is a no-reference perceptual qual-
ity assessment of JPEG compressed images. The model is given by:

S=a+BBMAZZ 3)

where B, A, Z are values computed from the compressed image.
B estimates the blockiness and A and Z approximate the activity.
The remaining parameters are determined by regression in subjective
experiments (see more details in [15]).



(a) Compressed Lena (b) 18 Orient. + DCT, n=5, (c) 18 Orient. + DCT, n=1 ,

PSNR= 32.79dB PSNR= 32.81dB

(e) 2 Orient. + DCT, n=5,
PSNR= 32.69dB

(d) DCT only, n=5,
PSNR= 32.63dB

(f) 9 Orient. + DCT, n=5,
PSNR= 32.78dB

(g) DCT only, n=1,
PSNR= 32.63dB

(h) 2 Orient. + DCT, n=1,
PSNR= 32.65dB

(i) 9 Orient. + DCT, n=1,
PSNR= 32.77dB

Fig. 3. Blocking artifacts removal results with different parameters.
Several iterations (n) and a large number of clusters (orientations)
do not help much on this task (best viewed in zoomed in display).

To evaluate the performance of the proposed method, we apply it
on 50 examples (10 color images, each has 5 compressed images of
different compression rates) of IVC database [16] and compare with
other two methods. We transform these images to gray scale and
work on gray images. We detect Quality value for each compressed
image and use it for reapplication of JPEG. The threshold value ¢ is
also chosen according to Quality as in Table 1. Furthermore, we
evaluate our methods on several color images for which we obtain
the data matrix in three channels. We apply MDL in each channel of
the YUV space.

We compute PSNR, SSIM [14] of MDL, pointwise SA-DCT
(SA) [6] and reapplication of JPEG (ReJPG) method [9]. Results
are shown in Table 2 and Fig. 4. On average, MDL improves about
1dB over the input compressed images.

As for the complexity, the major computation of MDL is due
to the orthogonal projections of the clustering stage and the SVD of
the learning stage. Let N be the patch size (in MDL, N = m? and
normally m = 8). Then, for n patches and d < N < n, MDL
requires O(N?n) + O(KdNn) operations, where K = 3 and d =
10 can achieve satisfying results. Moreover, the complexity of SA-
DCT is O(N?3n) on average and can reduce to O(nN?log(N)) by
fast algorithms. The Re-JPEG method requires O(N?n) operations
plus O(Nn) for Huffman coding.

From the results shown above, we see that in terms of both pixel-

Table 2. The average values for each image in different measures

PSNR SSIM

images | MDL ReJPG SADCT} MDL ReJPG SADCT]
avion | 3242 3230 3244 | 0902 0.899 0.901
barba | 28.60 28.17 28.01 0.841 0.826 0.837
boats 31.08 3090 31.12 | 0.873 0.8609 0.872
clown | 31.70 31.54 31.72 | 0.873 0.869 0.873
fruit 3393 3372 3361 0910 0901 0.904
house | 30.15 30.15 30.14 | 0.862 0.861 0.860
isabe 33.03 32.80 3295 0.864 0.861 0.858
lenat 33.00 3270 3297 | 0.875 0.870 0.875
mandr | 24.17 24.14 - 0.682 0.682 -
pimen | 31.81 31.59 3195 0.834 0.828 0.835

wise and perceptual metrics, MDL works better than JPEG reappli-
cation (ReJPG) method in almost all the cases. MDL can more ef-
fectively remove the blocking artifacts as well as preserving clean
edges and textures in images. MDL also obtains better results in the
uniform regions (e.g. the arm on the left of Barbara in Figure 4).
However, ReJPG produces favorable JQS [15] values although we
see from the perceptual examples that MDL clearly outperforms Re-
JPG. This is because of the fact that JQS is designed with help of
JPEG images, thus JQS measures blocking artifacts but lacks the
power to evaluate overall quality. Furthermore, MDL is comparable
to but sometimes better than point-wise SA-DCT. In comparison to
point-wise SA-DCT, we notice that MDL is more effective recover-
ing textures (e.g. Barbara) while SA-DCT oversmoothens (e.g. the
right low region of the color image Isabel in Figure 4). This also ex-
plains why SA-DCT gives slightly better results for uniform images
(e.g. Peppers). This is consistent with our argument that the method
MDL is able to remove blocking artifacts without blurring edges.

5. CONCLUSION

In this paper, we apply multiple dictionary learning on removing
blocking artifacts. We discuss its implementations and choices of
parameters for this purpose and conclude that only 2 subspaces can
be used. We provide insights of the reason why MDL performs well.
Our experiments on a benchmark dataset of 50 images confirm that
MDL not only improves SSIM but also PSNR too.
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